Questions
stringlengths
14
191
Answers
stringlengths
6
29k
What causes Cardiomyopathy ?
Cardiomyopathy can be acquired or inherited. Acquired means you arent born with the disease, but you develop it due to another disease, condition, or factor. Inherited means your parents passed the gene for the disease on to you. Researchers continue to look for the genetic links to cardiomyopathy and to explore how these links cause or contribute to the various types of the disease. Many times, the cause of cardiomyopathy isnt known. This often is the case when the disease occurs in children. Hypertrophic Cardiomyopathy Hypertrophic cardiomyopathy usually is inherited. Its caused by a mutation or change in some of the genes in heart muscle proteins. Hypertrophic cardiomyopathy also can develop over time because of high blood pressure, aging, or other diseases, such as diabetes or thyroid disease. Sometimes the cause of the disease isnt known. Dilated Cardiomyopathy The cause of dilated cardiomyopathy often isnt known. About one-third of the people who have dilated cardiomyopathy inherit it from their parents. Certain diseases, conditions, and substances also can cause the disease, such as: Alcohol, especially if you also have a poor diet Certain toxins, such as poisons and heavy metals Complications during the last months of pregnancy Coronary heart disease, heart attack, high blood pressure, diabetes, thyroid disease, viral hepatitis, and HIV Illegal drugs, such as cocaine and amphetamines, and some medicines used to treat cancer Infections, especially viral infections that inflame the heart muscle Restrictive Cardiomyopathy Certain diseases, conditions, and factors can cause restrictive cardiomyopathy, including: Amyloidosis: A disease in which abnormal proteins build up in the bodys organs, including the heart Connective tissue disorders Hemochromatosis: A disease in which too much iron builds up in the body. The extra iron is toxic to the body and can damage the organs, including the heart. Sarcoidosis: A disease that causes inflammation and can affect various organs in the body. Researchers believe that an abnormal immune response may cause sarcoidosis. This abnormal response causes tiny lumps of cells to form in the bodys organs, including the heart. Some cancer treatments, such as radiation and chemotherapy Arrhythmogenic Right Ventricular Dysplasia Researchers think that arrhythmogenic right ventricular dysplasia is an inherited disease.
Who is at risk for Cardiomyopathy? ?
People of all ages and races can have cardiomyopathy. However, certain types of the disease are more common in certain groups. Dilated cardiomyopathy is more common in African Americans than Whites. This type of the disease also is more common in men than women. Teens and young adults are more likely than older people to have arrhythmogenic right ventricular dysplasia, although it's rare in both groups. Major Risk Factors Certain diseases, conditions, or factors can raise your risk for cardiomyopathy. Major risk factors include: A family history of cardiomyopathy, heart failure, or sudden cardiac arrest (SCA) A disease or condition that can lead to cardiomyopathy, such as coronary heart disease, heart attack, or a viral infection that inflames the heart muscle Diabetes or other metabolic diseases, or severe obesity Diseases that can damage the heart, such as hemochromatosis, sarcoidosis, or amyloidosis Long-term alcoholism Long-term high blood pressure Some people who have cardiomyopathy never have signs or symptoms. Thus, it's important to identify people who may be at high risk for the disease. This can help prevent future problems, such as serious arrhythmias (irregular heartbeats) or SCA.
What are the symptoms of Cardiomyopathy ?
Some people who have cardiomyopathy never have signs or symptoms. Others don't have signs or symptoms in the early stages of the disease. As cardiomyopathy worsens and the heart weakens, signs and symptoms of heart failure usually occur. These signs and symptoms include: Shortness of breath or trouble breathing, especially with physical exertion Fatigue (tiredness) Swelling in the ankles, feet, legs, abdomen, and veins in the neck Other signs and symptoms may include dizziness; light-headedness; fainting during physical activity; arrhythmias (irregular heartbeats); chest pain, especially after physical exertion or heavy meals; and heart murmurs. (Heart murmurs are extra or unusual sounds heard during a heartbeat.)
How to diagnose Cardiomyopathy ?
Your doctor will diagnose cardiomyopathy based on your medical and family histories, a physical exam, and the results from tests and procedures. Specialists Involved Often, a cardiologist or pediatric cardiologist diagnoses and treats cardiomyopathy. A cardiologist specializes in diagnosing and treating heart diseases. A pediatric cardiologist is a cardiologist who treats children. Medical and Family Histories Your doctor will want to learn about your medical history. He or she will want to know what signs and symptoms you have and how long you've had them. Your doctor also will want to know whether anyone in your family has had cardiomyopathy, heart failure, or sudden cardiac arrest. Physical Exam Your doctor will use a stethoscope to listen to your heart and lungs for sounds that may suggest cardiomyopathy. These sounds may even suggest a certain type of the disease. For example, the loudness, timing, and location of a heart murmur may suggest obstructive hypertrophic cardiomyopathy. A "crackling" sound in the lungs may be a sign of heart failure. (Heart failure often develops in the later stages of cardiomyopathy.) Physical signs also help your doctor diagnose cardiomyopathy. Swelling of the ankles, feet, legs, abdomen, or veins in your neck suggests fluid buildup, a sign of heart failure. Your doctor may notice signs and symptoms of cardiomyopathy during a routine exam. For example, he or she may hear a heart murmur, or you may have abnormal test results. Diagnostic Tests Your doctor may recommend one or more of the following tests to diagnose cardiomyopathy. Blood Tests During a blood test, a small amount of blood is taken from your body. It's often drawn from a vein in your arm using a needle. The procedure usually is quick and easy, although it may cause some short-term discomfort. Blood tests give your doctor information about your heart and help rule out other conditions. Chest X Ray A chest x ray takes pictures of the organs and structures inside your chest, such as your heart, lungs, and blood vessels. This test can show whether your heart is enlarged. A chest x ray also can show whether fluid is building up in your lungs. EKG (Electrocardiogram) An EKG is a simple test that records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. This test is used to detect and study many heart problems, such as heart attacks, arrhythmias (irregular heartbeats), and heart failure. EKG results also can suggest other disorders that affect heart function. A standard EKG only records the heartbeat for a few seconds. It won't detect problems that don't happen during the test. To diagnose heart problems that come and go, your doctor may have you wear a portable EKG monitor. The two most common types of portable EKGs are Holter and event monitors. Holter and Event Monitors Holter and event monitors are small, portable devices. They record your heart's electrical activity while you do your normal daily activities. A Holter monitor records the heart's electrical activity for a full 24- or 48-hour period. An event monitor records your heart's electrical activity only at certain times while you're wearing it. For many event monitors, you push a button to start the monitor when you feel symptoms. Other event monitors start automatically when they sense abnormal heart rhythms. Echocardiography Echocardiography (echo) is a test that uses sound waves to create a moving picture of your heart. The picture shows how well your heart is working and its size and shape. There are several types of echo, including stress echo. This test is done as part of a stress test (see below). Stress echo can show whether you have decreased blood flow to your heart, a sign of coronary heart disease. Another type of echo is transesophageal (tranz-ih-sof-uh-JEE-ul) echo, or TEE. TEE provides a view of the back of the heart. For this test, a sound wave wand is put on the end of a special tube. The tube is gently passed down your throat and into your esophagus (the passage leading from your mouth to your stomach). Because this passage is right behind the heart, TEE can create detailed pictures of the heart's structures. Before TEE, you're given medicine to help you relax, and your throat is sprayed with numbing medicine. Stress Test Some heart problems are easier to diagnose when your heart is working hard and beating fast. During stress testing, you exercise (or are given medicine if you're unable to exercise) to make your heart work hard and beat fast while heart tests are done. These tests may include nuclear heart scanning, echo, and positron emission tomography (PET) scanning of the heart. Diagnostic Procedures You may have one or more medical procedures to confirm a diagnosis or to prepare for surgery (if surgery is planned). These procedures may include cardiac catheterization (KATH-e-ter-i-ZA-shun), coronary angiography (an-jee-OG-ra-fee), or myocardial (mi-o-KAR-de-al) biopsy. Cardiac Catheterization This procedure checks the pressure and blood flow in your heart's chambers. The procedure also allows your doctor to collect blood samples and look at your heart's arteries using x-ray imaging. During cardiac catheterization, a long, thin, flexible tube called a catheter is put into a blood vessel in your arm, groin (upper thigh), or neck and threaded to your heart. This allows your doctor to study the inside of your arteries for blockages. Coronary Angiography This procedure often is done with cardiac catheterization. During the procedure, dye that can be seen on an x ray is injected into your coronary arteries. The dye lets your doctor study blood flow through your heart and blood vessels. Dye also may be injected into your heart chambers. This allows your doctor to study the pumping function of your heart. Myocardial Biopsy For this procedure, your doctor removes a piece of your heart muscle. This can be done during cardiac catheterization. The heart muscle is studied under a microscope to see whether changes in cells have occurred. These changes may suggest cardiomyopathy. Myocardial biopsy is useful for diagnosing some types of cardiomyopathy. Genetic Testing Some types of cardiomyopathy run in families. Thus, your doctor may suggest genetic testing to look for the disease in your parents, brothers and sisters, or other family members. Genetic testing can show how the disease runs in families. It also can find out the chances of parents passing the genes for the disease on to their children. Genetic testing also may be useful if your doctor thinks you have cardiomyopathy, but you don't yet have signs or symptoms. If the test shows you have the disease, your doctor can start treatment early, when it may work best.
What are the treatments for Cardiomyopathy ?
People who have cardiomyopathy but no signs or symptoms may not need treatment. Sometimes, dilated cardiomyopathy that comes on suddenly may go away on its own. For other people who have cardiomyopathy, treatment is needed. Treatment depends on the type of cardiomyopathy you have, the severity of your symptoms and complications, and your age and overall health. Treatments may include: Heart-healthy lifestyle changes Medicines Nonsurgical procedure Surgery and implanted devices The main goals of treating cardiomyopathy include: Controlling signs and symptoms so that you can live as normally as possible Managing any conditions that cause or contribute to the disease Reducing complications and the risk of sudden cardiac arrest Stopping the disease from getting worse Heart-Healthy Lifestyle Changes Your doctor may suggest lifestyle changes to manage a condition thats causing your cardiomyopathy including: Heart-healthy eating Maintaining a healthy weight Managing stress Physical activity Quitting smoking Heart-Healthy Eating Your doctor may recommend heart-healthy eating, which should include: Fat-free or low-fat dairy products, such as fat-free milk Fish high in omega-3 fatty acids, such as salmon, tuna, and trout, about twice a week Fruits, such as apples, bananas, oranges, pears, and prunes Legumes, such as kidney beans, lentils, chickpeas, black-eyed peas, and lima beans Vegetables, such as broccoli, cabbage, and carrots Whole grains, such as oatmeal, brown rice, and corn tortillas When following a heart-healthy diet, you should avoid eating: A lot of red meat Palm and coconut oils Sugary foods and beverages Two nutrients in your diet make blood cholesterol levels rise: Saturated fatfound mostly in foods that come from animals Trans fat (trans fatty acids)found in foods made with hydrogenated oils and fats such as stick margarine;baked goods such as, cookies, cakes, and pies, crackers, frostings, and coffee creamers. Some trans fats also occur naturally in animal fats and meats. Saturated fat raises your blood cholesterol more than anything else in your diet. When you follow a heart-healthy eating plan, only 5 percent to 6percent of your daily calories should come from saturated fat. Food labels list the amounts of saturated fat. To help you stay on track, here are some examples: Not all fats are bad. Monounsaturated and polyunsaturated fats actually help lower blood cholesterol levels. Some sources of monounsaturated and polyunsaturated fats are: Avocados Corn, sunflower, and soybean oils Nuts and seeds, such as walnuts Olive, canola, peanut, safflower, and sesame oils Peanut butter Salmon and trout Tofu Sodium Try to limit the amount of sodium that you eat. This means choosing and preparing foods that are lower in salt and sodium. Try to use low-sodium and no added salt foods and seasonings at the table or while cooking. Food labels tell you what you need to know about choosing foods that are lower in sodium. Try to eat no more than 2,300 milligrams of sodium a day. If you have high blood pressure, you may need to restrict your sodium intake even more. Dietary Approaches to Stop Hypertension Your doctor may recommend the Dietary Approaches to Stop Hypertension (DASH) eating plan if you have high blood pressure. The DASH eating plan focuses on fruits, vegetables, whole grains, and other foods that are heart healthy and low in fat, cholesterol, and sodium and salt. The DASH eating plan is a good heart-healthy eating plan, even for those who dont have high blood pressure. Read more about DASH. Alcohol Talk to your doctor about how much alcohol you drink. Too much alcohol canraise your blood pressure and triglyceride levels, a type of fat found in the blood. Alcohol also adds extra calories, which may cause weight gain. Your doctor may recommend that you reduce the amount of alcohol you drinkor stop drinking alcohol. Maintaining a Healthy Weight Maintaining a healthy weight is important for overall health and can lower your risk for coronary heart disease. Aim for a Healthy Weight by following a heart-healthy eating plan and keeping physically active. Knowing your body mass index (BMI) helps you find out if youre a healthy weight in relation to your height and gives an estimate of your total body fat. To figure out your BMI, check out the National Heart, Lung, and Blood Institutes (NHLBI) onlineBMI calculatoror talk to your doctor.A BMI: Below 18.5 is a sign that you are underweight. Between 18.5 and 24.9 is in the normal range. Between 25 and 29.9 is considered overweight. Of 30 or more is considered obese. A general goal to aim for is a BMI of less than 25. Your doctor or health care provider can help you set an appropriate BMI goal. Measuring waist circumference helps screen for possible health risks. If most of your fat is around your waist rather than at your hips, youre at a higher risk for heart disease and type 2 diabetes. This risk may be high with a waist size that is greater than 35 inches for women or greater than 40 inches for men. To learn how to measure your waist, visitAssessing Your Weight and Health Risk. If youre overweight or obese, try to lose weight. A loss of just 3 percent to 5 percent of your current weight can lower your triglycerides, blood glucose, and the risk of developing type 2 diabetes. Greater amounts of weight loss can improve blood pressure readings, lower LDL cholesterol, and increase HDL cholesterol. Managing Stress Research shows that the most commonly reported trigger for a heart attack is an emotionally upsetting eventparticularly one involving anger. Also, some of the ways people cope with stresssuch as drinking, smoking, or overeatingarent healthy. Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health.Consider healthy stress-reducing activities, such as: A stress management program Meditation Physical activity Relaxation therapy Talking things out with friends or family Physical Activity Routine physical activity can lower many risk factors for coronary heart disease, including LDL (bad) cholesterol, high blood pressure, and excess weight. Physical activity also can lower your risk for diabetes and raise your HDL cholesterol level. HDL is the good cholesterol that helps prevent coronary heart disease. Everyone should try to participate in moderate intensity aerobic exercise at least 2hours and 30minutes per week, or vigorous intensity aerobic exercise for 1hour and 15minutes per week. Aerobic exercise, such as brisk walking, is any exercise in which your heart beats fasterand you use more oxygen than usual. The more active you are, the more you will benefit. Participate in aerobic exercise for at least 10 minutes at a time spread throughout the week. Read more about physical activity at: Physical Activity and Your Heart U.S. Department of Health and Human Services 2008 Physical Activity Guidelines forAmericans Talk with your doctor before you start a new exercise plan. Ask your doctor how much and what kinds of physical activity are safe for you. Quitting Smoking If you smoke, quit. Smoking can raise your risk for coronary heart disease and heart attack and worsen other coronary heart disease risk factors. Talk with your doctor about programs and products that can help you quit smoking. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. Read more about quitting smoking at Smoking and Your Heart. Medicines Many medicines are used to treat cardiomyopathy. Your doctor may prescribe medicines to: Balance electrolytes in your body. Electrolytes are minerals that help maintain fluid levels and acid-base balance in the body. They also help muscle and nerve tissues work properly. Abnormal electrolyte levels may be a sign of dehydration (lack of fluid in your body), heart failure, high blood pressure, or other disorders. Aldosterone blockers are an example of a medicine used to balance electrolytes. Keep your heart beating with a normal rhythm. These medicines, called antiarrhythmics, help prevent arrhythmias. Lower your blood pressure. ACE inhibitors, angiotensin II receptor blockers, beta blockers, and calcium channel blockers are examples of medicines that lower blood pressure. Prevent blood clots from forming. Anticoagulants, or blood thinners, are an example of a medicine that prevents blood clots. Blood thinners often are used to prevent blood clots from forming in people who have dilated cardiomyopathy. Reduce inflammation. Corticosteroids are an example of a medicine used to reduce inflammation. Remove excess sodium from your body. Diuretics, or water pills, are an example of medicines that help remove excess sodium from the body, which reduces the amount of fluid in your blood. Slow your heart rate. Beta blockers, calcium channel blockers, and digoxin are examples of medicines that slow the heart rate. Beta blockers and calcium channel blockers also are used to lower blood pressure. Take all medicines regularly, as your doctor prescribes. Dont change the amount of your medicine or skip a dose unless your doctor tells you to. Surgery and Implanted Devices Doctors use several types of surgery to treat cardiomyopathy, including septal myectomy, surgically implanted devices, and heart transplant. Septal Myectomy Septal myectomy is open-heart surgery and is used to treat people who have hypertrophic cardiomyopathy and severe symptoms. This surgery generally is used for younger patients and for people whose medicines arent working well. A surgeon removes part of the thickened septum thats bulging into the left ventricle. This improves blood flow through the heart and out to the body. The removed tissue doesnt grow back. If needed, the surgeon also can repair or replace the mitral valve at the same time. Septal myectomy often is successful and allows you to return to a normal life with nosymptoms. Surgically Implanted Devices Surgeons can place several types of devices in the heart to improve function and symptoms, including: Cardiac resynchronization therapy (CRT) device. A CRT device coordinates contractions between the hearts left and right ventricles. Implantable cardioverter defibrillator(ICD). An ICD helps control life-threatening arrhythmias that may lead tosudden cardiac arrest. This small device is implanted in the chest or abdomen and connected to the heart with wires. If an ICD senses a dangerous change in heart rhythm, it will send an electric shock to the heart to restore a normal heartbeat. Left ventricular assist device (LVAD). This device helps the heart pump blood to the body. An LVAD can be used as a long-term therapy or as a short-term treatment for people who are waiting for a heart transplant. Pacemaker. This small device is placed under the skin of your chest or abdomen to help control arrhythmias. The device uses electrical pulses to prompt the heart to beat at a normal rate. Heart Transplant For this surgery, a surgeon replaces a persons diseased heart with a healthy heart from a deceased donor. A heart transplant is a last resort treatment for people who have end-stage heart failure. End-stage means the condition has become so severe that all treatments, other than heart transplant, have failed. For more information about this treatment, go to the Heart Transplant Health Topic. Nonsurgical Procedure Doctors may use a nonsurgical procedure called alcohol septal ablation to treat cardiomyopathy. During this procedure, the doctor injects ethanol (a type of alcohol) through a tube into the small artery that supplies blood to the thickened area of heart muscle. The alcohol kills cells, and the thickened tissue shrinks to a more normal size. This procedure allows blood to flow freely through the ventricle, which improves symptoms.
How to prevent Cardiomyopathy ?
You can't prevent inherited types of cardiomyopathy. However, you can take steps to lower your risk for diseases or conditions that may lead to or complicate cardiomyopathy. Examples includecoronary heart disease,high blood pressure, andheart attack. Your doctor may advise you to make heart-healthy lifestyle changes, such as: Avoiding the use of alcohol and illegal drugs Getting enough sleep and rest Heart-healthy eating Physicalactivity Quitting smoking Managing stress Your cardiomyopathy may be due to an underlying disease or condition. If you treat that condition early enough, you may be able to prevent cardiomyopathy complications. For example, to control high blood pressure,high blood cholesterol, and diabetes: Follow your doctors advice about lifestyle changes. Get regular checkups with your doctor. Take all of your medicines as your doctor prescribes.
Who is at risk for Smoking and Your Heart? ?
The chemicals in tobacco smoke harm your heart and blood vessels in many ways. For example, they: Contribute to inflammation, which may trigger plaque buildup in your arteries. Damage blood vessel walls, making them stiff and less elastic (stretchy). This damage narrows the blood vessels and contributes to the damage caused by unhealthy cholesterol levels. Disturb normal heart rhythms. Increase your blood pressure and heart rate, making your heart work harder thannormal. Lower your HDL (good) cholesterol and raise your LDL (bad) cholesterol. Smoking also increases your triglyceride level. Triglycerides are a type of fat found in theblood. Thicken your blood and make it harder for your blood to carry oxygen. Smoking and Heart Disease Risk Smoking is a major risk factor for coronary heart disease, a condition in which plaque builds up inside the coronary arteries. These arteries supply your heart muscle with oxygen-rich blood. When plaque builds up in the arteries, the condition is called atherosclerosis. Plaque narrows the arteries and reduces blood flow to your heart muscle. The buildup of plaque also makes it more likely that blood clots will form in your arteries. Blood clots can partially or completely block blood flow. Over time, smoking contributes to atherosclerosis and increases your risk of having and dying from heart disease, heart failure, or a heartattack. Compared with nonsmokers, people who smoke are more likely to have heart disease and suffer from a heart attack. The risk of having or dying from a heart attack is even higher among people who smoke and already have heart disease. For some people, such as women who use birth control pills and people who have diabetes, smoking poses an even greater risk to the heart and blood vessels. Smoking is a major risk factor for heart disease. When combined with other risk factorssuch as unhealthy blood cholesterol levels, high blood pressure, and overweight or obesitysmoking further raises the risk of heart disease. Smoking and the Risk of Peripheral Artery Disease Peripheral artery disease (P.A.D.) is a disease in which plaque builds up in the arteries that carry blood to your head, organs, and limbs. Smoking is a major risk factor for P.A.D. P.A.D. usually affects the arteries that carry blood to your legs. Blocked blood flow in the leg arteries can cause cramping, pain, weakness, and numbness in your hips, thighs, and calf muscles. Blocked blood flow also can raise your risk of getting an infection in the affected limb. Your body might have a hard time fighting the infection. If severe enough, blocked blood flow can cause gangrene (tissue death). In very serious cases, this can lead to leg amputation. If you have P.A.D., your risk of heart disease and heart attack is higher than the risk for people who dont have P.A.D. Smoking even one or two cigarettes a day can interfere with P.A.D. treatments. People who smoke and people who have diabetes are at highest risk for P.A.D. complications, including gangrene in the leg from decreased blood flow. Secondhand Smoke Risks Secondhand smoke is the smoke that comes from the burning end of a cigarette, cigar, or pipe. Secondhand smoke also refers to smoke thats breathed out by a person who is smoking. Secondhand smoke contains many of the same harmful chemicals that people inhale when they smoke. It can damage the heart and blood vessels of people who dont smoke in the same way that active smoking harms people who do smoke. Secondhand smoke greatly increases adults risk of heart attack and death. Secondhand smoke also raises the risk of future coronary heart disease in children and teens because it: Damages heart tissues Lowers HDL cholesterol Raises blood pressure The risks of secondhand smoke are especially high for premature babies who have respiratory distress syndrome and children who have conditions such asasthma. Cigar and Pipe Smoke Risks Researchers know less about how cigar and pipe smoke affects the heart and blood vessels than they do about cigarette smoke. However, the smoke from cigars and pipes contains the same harmful chemicals as the smoke from cigarettes. Also, studies have shown that people who smoke cigars are at increased risk of heart disease.
What is (are) Cystic Fibrosis ?
Cystic fibrosis (SIS-tik fi-BRO-sis), or CF, is an inherited disease of the secretory (see-KREH-tor-ee) glands. Secretory glands include glands that make mucus and sweat. "Inherited" means the disease is passed from parents to children through genes. People who have CF inherit two faulty genes for the diseaseone from each parent. The parents likely don't have the disease themselves. CF mainly affects the lungs, pancreas, liver, intestines, sinuses, and sex organs. Overview Mucus is a substance made by tissues that line some organs and body cavities, such as the lungs and nose. Normally, mucus is a slippery, watery substance. It keeps the linings of certain organs moist and prevents them from drying out or getting infected. If you have CF, your mucus becomes thick and sticky. It builds up in your lungs and blocks your airways. (Airways are tubes that carry air in and out of your lungs.) The buildup of mucus makes it easy for bacteria to grow. This leads to repeated, serious lung infections. Over time, these infections can severely damage your lungs. The thick, sticky mucus also can block tubes, or ducts, in your pancreas (an organ in your abdomen). As a result, the digestive enzymes that your pancreas makes can't reach your small intestine. These enzymes help break down food. Without them, your intestines can't fully absorb fats and proteins. This can cause vitamin deficiency and malnutrition because nutrients pass through your body without being used. You also may have bulky stools, intestinal gas, a swollen belly from severe constipation, and pain or discomfort. CF also causes your sweat to become very salty. Thus, when you sweat, you lose large amounts of salt. This can upset the balance of minerals in your blood and cause many health problems. Examples of these problems include dehydration (a lack of fluid in your body), increased heart rate, fatigue (tiredness), weakness, decreased blood pressure, heat stroke, and, rarely, death. If you or your child has CF, you're also at higher risk for diabetes or two bone-thinning conditions called osteoporosis (OS-te-o-po-RO-sis) and osteopenia (OS-te-o-PEE-nee-uh). CF also causes infertility in men, and the disease can make it harder for women to get pregnant. (The term "infertility" refers to the inability to have children.) Outlook The symptoms and severity of CF vary. If you or your child has the disease, you may have serious lung and digestive problems. If the disease is mild, symptoms may not show up until the teen or adult years. The symptoms and severity of CF also vary over time. Sometimes you'll have few symptoms. Other times, your symptoms may become more severe. As the disease gets worse, you'll have more severe symptoms more often. Lung function often starts to decline in early childhood in people who have CF. Over time, damage to the lungs can cause severe breathing problems. Respiratory failure is the most common cause of death in people who have CF. As treatments for CF continue to improve, so does life expectancy for those who have the disease. Today, some people who have CF are living into their forties or fifties, or longer. Early treatment for CF can improve your quality of life and increase your lifespan. Treatments may include nutritional and respiratory therapies, medicines, exercise, and other treatments. Your doctor also may recommend pulmonary rehabilitation (PR). PR is a broad program that helps improve the well-being of people who have chronic (ongoing) breathing problems.
What causes Cystic Fibrosis ?
A defect in the CFTR gene causes cystic fibrosis (CF). This gene makes a protein that controls the movement of salt and water in and out of your body's cells. In people who have CF, the gene makes a protein that doesn't work well. This causes thick, sticky mucus and very salty sweat. Research suggests that the CFTR protein also affects the body in other ways. This may help explain other symptoms and complications of CF. More than a thousand known defects can affect the CFTR gene. The type of defect you or your child has may affect the severity of CF. Other genes also may play a role in the severity of the disease. How Is Cystic Fibrosis Inherited? Every person inherits two CFTR genesone from each parent. Children who inherit a faulty CFTR gene from each parent will have CF. Children who inherit one faulty CFTR gene and one normal CFTR gene are "CF carriers." CF carriers usually have no symptoms of CF and live normal lives. However, they can pass the faulty CFTR gene to their children. The image below shows how two parents who are both CF carriers can pass the faulty CFTR gene to their children. Example of an Inheritance Pattern for Cystic Fibrosis
Who is at risk for Cystic Fibrosis? ?
Cystic fibrosis (CF) affects both males and females and people from all racial and ethnic groups. However, the disease is most common among Caucasians of Northern European descent. CF also is common among Latinos and American Indians, especially the Pueblo and Zuni. The disease is less common among African Americans and Asian Americans. More than 10 million Americans are carriers of a faulty CF gene. Many of them don't know that they're CF carriers.
What are the symptoms of Cystic Fibrosis ?
The signs and symptoms of cystic fibrosis (CF) vary from person to person and over time. Sometimes you'll have few symptoms. Other times, your symptoms may become more severe. One of the first signs of CF that parents may notice is that their baby's skin tastes salty when kissed, or the baby doesn't pass stool when first born. Most of the other signs and symptoms of CF happen later. They're related to how CF affects the respiratory, digestive, or reproductive systems of the body. Cystic Fibrosis Respiratory System Signs and Symptoms People who have CF have thick, sticky mucus that builds up in their airways. This buildup of mucus makes it easier for bacteria to grow and cause infections. Infections can block the airways and cause frequent coughing that brings up thick sputum (spit) or mucus that's sometimes bloody. People who have CF tend to have lung infections caused by unusual germs that don't respond to standard antibiotics. For example, lung infections caused by bacteria called mucoid Pseudomonas are much more common in people who have CF than in those who don't. An infection caused by these bacteria may be a sign of CF. People who have CF have frequent bouts of sinusitis (si-nu-SI-tis), an infection of the sinuses. The sinuses are hollow air spaces around the eyes, nose, and forehead. Frequent bouts of bronchitis (bron-KI-tis) and pneumonia (nu-MO-ne-ah) also can occur. These infections can cause long-term lung damage. As CF gets worse, you may have more serious problems, such as pneumothorax (noo-mo-THOR-aks) or bronchiectasis (brong-ke-EK-ta-sis). Some people who have CF also develop nasal polyps (growths in the nose) that may require surgery. Digestive System Signs and Symptoms In CF, mucus can block tubes, or ducts, in your pancreas (an organ in your abdomen). These blockages prevent enzymes from reaching your intestines. As a result, your intestines can't fully absorb fats and proteins. This can cause ongoing diarrhea or bulky, foul-smelling, greasy stools. Intestinal blockages also may occur, especially in newborns. Too much gas or severe constipation in the intestines may cause stomach pain and discomfort. A hallmark of CF in children is poor weight gain and growth. These children are unable to get enough nutrients from their food because of the lack of enzymes to help absorb fats and proteins. As CF gets worse, other problems may occur, such as: Pancreatitis (PAN-kre-ah-TI-tis). This is a condition in which the pancreas become inflamed, which causes pain. Rectal prolapse. Frequent coughing or problems passing stools may cause rectal tissue from inside you to move out of your rectum. Liver disease due to inflamed or blocked bile ducts. Diabetes. Gallstones. Reproductive System Signs and Symptoms Men who have CF are infertile because they're born without a vas deferens. The vas deferens is a tube that delivers sperm from the testes to the penis. Women who have CF may have a hard time getting pregnant because of mucus blocking the cervix or other CF complications. Other Signs, Symptoms, and Complications Other signs and symptoms of CF are related to an upset of the balance of minerals in your blood. CF causes your sweat to become very salty. As a result, your body loses large amounts of salt when you sweat. This can cause dehydration (a lack of fluid in your body), increased heart rate, fatigue (tiredness), weakness, decreased blood pressure, heat stroke, and, rarely, death. CF also can cause clubbing and low bone density. Clubbing is the widening and rounding of the tips of your fingers and toes. This sign develops late in CF because your lungs aren't moving enough oxygen into your bloodstream. Low bone density also tends to occur late in CF. It can lead to bone-thinning disorders called osteoporosis and osteopenia.
How to diagnose Cystic Fibrosis ?
Doctors diagnose cystic fibrosis (CF) based on the results from various tests. Newborn Screening All States screen newborns for CF using a genetic test or a blood test. The genetic test shows whether a newborn has faulty CFTR genes. The blood test shows whether a newborn's pancreas is working properly. Sweat Test If a genetic test or blood test suggests CF, a doctor will confirm the diagnosis using a sweat test. This test is the most useful test for diagnosing CF. A sweat test measures the amount of salt in sweat. For this test, the doctor triggers sweating on a small patch of skin on an arm or leg. He or she rubs the skin with a sweat-producing chemical and then uses an electrode to provide a mild electrical current. This may cause a tingling or warm feeling. Sweat is collected on a pad or paper and then analyzed. The sweat test usually is done twice. High salt levels confirm a diagnosis of CF. Other Tests If you or your child has CF, your doctor may recommend other tests, such as: Genetic tests to find out what type of CFTR defect is causing your CF. A chest x ray. This test creates pictures of the structures in your chest, such as your heart, lungs, and blood vessels. A chest x ray can show whether your lungs are inflamed or scarred, or whether they trap air. A sinus x ray. This test may show signs of sinusitis, a complication of CF. Lung function tests. These tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs deliver oxygen to your blood. A sputum culture. For this test, your doctor will take a sample of your sputum (spit) to see whether bacteria are growing in it. If you have bacteria called mucoid Pseudomonas, you may have more advanced CF that needs aggressive treatment. Prenatal Screening If you're pregnant, prenatal genetic tests can show whether your fetus has CF. These tests include amniocentesis (AM-ne-o-sen-TE-sis) and chorionic villus (ko-re-ON-ik VIL-us) sampling (CVS). In amniocentesis, your doctor inserts a hollow needle through your abdominal wall into your uterus. He or she removes a small amount of fluid from the sac around the baby. The fluid is tested to see whether both of the baby's CFTR genes are normal. In CVS, your doctor threads a thin tube through the vagina and cervix to the placenta. The doctor removes a tissue sample from the placenta using gentle suction. The sample is tested to see whether the baby has CF. Cystic Fibrosis Carrier Testing People who have one normal CFTR gene and one faulty CFTR gene are CF carriers. CF carriers usually have no symptoms of CF and live normal lives. However, carriers can pass faulty CFTR genes on to their children. If you have a family history of CF or a partner who has CF (or a family history of it) and you're planning a pregnancy, you may want to find out whether you're a CF carrier. A genetics counselor can test a blood or saliva sample to find out whether you have a faulty CF gene. This type of testing can detect faulty CF genes in 9 out of 10 cases.
What are the treatments for Cystic Fibrosis ?
Cystic fibrosis (CF) has no cure. However, treatments have greatly improved in recent years. The goals of CF treatment include: Preventing and controlling lung infections Loosening and removing thick, sticky mucus from the lungs Preventing or treating blockages in the intestines Providing enough nutrition Preventing dehydration (a lack of fluid in the body) Depending on the severity of CF, you or your child may be treated in a hospital. Specialists Involved If you or your child has CF, you may be treated by a CF specialist. This is a doctor who is familiar with the complex nature of CF. Often, a CF specialist works with a medical team of nurses, physical therapists, dietitians, and social workers. CF specialists often are located at major medical centers. The United States also has more than 100 CF Care Centers. These centers have teams of doctors, nurses, dietitians, respiratory therapists, physical therapists, and social workers who have special training related to CF care. Most CF Care Centers have pediatric and adult programs or clinics. For more information about CF Care Centers, go to the Cystic Fibrosis Foundation's Care Center Network Web page. Treatment for Lung Problems The main treatments for lung problems in people who have CF are chest physical therapy (CPT), exercise, and medicines. Your doctor also may recommend a pulmonary rehabilitation (PR) program. Chest Physical Therapy CPT also is called chest clapping or percussion. It involves pounding your chest and back over and over with your hands or a device to loosen the mucus from your lungs so that you can cough it up. You might sit down or lie on your stomach with your head down while you do CPT. Gravity and force help drain the mucus from your lungs. Some people find CPT hard or uncomfortable to do. Several devices have been developed that may help with CPT, such as: An electric chest clapper, known as a mechanical percussor. An inflatable therapy vest that uses high-frequency airwaves to force the mucus that's deep in your lungs toward your upper airways so you can cough it up. A small, handheld device that you exhale through. The device causes vibrations that dislodge the mucus. A mask that creates vibrations that help break the mucus loose from your airway walls. Breathing techniques also may help dislodge mucus so you can cough it up. These techniques include forcing out a couple of short breaths or deeper breaths and then doing relaxed breathing. This may help loosen the mucus in your lungs and open your airways. Exercise Aerobic exercise that makes you breathe harder can help loosen the mucus in your airways so you can cough it up. Exercise also helps improve your overall physical condition. However, CF causes your sweat to become very salty. As a result, your body loses large amounts of salt when you sweat. Thus, your doctor may recommend a high-salt diet or salt supplements to maintain the balance of minerals in your blood. If you exercise regularly, you may be able to cut back on your CPT. However, you should check with your doctor first. Medicines If you have CF, your doctor may prescribe antibiotics, anti-inflammatory medicines, bronchodilators, or medicines to help clear the mucus. These medicines help treat or prevent lung infections, reduce swelling and open up the airways, and thin mucus. If you have mutations in a gene called G551D, which occurs in about 5 percent of people who have CF, your doctor may prescribe the oral medicine ivacaftor (approved for people with CF who are 6 years of age and older). Antibiotics are the main treatment to prevent or treat lung infections. Your doctor may prescribe oral, inhaled, or intravenous (IV) antibiotics. Oral antibiotics often are used to treat mild lung infections. Inhaled antibiotics may be used to prevent or control infections caused by the bacteria mucoid Pseudomonas. For severe or hard-to-treat infections, you may be given antibiotics through an IV tube (a tube inserted into a vein). This type of treatment may require you to stay in a hospital. Anti-inflammatory medicines can help reduce swelling in your airways due to ongoing infections. These medicines may be inhaled or oral. Bronchodilators help open the airways by relaxing the muscles around them. These medicines are inhaled. They're often taken just before CPT to help clear mucus out of your airways. You also may take bronchodilators before inhaling other medicines into your lungs. Your doctor may prescribe medicines to reduce the stickiness of your mucus and loosen it up. These medicines can help clear out mucus, improve lung function, and prevent worsening lung symptoms. Treatments for Advanced Lung Disease If you have advanced lung disease, you may need oxygen therapy. Oxygen usually is given through nasal prongs or a mask. If other treatments haven't worked, a lung transplant may be an option if you have severe lung disease. A lung transplant is surgery to remove a person's diseased lung and replace it with a healthy lung from a deceased donor. Pulmonary Rehabilitation Your doctor may recommend PR as part of your treatment plan. PR is a broad program that helps improve the well-being of people who have chronic (ongoing) breathing problems. PR doesn't replace medical therapy. Instead, it's used with medical therapy and may include: Exercise training Nutritional counseling Education on your lung disease or condition and how to manage it Energy-conserving techniques Breathing strategies Psychological counseling and/or group support PR has many benefits. It can improve your ability to function and your quality of life. The program also may help relieve your breathing problems. Even if you have advanced lung disease, you can still benefit from PR. For more information, go to the Health Topics Pulmonary Rehabilitation article. Treatment for Digestive Problems CF can cause many digestive problems, such as bulky stools, intestinal gas, a swollen belly, severe constipation, and pain or discomfort. Digestive problems also can lead to poor growth and development in children. Nutritional therapy can improve your strength and ability to stay active. It also can improve growth and development in children. Nutritional therapy also may make you strong enough to resist some lung infections. A nutritionist can help you create a nutritional plan that meets your needs. In addition to having a well-balanced diet that's rich in calories, fat, and protein, your nutritional therapy may include: Oral pancreatic enzymes to help you digest fats and proteins and absorb more vitamins. Supplements of vitamins A, D, E, and K to replace the fat-soluble vitamins that your intestines can't absorb. High-calorie shakes to provide you with extra nutrients. A high-salt diet or salt supplements that you take before exercising. A feeding tube to give you more calories at night while you're sleeping. The tube may be threaded through your nose and throat and into your stomach. Or, the tube may be placed directly into your stomach through a surgically made hole. Before you go to bed each night, you'll attach a bag with a nutritional solution to the entrance of the tube. It will feed you while you sleep. Other treatments for digestive problems may include enemas and mucus-thinning medicines to treat intestinal blockages. Sometimes surgery is needed to remove an intestinal blockage. Your doctor also may prescribe medicines to reduce your stomach acid and help oral pancreatic enzymes work better. Treatments for Cystic Fibrosis Complications A common complication of CF is diabetes. The type of diabetes associated with CF often requires different treatment than other types of diabetes. Another common CF complication is the bone-thinning disorder osteoporosis. Your doctor may prescribe medicines that prevent your bones from losing their density.
What is (are) Deep Vein Thrombosis ?
Espaol Deep vein thrombosis (throm-BO-sis), or DVT, is a blood clot that forms in a vein deep in the body. Blood clots occur when blood thickens and clumps together. Most deep vein blood clots occur in the lower leg or thigh. They also can occur in other parts of the body. A blood clot in a deep vein can break off and travel through the bloodstream. The loose clot is called an embolus (EM-bo-lus). It can travel to an artery in the lungs and block blood flow. This condition is called pulmonary embolism (PULL-mun-ary EM-bo-lizm), or PE. PE is a very serious condition. It can damage the lungs and other organs in the body and cause death. Blood clots in the thighs are more likely to break off and cause PE than blood clots in the lower legs or other parts of the body. Blood clots also can form in veins closer to the skin's surface. However, these clots won't break off and cause PE. The animation below shows a deep vein blood clot. Click the "start" button to play the animation. Written and spoken explanations are provided with each frame. Use the buttons in the lower right corner to pause, restart, or replay the animation, or use the scroll bar below the buttons to move through the frames. The animation shows how a blood clot in a deep vein of the leg can break off, travel to the lungs, and block blood flow.
What causes Deep Vein Thrombosis ?
Blood clots can form in your body's deep veins if: A vein's inner lining is damaged. Injuries caused by physical, chemical, or biological factors can damage the veins. Such factors include surgery, serious injuries, inflammation, and immune responses. Blood flow is sluggish or slow. Lack of motion can cause sluggish or slow blood flow. This may occur after surgery, if you're ill and in bed for a long time, or if you're traveling for a long time. Your blood is thicker or more likely to clot than normal. Some inherited conditions (such as factor V Leiden) increase the risk of blood clotting. Hormone therapy or birth control pills also can increase the risk of clotting.
Who is at risk for Deep Vein Thrombosis? ?
The risk factors for deep vein thrombosis (DVT) include: A history of DVT. Conditions or factors that make your blood thicker or more likely to clot than normal. Some inherited blood disorders (such as factor V Leiden) will do this. Hormone therapy or birth control pills also increase the risk of clotting. Injury to a deep vein from surgery, a broken bone, or other trauma. Slow blood flow in a deep vein due to lack of movement. This may occur after surgery, if you're ill and in bed for a long time, or if you're traveling for a long time. Pregnancy and the first 6 weeks after giving birth. Recent or ongoing treatment for cancer. A central venous catheter. This is a tube placed in a vein to allow easy access to the bloodstream for medical treatment. Older age. Being older than 60 is a risk factor for DVT, although DVT can occur at any age. Overweight or obesity. Smoking. Your risk for DVT increases if you have more than one of the risk factors listed above.
What are the symptoms of Deep Vein Thrombosis ?
The signs and symptoms of deep vein thrombosis (DVT) might be related to DVT itself or pulmonary embolism (PE). See your doctor right away if you have signs or symptoms of either condition. Both DVT and PE can cause serious, possibly life-threatening problems if not treated. Deep Vein Thrombosis Only about half of the people who have DVT have signs and symptoms. These signs and symptoms occur in the leg affected by the deep vein clot. They include: Swelling of the leg or along a vein in the leg Pain or tenderness in the leg, which you may feel only when standing or walking Increased warmth in the area of the leg that's swollen or painful Red or discolored skin on the leg Pulmonary Embolism Some people aren't aware of a deep vein clot until they have signs and symptoms of PE. Signs and symptoms of PE include: Unexplained shortness of breath Pain with deep breathing Coughing up blood Rapid breathing and a fast heart rate also may be signs of PE.
How to diagnose Deep Vein Thrombosis ?
Your doctor will diagnose deep vein thrombosis (DVT) based on your medical history, a physical exam, and test results. He or she will identify your risk factors and rule out other causes of your symptoms. For some people, DVT might not be diagnosed until after they receive emergency treatment for pulmonary embolism (PE). Medical History To learn about your medical history, your doctor may ask about: Your overall health Any prescription medicines you're taking Any recent surgeries or injuries you've had Whether you've been treated for cancer Physical Exam Your doctor will check your legs for signs of DVT, such as swelling or redness. He or she also will check your blood pressure and your heart and lungs. Diagnostic Tests Your doctor may recommend tests to find out whether you have DVT. Common Tests The most common test for diagnosing deep vein blood clots is ultrasound. This test uses sound waves to create pictures of blood flowing through the arteries and veins in the affected leg. Your doctor also may recommend a D-dimer test or venography (ve-NOG-rah-fee). A D-dimer test measures a substance in the blood that's released when a blood clot dissolves. If the test shows high levels of the substance, you may have a deep vein blood clot. If your test results are normal and you have few risk factors, DVT isn't likely. Your doctor may suggest venography if an ultrasound doesn't provide a clear diagnosis. For venography, dye is injected into a vein in the affected leg. The dye makes the vein visible on an x-ray image. The x ray will show whether blood flow is slow in the vein, which may suggest a blood clot. Other Tests Other tests used to diagnose DVT include magnetic resonance imaging (MRI) and computed tomography (to-MOG-rah-fee), or CT, scanning. These tests create pictures of your organs and tissues. You may need blood tests to check whether you have an inherited blood clotting disorder that can cause DVT. This may be the case if you have repeated blood clots that are not related to another cause. Blood clots in an unusual location (such as the liver, kidney, or brain) also may suggest an inherited clotting disorder. If your doctor thinks that you have PE, he or she may recommend more tests, such as a lung ventilation perfusion scan (VQ scan). A lung VQ scan shows how well oxygen and blood are flowing to all areas of the lungs. For more information about diagnosing PE, go to the Health Topics Pulmonary Embolism article.
What are the treatments for Deep Vein Thrombosis ?
Doctors treat deep vein thrombosis (DVT) with medicines and other devices and therapies. The main goals of treating DVT are to: Stop the blood clot from getting bigger Prevent the blood clot from breaking off and moving to your lungs Reduce your chance of having another blood clot Medicines Your doctor may prescribe medicines to prevent or treat DVT. Anticoagulants Anticoagulants (AN-te-ko-AG-u-lants) are the most common medicines for treating DVT. They're also known as blood thinners. These medicines decrease your blood's ability to clot. They also stop existing blood clots from getting bigger. However, blood thinners can't break up blood clots that have already formed. (The body dissolves most blood clots with time.) Blood thinners can be taken as a pill, an injection under the skin, or through a needle or tube inserted into a vein (called intravenous, or IV, injection). Warfarin and heparin are two blood thinners used to treat DVT. Warfarin is given in pill form. (Coumadin is a common brand name for warfarin.) Heparin is given as an injection or through an IV tube. There are different types of heparin. Your doctor will discuss the options with you. Your doctor may treat you with both heparin and warfarin at the same time. Heparin acts quickly. Warfarin takes 2 to 3 days before it starts to work. Once the warfarin starts to work, the heparin is stopped. Pregnant women usually are treated with just heparin because warfarin is dangerous during pregnancy. Treatment for DVT using blood thinners usually lasts for 6 months. The following situations may change the length of treatment: If your blood clot occurred after a short-term risk (for example, surgery), your treatment time may be shorter. If you've had blood clots before, your treatment time may be longer. If you have certain other illnesses, such as cancer, you may need to take blood thinners for as long as you have the illness. The most common side effect of blood thinners is bleeding. Bleeding can happen if the medicine thins your blood too much. This side effect can be life threatening. Sometimes the bleeding is internal (inside your body). People treated with blood thinners usually have regular blood tests to measure their blood's ability to clot. These tests are called PT and PTT tests. These tests also help your doctor make sure you're taking the right amount of medicine. Call your doctor right away if you have easy bruising or bleeding. These may be signs that your medicines have thinned your blood too much. Thrombin Inhibitors These medicines interfere with the blood clotting process. They're used to treat blood clots in patients who can't take heparin. Thrombolytics Doctors prescribe these medicines to quickly dissolve large blood clots that cause severe symptoms. Because thrombolytics can cause sudden bleeding, they're used only in life-threatening situations. Other Types of Treatment Vena Cava Filter If you can't take blood thinners or they're not working well, your doctor may recommend a vena cava filter. The filter is inserted inside a large vein called the vena cava. The filter catches blood clots before they travel to the lungs, which prevents pulmonary embolism. However, the filter doesn't stop new blood clots from forming. Graduated Compression Stockings Graduated compression stockings can reduce leg swelling caused by a blood clot. These stockings are worn on the legs from the arch of the foot to just above or below the knee. Compression stockings are tight at the ankle and become looser as they go up the leg. This creates gentle pressure up the leg. The pressure keeps blood from pooling and clotting. There are three types of compression stockings. One type is support pantyhose, which offer the least amount of pressure. The second type is over-the-counter compression hose. These stockings give a little more pressure than support pantyhose. Over-the-counter compression hose are sold in medical supply stores and pharmacies. Prescription-strength compression hose offer the greatest amount of pressure. They also are sold in medical supply stores and pharmacies. However, a specially trained person needs to fit you for these stockings. Talk with your doctor about how long you should wear compression stockings.
How to prevent Deep Vein Thrombosis ?
You can take steps to prevent deep vein thrombosis (DVT) and pulmonary embolism (PE). If you're at risk for these conditions: See your doctor for regular checkups. Take all medicines as your doctor prescribes. Get out of bed and move around as soon as possible after surgery or illness (as your doctor recommends). Moving around lowers your chance of developing a blood clot. Exercise your lower leg muscles during long trips. This helps prevent blood clots from forming. If you've had DVT or PE before, you can help prevent future blood clots. Follow the steps above and: Take all medicines that your doctor prescribes to prevent or treat blood clots Follow up with your doctor for tests and treatment Use compression stockings as your doctor directs to prevent leg swelling Contact your doctor at once if you have any signs or symptoms of DVT or PE. For more information, go to "What Are the Signs and Symptoms of Deep Vein Thrombosis?" Travel Tips The risk of developing DVT while traveling is low. The risk increases if the travel time is longer than 4 hours or you have other DVT risk factors. During long trips, it may help to: Walk up and down the aisles of the bus, train, or airplane. If traveling by car, stop about every hour and walk around. Move your legs and flex and stretch your feet to improve blood flow in your calves. Wear loose and comfortable clothing. Drink plenty of fluids and avoid alcohol. If you have risk factors for DVT, your doctor may advise you to wear compression stockings while traveling. Or, he or she may suggest that you take a blood-thinning medicine before traveling.
What is (are) Hypersensitivity Pneumonitis ?
Hypersensitivity pneumonitis (noo-mo-NI-tis), or HP, is a disease in which the lungs become inflamed from breathing in foreign substances, such as molds, dusts, and chemicals. These substances also are known as antigens (AN-tih-jens). People are exposed to antigens at home, while at work, and in other settings. However, most people who breathe in these substances don't develop HP. Overview To understand HP, it helps to understand how the lungs work. When you breathe, air passes through your nose and mouth into your windpipe. The air then travels to your lungs' air sacs. These sacs are called alveoli (al-VEE-uhl-eye). Small blood vessels called capillaries run through the walls of the air sacs. When air reaches the air sacs, the oxygen in the air passes through the air sac walls into the blood in the capillaries. The capillaries connect to a network of arteries and veins that move blood through your body. In HP, the air sacs become inflamed and may fill with fluid. This makes it harder for oxygen to pass through the air sacs and into the bloodstream. The two main types of HP are acute (short-term) and chronic (ongoing). Both types can develop as a result of repeatedly breathing in an antigen. Over time, your lungs can become sensitive to that antigen. If this happens, they'll become inflamed, which can lead to symptoms and may even cause long-term lung damage. With acute HP, symptoms usually occur within 29 hours of exposure to an antigen you're sensitive to. Acute HP can cause chills, body aches, coughing, and chest tightness. After hours or days of no contact with the antigen, symptoms usually go away. If acute HP isn't found and treated early, chronic HP may develop. Symptoms of chronic HP occur slowly, over months. Chronic HP can cause a worsening cough, shortness of breath with physical activity, fatigue (tiredness), and weight loss. Severe HP may cause clubbing (a widening and rounding of the tips of the fingers or toes). With chronic HP, symptoms may continue and/or worsen, even after avoiding the antigen. Sometimes, chronic HP can cause long-term lung damage, such as pulmonary fibrosis (PULL-mun-ary fi-BRO-sis). This is a condition in which tissue deep in your lungs becomes scarred over time. Outlook Avoiding or reducing your contact with antigens can help prevent and treat HP. For example, cleaning heating and ventilation filters can help reduce your contact with mold. Wetting compost prior to handling it can reduce contact with harmful dust. If HP is caught early, avoiding the antigen that caused it may be the only treatment you need. If you have chronic HP, your doctor may prescribe medicines to reduce lung inflammation. Researchers continue to study why some people develop HP after being exposed to antigens, while others don't. They're also looking for better ways to quickly pinpoint which antigens are causing HP in people who are believed to have the disease.
What causes Hypersensitivity Pneumonitis ?
Repeatedly breathing in foreign substances can cause hypersensitivity pneumonitis (HP). Examples of these substances include molds, dusts, and chemicals. (Mold often is the cause of HP.) These substances also are known as antigens. Over time, your lungs can become sensitive to antigens. If this happens, your lungs will become inflamed, which can lead to symptoms and may even cause long-term lung damage. Antigens may be found in the home, workplace, or in other settings. Antigens can come from many sources, such as: Bird droppings Humidifiers, heating systems, and hot tubs Liquid chemicals used in the landscaping and florist industries Moldy hay, straw, and grain Chemicals released during the production of plastics and electronics, and chemicals released during painting Mold released during lumber milling, construction, and wood stripping
Who is at risk for Hypersensitivity Pneumonitis? ?
People who repeatedly breathe in foreign substances are at risk for hypersensitivity pneumonitis (HP). These substances, which also are known as antigens, include molds, dusts, and chemicals. However, most people who breathe in these substances don't develop HP. People at increased risk include: Farm and dairy cattle workers People who use hot tubs often People who are exposed to molds or dusts from humidifiers, heating systems, or wet carpeting Bird fanciers (people who keep pet birds) and poultry handlers Florists and landscapers, especially those who use liquid chemicals on lawns and gardens People who work in grain and flour processing and loading Lumber milling, construction, wood stripping, and paper and wallboard workers People who make plastics or electronics, and those who paint or work with other chemicals
What are the symptoms of Hypersensitivity Pneumonitis ?
Signs and symptoms of hypersensitivity pneumonitis (HP) depend on whether the disease is acute (short-term) or chronic (ongoing). Acute Hypersensitivity Pneumonitis With acute HP, symptoms usually occur within 29 hours of exposure to an antigen you're sensitive to. (An antigen is a substance that your body reacts against, such as molds, dusts, and chemicals.) Acute HP can cause chills, body aches, coughing, and chest tightness. After hours or days of no contact with the antigen, symptoms usually go away. Chronic Hypersensitivity Pneumonitis If acute HP isn't found and treated early, chronic HP may develop. With chronic HP, symptoms occur slowly, over months. Chronic HP can cause a worsening cough, shortness of breath with physical activity, fatigue (tiredness), and weight loss. Some symptoms may continue and/or worsen, even after avoiding the antigen. Chronic HP can cause long-term lung damage, such as pulmonary fibrosis. This is a condition in which tissue deep in your lungs becomes scarred over time. Clubbing also may occur if HP is severe. Clubbing is the widening and rounding of the tips of the fingers or toes. A low level of oxygen in the blood causes this condition.
How to diagnose Hypersensitivity Pneumonitis ?
To diagnose hypersensitivity pneumonitis (HP), your doctor must pinpoint the antigen that's causing the disease and its source. (An antigen is a substance that your body reacts against, such as molds, dusts, and chemicals.) Your doctor will ask you detailed questions about: Your current and past jobs Your hobbies and leisure activities The types of places where you spend time Your exposure to damp and moldy places Your doctor also will do a physical exam and look at test results to diagnose HP. Physical Exam During the physical exam, your doctor will ask about your signs and symptoms, such as coughing and weight loss. Your doctor also will look for signs of HP. For example, he or she will listen to your lungs with a stethoscope for abnormal breathing sounds. HP can cause a crackling sound when you breathe. Your doctor also may look for signs of pulmonary fibrosis, a possible complication of chronic (ongoing) HP. Pulmonary fibrosis is a condition in which tissue deep in your lungs becomes scarred over time. Your doctor also may check for clubbing. Clubbing is the widening and rounding of the tips of the fingers or toes. A low level of oxygen in the blood causes this condition. Diagnostic Tests and Procedures To help diagnose HP, your doctor may recommend or more of the following tests or procedures. Chest X Ray or Chest Computed Tomography (CT) Scan A chest x ray and chest CT scan create pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. These pictures can show signs of HP. Lung Function Tests Lung function tests measure how much air you can breathe in and out, how fast you can breathe air out, and how well your lungs can deliver oxygen to your blood. One of these tests is spirometry (spi-ROM-eh-tre). During this test, a technician will ask you to take a deep breath. Then, you'll blow as hard as you can into a tube connected to a small machine. The machine is called a spirometer. The machine measures how much air you breathe out. It also measures how fast you can blow air out. Pulse Oximetry This test measures the amount of oxygen in your blood. A small sensor is attached to your finger or ear. The sensor uses light to estimate how much oxygen is in your blood. Precipitin Test This blood test looks for antibodies (proteins) that your body creates in response to antigens. The presence of these proteins may suggest HP. Challenge Test During this test, you're re-exposed to the suspected antigen. Then, you'll be watched for signs and symptoms of HP. Bronchoscopy For bronchoscopy (bron-KOS-ko-pee), your doctor passes a thin, flexible tube through your nose (or sometimes your mouth), down your throat, and into your airways. At the tip of the tube are a light and mini-camera. This allows your doctor to see your windpipe and airways. Your doctor may insert forceps (a device used to grab or hold things) through the tube to collect a tissue sample. You'll be given medicine to make you relaxed and sleepy during the procedure. Bronchoalveolar Lavage During bronchoscopy, your doctor may inject a small amount of salt water (saline) through the tube into your lungs. This method is called bronchoalveolar lavage (BRONG-ko-al-VE-o-lar lah-VAHZH). This fluid washes the lungs and helps bring up cells from the airways and the area around the air sacs. Your doctor will look at these cells under a microscope. Surgical Lung Biopsy To confirm a diagnosis of HP, your doctor may do a surgical lung biopsy. Your doctor can use a biopsy to rule out other causes of symptoms and check the condition of your lungs. For a surgical lung biopsy, your doctor takes samples of lung tissue from several places in your lungs. He or she then looks at them under a microscope. Your doctor may use one of the following methods to get lung tissue samples. Video-assisted thoracoscopy (thor-ah-KOS-ko-pee). For this procedure, your doctor inserts a small, lighted tube with a camera (endoscope) into your chest through small cuts between your ribs. The endoscope provides a video image of your lungs and allows your doctor to collect tissue samples. This procedure is done in a hospital. You'll be given medicine to help you sleep through the procedure. Thoracotomy (thor-ah-KOT-o-me). For this procedure, your doctor removes a few small pieces of lung tissue through a cut in the chest wall between your ribs. Thoracotomy is done in a hospital. You'll be given medicine to help you sleep through the procedure.
What are the treatments for Hypersensitivity Pneumonitis ?
The best way to treat hypersensitivity pneumonitis (HP) is to avoid the antigen that caused it. (An antigen is a substance that your body reacts against, such as molds, dusts, and chemicals.) In acute (short-term) HP, symptoms usually go away once you're no longer in contact with the antigen. In chronic (ongoing) HP, you may need medicines to relieve your symptoms. People who have chronic HP may develop pulmonary fibrosis. This is a condition in which tissue deep in your lungs becomes scarred over time. People who have this condition may need further treatment, such as oxygen therapy and pulmonary rehabilitation (rehab). Avoiding Antigens Once the antigen that caused the HP and its source are found, you can take steps to avoid it. If HP is caught early, avoiding the antigen may be the only treatment you need. Avoiding an antigen may be easier at home than at work. For example, if your pet bird, moldy carpet, or hot tub is the source of the antigen, you can remove it from your home. If your heating system is the source of the antigen, you can have your system properly serviced. However, if the antigen is at work, you may need to talk with your supervisor about your condition and ways to protect yourself. For example, masks or personal respirators may help protect you from antigens in the air. (A personal respirator is a device that helps filter the air you breathe in.) Some people who have HP may need to move to a different home or change jobs to avoid antigens. After hurricanes, for example, some people have to move from their homes to avoid molds that could harm their lungs. However, moving and changing jobs sometimes isn't possible. Medicines and Other Treatments If you have chronic HP, your doctor may prescribe medicines called corticosteroids. These medicines reduce lung inflammation. Prednisone is an example of a corticosteroid. Long-term use of prednisone, especially at high doses, can cause serious side effects. Thus, if your doctor prescribes this medicine, he or she may reduce the dose over time. Examples of side effects from corticosteroids are increased risk of infections, high blood pressure, high blood sugar, and osteoporosis (thinning of the skin and bones). People who develop pulmonary fibrosis may need medicines, oxygen therapy, and/or pulmonary rehab. Pulmonary fibrosis is a condition in which tissue deep in your lungs becomes scarred over time. If you smoke, try to quit. Smoking can make HP symptoms worse and lead to other lung diseases. Talk with your doctor about programs and products that can help you quit. Also, try to avoid secondhand smoke.
What is (are) Cardiogenic Shock ?
Cardiogenic (kar-dee-oh-JE-nik) shock is a condition in which a suddenly weakened heart isn't able to pump enough blood to meet the body's needs. The condition is a medical emergency and is fatal if not treated right away. The most common cause of cardiogenic shock is damage to the heart muscle from a severe heart attack. However, not everyone who has a heart attack has cardiogenic shock. In fact, on average, only about 7 percent of people who have heart attacks develop the condition. If cardiogenic shock does occur, it's very dangerous. When people die from heart attacks in hospitals, cardiogenic shock is the most common cause of death. What Is Shock? The medical term "shock" refers to a state in which not enough blood and oxygen reach important organs in the body, such as the brain and kidneys. Shock causes very low blood pressure and may be life threatening. Shock can have many causes. Cardiogenic shock is only one type of shock. Other types of shock include hypovolemic (hy-po-vo-LEE-mik) shock and vasodilatory (VAZ-oh-DILE-ah-tor-e) shock. Hypovolemic shock is a condition in which the heart cant pump enough blood to the body because of severe blood loss. In vasodilatory shock, the blood vessels suddenly relax. When the blood vessels are too relaxed, blood pressure drops and blood flow becomes very low. Without enough blood pressure, blood and oxygen dont reach the bodys organs. A bacterial infection in the bloodstream, a severe allergic reaction, or damage to the nervous system (brain and nerves) may cause vasodilatory shock. When a person is in shock (from any cause), not enough blood and oxygen are reaching the body's organs. If shock lasts more than a few minutes, the lack of oxygen starts to damage the bodys organs. If shock isn't treated quickly, it can cause permanent organ damage or death. Some of the signs and symptoms of shock include: Confusion or lack of alertness Loss of consciousness A sudden and ongoing rapid heartbeat Sweating Pale skin A weak pulse Rapid breathing Decreased or no urine output Cool hands and feet If you think that you or someone else is in shock, call 911 right away for emergency treatment. Prompt medical care can save your life and prevent or limit damage to your bodys organs. Outlook In the past, almost no one survived cardiogenic shock. Now, about half of the people who go into cardiogenic shock survive. This is because of prompt recognition of symptoms and improved treatments, such as medicines and devices. These treatments can restore blood flow to the heart and help the heart pump better. In some cases, devices that take over the pumping function of the heart are used. Implanting these devices requires major surgery.
What causes Cardiogenic Shock ?
Immediate Causes Cardiogenic shock occurs if the heart suddenly can't pump enough oxygen-rich blood to the body. The most common cause of cardiogenic shock is damage to the heart muscle from a severe heart attack. This damage prevents the hearts main pumping chamber, the left ventricle (VEN-trih-kul), from working well. As a result, the heart can't pump enough oxygen-rich blood to the rest of the body. In about 3 percent of cardiogenic shock cases, the hearts lower right chamber, the right ventricle, doesnt work well. This means the heart can't properly pump blood to the lungs, where it picks up oxygen to bring back to the heart and the rest of the body. Without enough oxygen-rich blood reaching the bodys major organs, many problems can occur. For example: Cardiogenic shock can cause death if the flow of oxygen-rich blood to the organs isn't restored quickly. This is why emergency medical treatment is required. If organs don't get enough oxygen-rich blood, they won't work well. Cells in the organs die, and the organs may never work well again. As some organs stop working, they may cause problems with other bodily functions. This, in turn, can worsen shock. For example: - If the kidneys aren't working well, the levels of important chemicals in the body change. This may cause the heart and other muscles to become even weaker, limiting blood flow even more. - If the liver isn't working well, the body stops making proteins that help the blood clot. This can lead to more bleeding if the shock is due to blood loss. If the kidneys aren't working well, the levels of important chemicals in the body change. This may cause the heart and other muscles to become even weaker, limiting blood flow even more. If the liver isn't working well, the body stops making proteins that help the blood clot. This can lead to more bleeding if the shock is due to blood loss. How well the brain, kidneys, and other organs recover will depend on how long a person is in shock. The less time a person is in shock, the less damage will occur to the organs. This is another reason why emergency treatment is so important. Underlying Causes The underlying causes of cardiogenic shock are conditions that weaken the heart and prevent it from pumping enough oxygen-rich blood to the body. Heart Attack Most heart attacks occur as a result of coronary heart disease (CHD). CHD is a condition in which a waxy substance called plaque (plak) narrows or blocks the coronary (heart) arteries. Plaque reduces blood flow to your heart muscle. It also makes it more likely that blood clots will form in your arteries. Blood clots can partially or completely block blood flow. Conditions Caused by Heart Attack Heart attacks can cause some serious heart conditions that can lead to cardiogenic shock. One example is ventricular septal rupture. This condition occurs if the wall that separates the ventricles (the hearts two lower chambers) breaks down. The breakdown happens because cells in the wall have died due to a heart attack. Without the wall to separate them, the ventricles cant pump properly. Heart attacks also can cause papillary muscle infarction or rupture. This condition occurs if the muscles that help anchor the heart valves stop working or break because a heart attack cuts off their blood supply. If this happens, blood doesn't flow correctly between the hearts chambers. This prevents the heart from pumping properly. Other Heart Conditions Serious heart conditions that may occur with or without a heart attack can cause cardiogenic shock. Examples include: Myocarditis (MI-o-kar-DI-tis). This is inflammation of the heart muscle. Endocarditis (EN-do-kar-DI-tis). This is an infection of the inner lining of the heart chambers and valves. Life-threatening arrhythmias (ah-RITH-me-ahs). These are problems with the rate or rhythm of the heartbeat. Pericardial tamponade (per-ih-KAR-de-al tam-po-NADE). This is too much fluid or blood around the heart. The fluid squeezes the heart muscle so it can't pump properly. Pulmonary Embolism Pulmonary embolism (PE) is a sudden blockage in a lung artery. This condition usually is caused by a blood clot that travels to the lung from a vein in the leg. PE can damage your heart and other organs in your body.
Who is at risk for Cardiogenic Shock? ?
The most common risk factor for cardiogenic shock is having a heart attack. If you've had a heart attack, the following factors can further increase your risk for cardiogenic shock: Older age A history of heart attacks or heart failure Coronary heart disease that affects all of the hearts major blood vessels High blood pressure Diabetes Women who have heart attacks are at higher risk for cardiogenic shock than men who have heart attacks.
What are the symptoms of Cardiogenic Shock ?
A lack of oxygen-rich blood reaching the brain, kidneys, skin, and other parts of the body causes the signs and symptoms of cardiogenic shock. Some of the typical signs and symptoms of shock usually include at least two or more of the following: Confusion or lack of alertness Loss of consciousness A sudden and ongoing rapid heartbeat Sweating Pale skin A weak pulse Rapid breathing Decreased or no urine output Cool hands and feet Any of these alone is unlikely to be a sign or symptom of shock. If you or someone else is having these signs and symptoms, call 911 right away for emergency treatment. Prompt medical care can save your life and prevent or limit organ damage.
How to diagnose Cardiogenic Shock ?
The first step in diagnosing cardiogenic shock is to identify that a person is in shock. At that point, emergency treatment should begin. Once emergency treatment starts, doctors can look for the specific cause of the shock. If the reason for the shock is that the heart isn't pumping strongly enough, then the diagnosis is cardiogenic shock. Tests and Procedures To Diagnose Shock and Its Underlying Causes Blood Pressure Test Medical personnel can use a simple blood pressure cuff and stethoscope to check whether a person has very low blood pressure. This is the most common sign of shock. A blood pressure test can be done before the person goes to a hospital. Less serious conditions also can cause low blood pressure, such as fainting or taking certain medicines, such as those used to treat high blood pressure. EKG (Electrocardiogram) An EKG is a simple test that detects and records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. Doctors use EKGs to diagnose severe heart attacks and monitor the heart's condition. Echocardiography Echocardiography (echo) uses sound waves to create a moving picture of the heart. The test provides information about the size and shape of the heart and how well the heart chambers and valves are working. Echo also can identify areas of poor blood flow to the heart, areas of heart muscle that aren't contracting normally, and previous injury to the heart muscle caused by poor blood flow. Chest X Ray A chest x ray takes pictures of organs and structures in the chest, including the heart, lungs, and blood vessels. This test shows whether the heart is enlarged or whether fluid is present in the lungs. These can be signs of cardiogenic shock. Cardiac Enzyme Test When cells in the heart die, they release enzymes into the blood. These enzymes are called markers or biomarkers. Measuring these markers can show whether the heart is damaged and the extent of the damage. Coronary Angiography Coronary angiography (an-jee-OG-ra-fee) is an x-ray exam of the heart and blood vessels. The doctor passes a catheter (a thin, flexible tube) through an artery in the leg or arm to the heart. The catheter can measure the pressure inside the heart chambers. Dye that can be seen on an x-ray image is injected into the bloodstream through the tip of the catheter. The dye lets the doctor study the flow of blood through the heart and blood vessels and see any blockages. Pulmonary Artery Catheterization For this procedure, a catheter is inserted into a vein in the arm or neck or near the collarbone. Then, the catheter is moved into the pulmonary artery. This artery connects the right side of the heart to the lungs. The catheter is used to check blood pressure in the pulmonary artery. If the blood pressure is too high or too low, treatment may be needed. Blood Tests Some blood tests also are used to help diagnose cardiogenic shock, including: Arterial blood gas measurement. For this test, a blood sample is taken from an artery. The sample is used to measure oxygen, carbon dioxide, and pH (acidity) levels in the blood. Certain levels of these substances are associated with shock. Tests that measure the function of various organs, such as the kidneys and liver. If these organs aren't working well, they may not be getting enough oxygen-rich blood. This could be a sign of cardiogenic shock.
What are the treatments for Cardiogenic Shock ?
Cardiogenic shock is life threatening and requires emergency medical treatment. The condition usually is diagnosed after a person has been admitted to a hospital for a heart attack. If the person isn't already in a hospital, emergency treatment can start as soon as medical personnel arrive. The first goal of emergency treatment for cardiogenic shock is to improve the flow of blood and oxygen to the bodys organs. Sometimes both the shock and its cause are treated at the same time. For example, doctors may quickly open a blocked blood vessel that's damaging the heart. Often, this can get the patient out of shock with little or no additional treatment. Emergency Life Support Emergency life support treatment is needed for any type of shock. This treatment helps get oxygen-rich blood flowing to the brain, kidneys, and other organs. Restoring blood flow to the organs keeps the patient alive and may prevent long-term damage to the organs. Emergency life support treatment includes: Giving the patient extra oxygen to breathe so that more oxygen reaches the lungs, the heart, and the rest of the body. Providing breathing support if needed. A ventilator might be used to protect the airway and provide the patient with extra oxygen. A ventilator is a machine that supports breathing. Giving the patient fluids, including blood and blood products, through a needle inserted in a vein (when the shock is due to blood loss). This can help get more blood to major organs and the rest of the body. This treatment usually isnt used for cardiogenic shock because the heart can't pump the blood that's already in the body. Also, too much fluid is in the lungs, making it hard to breathe. Medicines During and after emergency life support treatment, doctors will try to find out whats causing the shock. If the reason for the shock is that the heart isn't pumping strongly enough, then the diagnosis is cardiogenic shock. Treatment for cardiogenic shock will depend on its cause. Doctors may prescribe medicines to: Prevent blood clots from forming Increase the force with which the heart muscle contracts Treat a heart attack Medical Devices Medical devices can help the heart pump and improve blood flow. Devices used to treat cardiogenic shock may include: An intra-aortic balloon pump. This device is placed in the aorta, the main blood vessel that carries blood from the heart to the body. A balloon at the tip of the device is inflated and deflated in a rhythm that matches the hearts pumping rhythm. This allows the weakened heart muscle to pump as much blood as it can, which helps get more blood to vital organs, such as the brain and kidneys. A left ventricular assist device (LVAD). This device is a battery-operated pump that takes over part of the hearts pumping action. An LVAD helps the heart pump blood to the body. This device may be used if damage to the left ventricle, the hearts main pumping chamber, is causing shock. Medical Procedures and Surgery Sometimes medicines and medical devices aren't enough to treat cardiogenic shock. Medical procedures and surgery can restore blood flow to the heart and the rest of the body, repair heart damage, and help keep a patient alive while he or she recovers from shock. Surgery also can improve the chances of long-term survival. Surgery done within 6 hours of the onset of shock symptoms has the greatest chance of improving survival. The types of procedures and surgery used to treat underlying causes of cardiogenic shock include: Percutaneous coronary intervention (PCI) and stents. PCI,also known as coronary angioplasty,is a procedure used to open narrowed or blocked coronary (heart) arteries and treat an ongoing heart attack. A stent is a small mesh tube that's placed in a coronary artery during PCI to help keep it open. Coronary artery bypass grafting. For this surgery, arteries or veins from other parts of the body are used to bypass (that is, go around) narrowed coronary arteries. This creates a new passage for oxygen-rich blood to reach the heart. Surgery to repair damaged heart valves. Surgery to repair a break in the wall that separates the hearts chambers. This break is called a septal rupture. Heart transplant. This type of surgery rarely is done during an emergency situation like cardiogenic shock because of other available options. Also, doctors need to do very careful testing to make sure a patient will benefit from a heart transplant and to find a matching heart from a donor. Still, in some cases, doctors may recommend a transplant if they feel it's the best way to improve a patient's chances of long-term survival.
How to prevent Cardiogenic Shock ?
The best way to prevent cardiogenic shock is to lower your risk for coronary heart disease (CHD) and heart attack. (For more information, go to the National Heart, Lung, and Blood Institute's "Your Guide to a Healthy Heart.") If you already have CHD, its important to get ongoing treatment from a doctor who has experience treating heart problems. If you have a heart attack, you should get treatment right away to try to prevent cardiogenic shock and other possible complications. Act in time. Know the warning signs of a heart attack so you can act fast to get treatment. Many heart attack victims wait 2 hours or more after their symptoms begin before they seek medical help. Delays in treatment increase the risk of complications and death. If you think you're having a heart attack, call 911 for help. Don't drive yourself or have friends or family drive you to the hospital. Call an ambulance so that medical personnel can begin life-saving treatment on the way to the emergency room.
What is (are) Electrocardiogram ?
An electrocardiogram (e-lek-tro-KAR-de-o-gram), also called an EKG or ECG, is a simple, painless test that records the heart's electrical activity. To understand this test, it helps to understand how the heart works. With each heartbeat, an electrical signal spreads from the top of the heart to the bottom. As it travels, the signal causes the heart to contract and pump blood. The process repeats with each new heartbeat. The heart's electrical signals set the rhythm of the heartbeat. For more detailed information and animations, go to the Health Topics How the Heart Works article. An EKG shows: How fast your heart is beating Whether the rhythm of your heartbeat is steady or irregular The strength and timing of electrical signals as they pass through each part of your heart Doctors use EKGs to detect and study many heart problems, such as heart attacks, arrhythmias (ah-RITH-me-ahs), and heart failure. The test's results also can suggest other disorders that affect heart function.
What is the outlook for Electrocardiogram ?
You don't need to take any special steps before having an electrocardiogram (EKG). However, tell your doctor or his or her staff about the medicines you're taking. Some medicines can affect EKG results.
What is the outlook for Electrocardiogram ?
An electrocardiogram (EKG) is painless and harmless. A nurse or technician will attach soft, sticky patches called electrodes to the skin of your chest, arms, and legs. The patches are about the size of a quarter. Often, 12 patches are attached to your body. This helps detect your heart's electrical activity from many areas at the same time. The nurse may have to shave areas of your skin to help the patches stick. After the patches are placed on your skin, you'll lie still on a table while the patches detect your heart's electrical signals. A machine will record these signals on graph paper or display them on a screen. The entire test will take about 10 minutes. EKG Special Types of Electrocardiogram The standard EKG described above, called a resting 12-lead EKG, only records seconds of heart activity at a time. It will show a heart problem only if the problem occurs during the test. Many heart problems are present all the time, and a resting 12-lead EKG will detect them. But some heart problems, like those related to an irregular heartbeat, can come and go. They may occur only for a few minutes a day or only while you exercise. Doctors use special EKGs, such as stress tests and Holter and event monitors, to help diagnose these kinds of problems. Stress Test Some heart problems are easier to diagnose when your heart is working hard and beating fast. During stress testing, you exercise to make your heart work hard and beat fast while an EKG is done. If you can't exercise, you'll be given medicine to make your heart work hard and beat fast. For more information, go to the Health Topics Stress Testing article. Holter and Event Monitors Holter and event monitors are small, portable devices. They record your heart's electrical activity while you do your normal daily activities. A Holter monitor records your heart's electrical activity for a full 24- or 48-hour period. An event monitor records your heart's electrical activity only at certain times while you're wearing it. For many event monitors, you push a button to start the monitor when you feel symptoms. Other event monitors start automatically when they sense abnormal heart rhythms. For more information, go to the Health Topics Holter and Event Monitors article.
What is the outlook for Electrocardiogram ?
After an electrocardiogram (EKG), the nurse or technician will remove the electrodes (soft patches) from your skin. You may develop a rash or redness where the EKG patches were attached. This mild rash often goes away without treatment. You usually can go back to your normal daily routine after an EKG.
Who is at risk for Electrocardiogram? ?
An electrocardiogram (EKG) has no serious risks. It's a harmless, painless test that detects the heart's electrical activity. EKGs don't give off electrical charges, such as shocks. You may develop a mild rash where the electrodes (soft patches) were attached. This rash often goes away without treatment.
What is (are) Broken Heart Syndrome ?
Broken heart syndrome is a condition in which extreme stress can lead to heart muscle failure. The failure is severe, but often short-term. Most people who experience broken heart syndrome think they may be having a heart attack, a more common medical emergency caused by a blocked coronary (heart) artery. The two conditions have similar symptoms, including chest pain and shortness of breath. However, theres no evidence of blocked coronary arteries in broken heart syndrome, and most people have a full and quick recovery. Overview Broken heart syndrome is a recently recognized heart problem. It was originally reported in the Asian population in 1990 and named takotsubo cardiomyopathy (KAR-de-o-mi-OP-ah-thee). In this condition, the heart is so weak that it assumes a bulging shape (tako tsubo is the term for an octopus trap, whose shape resembles the bulging appearance of the heart during this condition). Cases have since been reported worldwide, and the first reports of broken heart syndrome in the United States appeared in 1998. The condition also is commonly called stress-induced cardiomyopathy. The cause of broken heart syndrome is not fully known. In most cases, symptoms are triggered by extreme emotional or physical stress, such as intense grief, anger, or surprise. Researchers think that the stress releases hormones that stun the heart and affect its ability to pump blood to the body. (The term stunned is often used to indicate that the injury to the heart muscle is only temporary.) People who have broken heart syndrome often have sudden intense chest pain and shortness of breath. These symptoms begin just a few minutes to hours after exposure to the unexpected stress. Many seek emergency care, concerned they are having a heart attack. Often, patients who have broken heart syndrome have previously been healthy. Women are more likely than men to have broken heart syndrome. Researchers are just starting to explore what causes this disorder and how to diagnose and treat it. Broken Heart Syndrome Versus Heart Attack Symptoms of broken heart syndrome can look like those of a heart attack. Most heart attacks are caused by blockages and blood clots forming in the coronary arteries, which supply the heart with blood. If these clots cut off the blood supply to the heart for a long enough period of time, heart muscle cells can die, leaving the heart with permanent damage. Heart attacks most often occur as a result of coronary heart disease (CHD), also called coronary artery disease. Broken heart syndrome is quite different. Most people who experience broken heart syndrome have fairly normal coronary arteries, without severe blockages or clots. The heart cells are stunned by stress hormones but not killed. The stunning effects reverse quickly, often within just a few days or weeks. In most cases, there is no lasting damage to the heart. Because symptoms are similar to a heart attack, it is important to seek help right away. You, and sometimes emergency care providers, may not be able to tell that you have broken heart syndrome until you have some tests. All chest pain should be checked by a doctor. If you think you or someone else may be having heart attack symptoms or a heart attack, don't ignore it or feel embarrassed to call for help. Call 911 for emergency medical care. In the case of a heart attack, acting fast at the first sign of symptoms can save your life and limit damage to your heart. Outlook Research is ongoing to learn more about broken heart syndrome and its causes. The symptoms of broken heart syndrome are treatable, and most people who experience it have a full recovery, usually within days or weeks. The heart muscle is not permanently damaged, and the risk of broken heart syndrome happening again is low.
What causes Broken Heart Syndrome ?
The cause of broken heart syndrome isnt fully known. However, extreme emotional or physical stress is believed to play a role in causing the temporary disorder. Although symptoms are similar to those of a heart attack, what is happening to the heart is quite different. Most heart attacks are caused by near or complete blockage of a coronary artery. In broken heart syndrome, the coronary arteries are not blocked, although blood flow may be reduced. Potential Triggers In most cases, broken heart syndrome occurs after an intense and upsetting emotional or physical event. Some potential triggers of broken heart syndrome are: Emotional stressorsextreme grief, fear, or anger, for example as a result of the unexpected death of a loved one, financial or legal trouble, intense fear, domestic abuse, confrontational argument, car accident, public speaking, or even a surprise party. Physical stressorsan asthma attack, serious illness or surgery, or exhausting physical effort. Potential Causes Researchers think that sudden stress releases hormones that overwhelm or stun the heart. (The term stunned is often used to indicate that the injury to the heart muscle is only temporary.) This can trigger changes in heart muscle cells or coronary blood vessels, or both. The heart becomes so weak that its left ventricle (which is the chamber that pumps blood from your heart to your body) bulges and cannot pump well, while the other parts of the heart work normally or with even more forceful contractions. As a result the heart is unable to pump properly. (For more information about the hearts pumping action and blood flow, go to the Health Topics How the Heart Works article.) Researchers are trying to identify the precise way in which the stress hormones affect the heart. Broken heart syndrome may result from a hormone surge, coronary artery spasm, or microvascular dysfunction. Hormone Surge Intense stress causes large amounts of the fight or flight hormones, such as adrenaline and noradrenaline, to be released into your bloodstream. The hormones are meant to help you cope with the stress. Researchers think that the sudden surge of hormones overwhelms and stuns the heart muscle, producing symptoms similar to those of a heart attack. Coronary Artery Spasm Some research suggests that the extreme stress causes a temporary, sudden narrowing of one of the coronary arteries as a result of a spasm. The spasm slows or stops blood flow through the artery and starves part of the heart of oxygen-rich blood. Microvascular Dysfunction Another theory that is gaining traction is that the very small coronary arteries (called microvascular arteries) do not function well due to low hormone levels occurring before or after menopause. The microvascular arteries fail to provide enough oxygen-rich blood to the heart muscle.
Who is at risk for Broken Heart Syndrome? ?
Broken heart syndrome affects women more often than men. Often, people who experience broken heart syndrome have previously been healthy. Research shows that the traditional risk factors for heart disease may not apply to broken heart syndrome. People who might be at increased risk for broken heart syndrome include: Women who have gone through menopause, particularly women in their sixties and seventies People who often have no previous history of heart disease Asian and White populations Although these are the characteristics for most cases of broken heart syndrome, the condition can occur in anyone. Research is ongoing to learn more about broken heart syndrome and its causes.
What are the symptoms of Broken Heart Syndrome ?
All chest pain should be checked by a doctor. Because symptoms of broken heart syndrome are similar to those of a heart attack, it is important to seek help right away. Your doctor may not be able to diagnose broken heart syndrome until you have some tests. Common Signs and Symptoms The most common symptoms of broken heart syndrome are sudden, sharp chest pain and shortness of breath. Typically these symptoms begin just minutes to hours after experiencing a severe, and usually unexpected, stress. Because the syndrome involves severe heart muscle weakness, some people also may experience signs and symptoms such as fainting, arrhythmias (ah-RITH-me-ahs) (fast or irregular heartbeats), cardiogenic (KAR-de-o-JEN-ik) shock (when the heart cant pump enough blood to meet the bodys needs), low blood pressure, and heart failure. Differences From a Heart Attack Some of the signs and symptoms of broken heart syndrome differ from those of a heart attack. For example, in people who have broken heart syndrome: Symptoms (chest pain and shortness of breath) occur suddenly after having extreme emotional or physical stress. EKG(electrocardiogram) results dont look the same as the results for a person having a heart attack. (An EKG is a test that records the hearts electrical activity.) Blood tests show no signs or mild signs of heart damage. Tests show enlarged and unusual movement of the lower left heart chamber (the left ventricle).\ Tests show no signs of blockages in the coronary arteries. Recovery time is quick, usually within days or weeks (compared with the recovery time of a month or more for a heart attack). Complications Broken heart syndrome can be life threatening in some cases. It can lead to serious heart problems such as: Heart failure, a condition in which the heart cant pump enough blood to meet the bodys needs Heart rhythm problems that cause the heart to beat much faster or slower than normal Heart valve problems The good news is that most people who have broken heart syndrome make a full recovery within weeks. With medical care, even the most critically ill tend to make a quick and complete recovery.
How to diagnose Broken Heart Syndrome ?
Because the symptoms are similar, at first your doctor may not be able to tell whether you are experiencing broken heart syndrome or having a heart attack. Therefore, the doctors immediate goals will be: To determine whats causing your symptoms To determine whether youre having or about to have a heart attack Your doctor will diagnose broken heart syndrome based on your signs and symptoms, your medical and family histories, and the results from tests and procedures. Specialists Involved Your doctor may refer you to a cardiologist. A cardiologist is a doctor who specializes in diagnosing and treating heart diseases and conditions. Physical Exam and Medical History Your doctor will do a physical exam and ask you to describe your symptoms. He or she may ask questions such as when your symptoms began, where you are feeling pain or discomfort and what it feels like, and whether the pain is constant or varies. To learn about your medical history, your doctor may ask about your overall health, risk factors for coronary heart disease (CHD) and other heart disease, and family history. Your doctor will ask whether you've recently experienced any major stresses. Diagnostic Tests and Procedures No single test can diagnose broken heart syndrome. The tests and procedures for broken heart syndrome are similar to those used to diagnose CHD or heart attack. The diagnosis is made based on the results of the following standards tests to rule out heart attack and imaging studies to help establish broken heart syndrome. Standard Tests and Procedures EKG (Electrocardiogram) AnEKGis a simple, painless test that detects and records the hearts electrical activity. The test shows how fast your heart is beating and whether its rhythm is steady or irregular. An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. The EKG may show abnormalities in your heartbeat, a sign of broken heart syndrome as well as heart damage due to CHD. Blood Tests Blood tests check the levels of certain substances in your blood, such as fats, cholesterol, sugar, and proteins. Blood tests help greatly in diagnosing broken heart syndrome, because certain enzymes (proteins in the blood) may be present in the blood to indicate the condition. Imaging Procedures Echocardiography Echocardiography(echo) uses sound waves to create a moving picture of your heart. The test provides information about the size and shape of your heart and how well your heart chambers and valves are working. Echo also can show areas of heart muscle that aren't contracting well because of poor blood flow or previous injury. The echo may show slowed blood flow in the left chamber of the heart. Chest X Ray A chest x rayis a painless test that creates pictures of the structures in your chest, such as your heart, lungs, and blood vessels. Your doctor will need a chest x ray to analyze whether your heart has the enlarged shape that is a sign of broken heart syndrome. A chest x ray can reveal signs of heart failure, as well as lung disorders and other causes of symptoms not related to broken heart syndrome. Cardiac MRI Cardiac magnetic resonance imaging (MRI) is a common test that uses radio waves, magnets, and a computer to make both still and moving pictures of your heart and major blood vessels. Doctors use cardiac MRI to get pictures of the beating heart and to look at its structure and function. These pictures can help them decide the best way to treat people who have heart problems. Coronary Angiography and Cardiac Catheterization Your doctor may recommend coronary angiography (an-jee-OG-rah-fee) if other tests or factors suggest you have CHD. This test uses dye and special x rays to look inside your coronary arteries. To get the dye into your coronary arteries, your doctor will use a procedure called cardiac catheterization (KATH-eh-ter-ih-ZA-shun). A thin, flexible tube called a catheter is put into a blood vessel in your arm, groin (upper thigh), or neck. The tube is threaded into your coronary arteries, and the dye is released into your bloodstream. Special x rays are taken while the dye is flowing through your coronary arteries. The dye lets your doctor study the flow of blood through your heart and blood vessels. Ventriculogram Ventriculogram is another test that can be done during a cardiac catheterization that examines the left ventricle, which is the hearts main pumping chamber. During this test, a dye is injected into the inside of the heart and x ray pictures are taken. The test can show the ventricles size and how well it pumps blood. It also shows how well the blood flows through the aortic and mitral values.
What are the treatments for Broken Heart Syndrome ?
Even though broken heart syndrome may feel like a heart attack, its a very different problem that needs a different type of treatment. The good news is that broken heart syndrome is usually treatable, and most people make a full recovery. Most people who experience broken heart syndrome stay in the hospital for a few days to a week. Initial treatment is aimed at improving blood flow to the heart, and may be similar to that for a heart attack until the diagnosis is clear. Further treatment can include medicines and lifestyle changes. Medicines Doctors may prescribe medicines to relieve fluid buildup, treat blood pressure problems, prevent blood clots, and manage stress hormones. Medicines are often discontinued once heart function has returned to normal. Your doctor may prescribe the following medicines: ACE inhibitors (or angiotensin-converting enzyme inhibitors), to lower blood pressure and reduce strain on your heart Beta blockers, to slow your heart rate and lower your blood pressure to decrease your hearts workload Diuretics (water or fluid pills), to help reduce fluid buildup in your lungs and swelling in your feet and ankles Anti-anxiety medicines, to help manage stress hormones Take all of your medicines as prescribed. If you have side effects or other problems related to your medicines, tell your doctor. He or she may be able to provide other options. Treatment of Complications Broken heart syndrome can be life threatening in some cases. Because the syndrome involves severe heart muscle weakness, patients can experience shock, heart failure, low blood pressure, and potentially life-threatening heart rhythm abnormalities. The good news is that this condition improves very quickly, so with proper diagnosis and management, even the most critically ill tend to make a quick and complete recovery. Lifestyle Changes To stay healthy, its important to find ways to reduce stress and cope with particularly upsetting situations. Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health. Having supportive people in your life with whom you can share your feelings or concerns can help relieve stress. Physical activity, medicine, and relaxation therapy also can help relieve stress. You may want to consider taking part in a stress management program. Treatments Not Helpful for Broken Heart Syndrome Several procedures used to treat a heart attack are not helpful in treating broken heart syndrome. These procedurespercutaneous coronary intervention (sometimes referred to as angioplasty), stent placement, and surgerytreat blocked arteries, which is not the cause of broken heart syndrome.
How to prevent Broken Heart Syndrome ?
Researchers are still learning about broken heart syndrome, and no treatments have been shown to prevent it. For people who have experienced the condition, the risk of recurrence is low. An emotionally upsetting or serious physical event can trigger broken heart syndrome. Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health. Having supportive people in your life with whom you can share your feelings or concerns can help relieve stress. Physical activity, medicine, and relaxation therapy also can help relieve stress. You may want to consider taking part in a stress management program. Also, some of the ways people cope with stresssuch as drinking, smoking, or overeatingarent healthy. Learning to manage stress includes adopting healthy habits that will keep your stress levels low and make it easier to deal with stress when it does happen. A healthy lifestyle includes following a healthy diet, being physically active, maintaining a healthy weight, and quitting smoking.
What is (are) Hypotension ?
Hypotension (HI-po-TEN-shun) is abnormally low blood pressure. Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. Blood pressure is measured as systolic (sis-TOL-ik) and diastolic (di-a-STOL-ik) pressures. "Systolic" refers to blood pressure when the heart beats while pumping blood. "Diastolic" refers to blood pressure when the heart is at rest between beats. You most often will see blood pressure numbers written with the systolic number above or before the diastolic number, such as 120/80 mmHg. (The mmHg is millimeters of mercurythe units used to measure blood pressure.) Normal blood pressure in adults is lower than 120/80 mmHg. Hypotension is blood pressure that's lower than 90/60 mmHg. Overview Blood pressure doesn't stay the same all the time. It lowers as you sleep and rises when you wake up. Blood pressure also rises when you're excited, nervous, or active. Your body is very sensitive to changes in blood pressure. For example, if you stand up quickly, your blood pressure may drop for a short time. Your body adjusts your blood pressure to make sure enough blood and oxygen are flowing to your brain, kidneys, and other vital organs. Most forms of hypotension happen because your body can't bring blood pressure back to normal or can't do it fast enough. Some people have low blood pressure all the time. They have no signs or symptoms, and their low blood pressure is normal for them. In other people, certain conditions or factors cause abnormally low blood pressure. As a result, less blood and oxygen flow to the body's organs. For the most part, hypotension is a medical concern only if it causes signs or symptoms or is linked to a serious condition, such as heart disease. Signs and symptoms of hypotension may include dizziness, fainting, cold and sweaty skin, fatigue (tiredness), blurred vision, or nausea (feeling sick to your stomach). In extreme cases, hypotension can lead to shock. Outlook In a healthy person, low blood pressure without signs or symptoms usually isn't a problem and needs no treatment. If it causes signs or symptoms, your doctor will try to find and treat the condition that's causing it. Hypotension can be dangerous. It can make you fall because of dizziness or fainting. Shock, a severe form of hypotension, is a condition that's often fatal if not treated right away. With prompt and proper treatment, shock can be successfully treated.
What causes Hypotension ?
Conditions or factors that disrupt the body's ability to control blood pressure cause hypotension. The different types of hypotension have different causes. Orthostatic Hypotension Orthostatic hypotension has many causes. Sometimes two or more factors combine to cause this type of low blood pressure. Dehydration (de-hi-DRA-shun) is the most common cause of orthostatic hypotension. Dehydration occurs if the body loses more water than it takes in. You may become dehydrated if you don't drink enough fluids or if you sweat a lot during physical activity. Fever, vomiting, and severe diarrhea also can cause dehydration. Orthostatic hypotension also may occur during pregnancy, but it usually goes away after birth. Because an older body doesn't manage changes in blood pressure as well as a younger body, getting older also can lead to this type of hypotension. Postprandial hypotension (a type of orthostatic hypotension) mostly affects older adults. Postprandial hypotension is a sudden drop in blood pressure after a meal. Certain medical conditions can raise your risk of orthostatic hypotension, including: Heart conditions, such as heart attack, heart valve disease, bradycardia (a very low heart rate), and heart failure. These conditions prevent the heart from pumping enough blood to the body. Anemia. Severe infections. Endocrine conditions, such as thyroid disorders, Addison's disease, low blood sugar, and diabetes. Central nervous system disorders, such as Parkinson's disease. Pulmonary embolism. Some medicines for high blood pressure and heart disease can raise your risk of orthostatic hypotension. These medicines include: Diuretics, also called "water pills" Calcium channel blockers Angiotensin-converting enzyme (ACE) inhibitors Angiotensin II receptor blockers Nitrates Beta blockers Medicines for conditions such as anxiety, depression, erectile dysfunction, and central nervous system disorders also can increase your risk of orthostatic hypotension. Other substances, when taken with high blood pressure medicines, also can lead to orthostatic hypotension. These substances include alcohol, barbiturates, and some prescription and over-the-counter medicines. Finally, other factors or conditions that can trigger orthostatic hypotension include being out in the heat or being immobile for a long time. "Immobile" means you can't move around very much. Neurally Mediated Hypotension Neurally mediated hypotension (NMH) occurs when the brain and heart don't communicate with each other properly. For example, when you stand for a long time, blood begins to pool in your legs. This causes your blood pressure to drop. In NMH, the body mistakenly tells the brain that blood pressure is high. In response, the brain slows the heart rate. This makes blood pressure drop even more, causing dizziness and other symptoms. Severe Hypotension Linked to Shock Many factors and conditions can cause severe hypotension linked to shock. Some of these factors also can cause orthostatic hypotension. In shock, though, blood pressure drops very low and doesn't return to normal on its own. Shock is an emergency and must be treated right away. If a person has signs or symptoms of shock, call 911. Some severe infections can cause shock. This is known as septic shock. It can occur if bacteria enter the bloodstream. The bacteria release a toxin (poison) that leads to a dangerous drop in blood pressure. A severe loss of blood or fluids from the body also can cause shock. This is known as hypovolemic (HI-po-vo-LE-mik) shock. Hypovolemic shock can happen as a result of: Major external bleeding (for example, from a severe cut or injury) Major internal bleeding (for example, from a ruptured blood vessel or injury that causes bleeding inside the body) Major loss of body fluids from severe burns Severe swelling of the pancreas (an organ that produces enzymes and hormones, such as insulin) Severe diarrhea Severe kidney disease Overuse of diuretics A major decrease in the heart's ability to pump blood also can cause shock. This is known as cardiogenic (KAR-de-o-JEN-ik) shock. A heart attack, pulmonary embolism, or an ongoing arrhythmia (ah-RITH-me-ah) that disrupts heart function can cause this type of shock. A sudden and extreme relaxation of the arteries linked to a drop in blood pressure also can cause shock. This is known as vasodilatory (VA-so-DI-la-tory) shock. It can occur due to: A severe head injury A reaction to certain medicines Liver failure Poisoning A severe allergic reaction (called anaphylactic (AN-a-fi-LAK-tik) shock)
Who is at risk for Hypotension? ?
Hypotension can affect people of all ages. However, people in certain age groups are more likely to have certain types of hypotension. Older adults are more likely to have orthostatic and postprandial hypotension. Children and young adults are more likely to have neurally mediated hypotension. People who take certain medicinessuch as diuretics ("water pills") or other high blood pressure medicinesare at increased risk for hypotension. Certain conditions also increase the risk for hypotension. Examples include central nervous system disorders (such as Parkinson's disease) and some heart conditions. Other risk factors for hypotension include being immobile (not being able to move around very much) for long periods, being out in the heat for a long time, and pregnancy. Hypotension during pregnancy is normal and usually goes away after birth.
What are the symptoms of Hypotension ?
Orthostatic Hypotension and Neurally Mediated Hypotension The signs and symptoms of orthostatic hypotension and neurally mediated hypotension (NMH) are similar. They include: Dizziness or light-headedness Blurry vision Confusion Weakness Fatigue (feeling tired) Nausea (feeling sick to your stomach) Orthostatic hypotension may happen within a few seconds or minutes of standing up after you've been sitting or lying down. You may feel that you're going to faint, or you may actually faint. These signs and symptoms go away if you sit or lie down for a few minutes until your blood pressure adjusts to normal. The signs and symptoms of NMH occur after standing for a long time or in response to an unpleasant, upsetting, or scary situation. The drop in blood pressure with NMH doesn't last long and often goes away after sitting down. Severe Hypotension Linked to Shock In shock, not enough blood and oxygen flow to the body's major organs, including the brain. The early signs and symptoms of reduced blood flow to the brain include light-headedness, sleepiness, and confusion. In the earliest stages of shock, it may be hard to detect any signs or symptoms. In older people, the first symptom may only be confusion. Over time, as shock worsens, a person won't be able to sit up without passing out. If the shock continues, the person will lose consciousness. Shock often is fatal if not treated right away. Other signs and symptoms of shock vary, depending on what's causing the shock. When low blood volume (from major blood loss, for example) or poor pumping action in the heart (from heart failure, for example) causes shock: The skin becomes cold and sweaty. It often looks blue or pale. If pressed, the color returns to normal more slowly than usual. A bluish network of lines appears under the skin. The pulse becomes weak and rapid. The person begins to breathe very quickly. When extreme relaxation of blood vessels causes shock (such as in vasodilatory shock), a person feels warm and flushed at first. Later, the skin becomes cold and sweaty, and the person feels very sleepy. Shock is an emergency and must be treated right away. If a person has signs or symptoms of shock, call 911.
How to diagnose Hypotension ?
Hypotension is diagnosed based on your medical history, a physical exam, and test results. Your doctor will want to know: The type of hypotension you have and how severe it is Whether an underlying condition is causing the hypotension Specialists Involved A primary care doctor or specialist may diagnose and treat hypotension. The type of specialist most commonly involved is a cardiologist (heart specialist). Other specialists also may be involved, such as surgeons, nephrologists (kidney specialists), or neurologists (brain and nerve specialists). Diagnostic Tests Shock is a life-threatening condition that requires emergency treatment. For other types of hypotension, your doctor may recommend tests to find out how your blood pressure responds in certain situations. The test results will help your doctor understand why you're fainting or having other symptoms. Blood Tests During a blood test, a small amount of blood is taken from your body. It's usually drawn from a vein in your arm using a needle. The procedure is quick and easy, although it may cause some short-term discomfort. Blood tests can show whether anemia or low blood sugar is causing your hypotension. EKG (Electrocardiogram) An EKG is a simple test that detects and records your heart's electrical activity. It shows how fast your heart is beating and whether its rhythm is steady or irregular. An EKG also shows the strength and timing of electrical signals as they pass through each part of your heart. Holter and Event Monitors Holter and event monitors are medical devices that record your heart's electrical activity. These monitors are similar to an EKG. However, a standard EKG only records your heartbeat for a few seconds. It won't detect heart rhythm problems that don't occur during the test. Holter and event monitors are small, portable devices. You can wear one while you do your normal daily activities. This allows the monitor to record your heart for longer periods than a standard EKG. Echocardiography Echocardiography (echo) is a test that uses sound waves to create a moving picture of your heart. The picture shows how well your heart is working and its size and shape. There are several types of echo, including stress echo. This test is done as part of a stress test (see below). Stress echo usually is done to find out whether you have decreased blood flow to your heart, a sign of coronary heart disease (also called coronary artery disease). Stress Test Some heart problems are easier to diagnose when your heart is working hard and beating fast. During stress testing, you exercise (or are given medicine if you're unable to exercise) to make your heart work hard and beat fast while heart tests are done. These tests may include nuclear heart scanning, echo, and positron emission tomography (PET) scanning of the heart. Valsalva Maneuver This is a simple test for the part of your nervous system that controls functions such as your heartbeat and the narrowing and widening of your blood vessels. If something goes wrong with this part of the nervous system, blood pressure problems may occur. During this test, you take a deep breath and then force the air out through your lips. You will do this several times. Your heart rate and blood pressure will be checked during the test. Tilt Table Test This test is used if you have fainting spells for no known reason. For the test, you lie on a table that moves from a lying down to an upright position. Your doctor checks your reaction to the change in position. Doctors use a tilt table test to diagnose orthostatic hypotension and neurally mediated hypotension (NMH). People who have NMH usually faint during this test. The test can help your doctor find any underlying brain or nerve condition.
What are the treatments for Hypotension ?
Treatment depends on the type of hypotension you have and the severity of your signs and symptoms. The goal of treatment is to bring blood pressure back to normal to relieve signs and symptoms. Another goal is to manage any underlying condition causing the hypotension. Your response to treatment depends on your age, overall health, and strength. It also depends on how easily you can stop, start, or change medicines. In a healthy person, low blood pressure without signs or symptoms usually isn't a problem and needs no treatment. If you have signs or symptoms of hypotension, you should sit or lie down right away. Put your feet above the level of your heart. If your signs or symptoms don't go away quickly, you should seek medical care. Orthostatic Hypotension Many treatments are available for orthostatic hypotension. If you have this condition, your doctor may advise making lifestyle changes, such as: Drinking plenty of fluids, such as water or sports drinks that contain nutrients like sodium and potassium. Drinking little or no alcohol. Standing up slowly. Not crossing your legs while sitting. Slowly increasing the amount of time you sit up if you've been immobile for a long time because of a medical condition. The term "immobile" refers to not being able to move around very much. Eating small, low-carbohydrate meals if you have postprandial hypotension (a form of orthostatic hypotension). Talk with your doctor about using compression stockings. These stockings apply pressure to your lower legs. The pressure helps move blood throughout your body. If medicine is causing your low blood pressure, your doctor may change the medicine or adjust the dose you take. Several medicines are used to treat orthostatic hypotension. These medicines, which raise blood pressure, include fludrocortisone and midodrine. Neurally Mediated Hypotension If you have neurally mediated hypotension (NMH), you may need to make lifestyle changes. These may include: Avoiding situations that trigger symptoms, such as standing for long periods. Unpleasant, upsetting, or scary situations also can trigger symptoms. Drinking plenty of fluids, such as water or sports drinks that contain nutrients like sodium and potassium. Increasing your salt intake (as your doctor advises). Learning to recognize symptoms that occur before fainting and taking action to raise your blood pressure. For example, sitting down and putting your head between your knees or lying down can help raise blood pressure. If medicine is causing your hypotension, your doctor may change the medicine or adjust the dose you take. He or she also may prescribe medicine to treat NMH. Children who have NHM often outgrow it. Severe Hypotension Linked to Shock Shock is a life-threatening emergency. People who have shock need prompt treatment from medical personnel. If a person has signs or symptoms of shock, call 911 right away. The goals of treating shock are to: Restore blood flow to the organs as quickly as possible to prevent organ damage Find and reverse the cause of shock Blood or special fluids are put into the bloodstream to restore blood flow to the organs. Medicines can help raise blood pressure or make the heartbeat stronger. Depending on the cause of the shock, other treatmentssuch as antibiotics or surgerymay be needed.
What is (are) Childhood Interstitial Lung Disease ?
Childhood interstitial (in-ter-STISH-al) lung disease, or chILD, is a broad term for a group of rare lung diseases that can affect babies, children, and teens. These diseases have some similar symptoms, such as chronic cough, rapid breathing, and shortness of breath. These diseases also harm the lungs in similar ways. For example, they damage the tissues that surround the lungs' alveoli (al-VEE-uhl-eye; air sacs) and bronchial tubes (airways). Sometimes these diseases directly damage the air sacs and airways. The various types of chILD can decrease lung function, reduce blood oxygen levels, and disturb the breathing process. Overview Researchers have only begun to study, define, and understand chILD in the last decade. Currently, they don't know how many children have chILD. They also don't know how many children have each type of chILD. Diagnosing chILD and its specific diseases is hard because chILD is rare and complex. Also, chILD is a broad term for a group of diseases with similar symptomsit's not a precise diagnosis. Interstitial lung disease (ILD) also occurs in adults. However, the cause of ILD in adults may be different than the cause in children. Some types of chILD are similar to the adult forms of the disease. They may even have the same names as the adult forms, such as hypersensitivity pneumonitis (noo-mo-NI-tis), immunodeficiency-associated lung disease, and bronchiolitis (brong-ke-o-LI-tis) obliterans. However, research shows that the course and outcomes of these diseases often are very different for children than for adults. Some ILDs only occur in children. They include: Lung growth abnormalities Neuroendocrine (noor-o-EN-do-krin) cell hyperplasia (hi-per-PLA-ze-ah) of infancy (NEHI) Pulmonary interstitial glycogenosis (gli-ko-JEN-eh-sis) Developmental disorders, such as alveolar (al-VE-o-lar) capillary dysplasia Outlook Each form of chILD may differ in its severity and how it's treated. Thus, getting a correct diagnosis is vital for understanding and treating your child's illness. You may want to consult a pediatric pulmonologist. This is a doctor who specializes in diagnosing and treating children who have lung diseases and conditions. This doctor's training and experience can help him or her diagnose chILD. The outlook for children who have chILD also depends on the specific type of disease they have. Some diseases are very severe and lead to early death. Others are chronic (long-term) diseases that parents and the child's medical team must work together to manage. At this time, chILD has no cure. However, some children who have certain diseases, such as NEHI, may slowly improve over time. Researchers are now starting to learn more about the causes of chILD. They're also trying to find distinct patterns and traits for the various forms of chILD. This information may help doctors better understand these diseases.
What causes Childhood Interstitial Lung Disease ?
Researchers don't yet know all of the causes of childhood interstitial lung disease (chILD). Many times, these diseases have no clear cause. Some conditions and factors that may cause or lead to chILD include: Inherited conditions, such as surfactant disorders. Surfactant is a liquid that coats the inside of the lungs. It helps with breathing and may help protect the lungs from bacterial and viral infections. Birth defects that cause problems with the structure or function of the lungs. Aspiration (as-pih-RA-shun). This term refers to inhaling substancessuch as food, liquid, or vomitinto the lungs. Inhaling these substances can injure the lungs. Aspiration may occur in children who have swallowing problems or gastroesophageal (GAS-tro-eh-so-fa-JE-al) reflux disease (GERD). GERD occurs if acid from the stomach backs up into the throat. Immune system disorders. The immune system protects the body against bacteria, viruses, and toxins. Children who have immune system disorders aren't able to fight illness and disease as well as children who have healthy immune systems. Exposure to substances in the environment that can irritate the lungs, such as molds and chemicals. Some cancer treatments, such as radiation and chemotherapy. Systemic or autoimmune diseases, such as collagen vascular disease or inflammatory bowel disease. Systemic diseases are diseases that involve many of the body's organs. Autoimmune diseases occur if the body's immune system mistakenly attacks the body's tissues and cells. A bone marrow transplant or a lung transplant.
Who is at risk for Childhood Interstitial Lung Disease? ?
Childhood interstitial lung disease (chILD) is rare. Most children are not at risk for chILD. However, some factors increase the risk of developing chILD. These risk factors include: Having a family history of interstitial lung disease or chILD. Having an inherited surfactant disorder or a family history of this type of disorder. Surfactant is a liquid that coats the inside of the lungs. It helps with breathing and may help protect the lungs from bacterial and viral infections. Having problems with aspiration. This term "aspiration" refers to inhaling substancessuch as food, liquid, or vomitinto the lungs. Having an immune system disorder. The immune system protects the body against bacteria, viruses, and toxins. Children who have immune system disorders aren't able to fight illness and disease as well as children who have healthy immune systems. Being exposed to substances in the environment that can irritate the lungs, such as molds and chemicals. Having a systemic or autoimmune disease, such as collagen vascular disease or inflammatory bowel disease. Systemic diseases are diseases that involve many of the body's organs. Autoimmune diseases occur if the body's immune system mistakenly attacks the body's tissues and cells. Undergoing some cancer treatments, such as radiation and chemotherapy. Having a bone marrow transplant or a lung transplant. Certain types of chILD are more common in infants and young children, while others can occur in children of any age. For more information, go to "Types of Childhood Interstitial Lung Disease." The risk of death seems to be higher for children who have chILD and pulmonary hypertension, developmental or growth disorders, bone marrow transplants, or certain surfactant problems.
What are the symptoms of Childhood Interstitial Lung Disease ?
Childhood interstitial lung disease (chILD) has many signs and symptoms because the disease has many forms. Signs and symptoms may include: Fast breathing, which also is called tachypnea (tak-ip-NE-ah) Labored breathing, which also is called respiratory distress Low oxygen levels in the blood, which also is called hypoxemia (hi-POK-se-ah) Recurrent coughing, wheezing, or crackling sounds in the chest Shortness of breath during exercise (in older children) or while eating (in infants), which also is called dyspnea (disp-NE-ah) Poor growth or failure to gain weight Recurrent pneumonia or bronchiolitis If your child has any of these signs and symptoms, contact his or her doctor. The doctor may refer you to a pediatric pulmonologist. This is a doctor who specializes in diagnosing and treating children who have lung diseases and conditions.
How to diagnose Childhood Interstitial Lung Disease ?
Doctors diagnose childhood interstitial lung disease (chILD) based on a child's medical and family histories and the results from tests and procedures. To diagnose chILD, doctors may first need to rule out other diseases as the cause of a child's symptoms. Early diagnosis of chILD may help doctors stop or even reverse lung function problems. Often though, doctors find chILD hard to diagnose because: There are many types of the disease and a range of underlying causes The disease's signs and symptoms are the same as those for many other diseases The disease may coexist with other diseases Going to a pediatric pulmonologist who has experience with chILD is helpful. A pediatric pulmonologist is a doctor who specializes in diagnosing and treating children who have lung diseases and conditions. Medical and Family Histories Your child's medical history can help his or her doctor diagnose chILD. The doctor may ask whether your child: Has severe breathing problems that occur often. Has had severe lung infections. Had serious lung problems as a newborn. Has been exposed to possible lung irritants in the environment, such as birds, molds, dusts, or chemicals. Has ever had radiation or chemotherapy treatment. Has an autoimmune disease, certain birth defects, or other medical conditions. (Autoimmune diseases occur if the body's immune system mistakenly attacks the bodys tissues and cells.) The doctor also may ask how old your child was when symptoms began, and whether other family members have or have had severe lung diseases. If they have, your child may have an inherited form of chILD. Diagnostic Tests and Procedures No single test can diagnose the many types of chILD. Thus, your child's doctor may recommend one or more of the following tests. For some of these tests, infants and young children may be given medicine to help them relax or sleep. A chest x ray. This painless test creates pictures of the structures inside your child's chest, such as the heart, lungs, and blood vessels. A chest x ray can help rule out other lung diseases as the cause of your child's symptoms. A high-resolution CT scan (HRCT). An HRCT scan uses x rays to create detailed pictures of your child's lungs. This test can show the location, extent, and severity of lung disease. Lung function tests. These tests measure how much air your child can breathe in and out, how fast he or she can breathe air out, and how well your child's lungs deliver oxygen to the blood. Lung function tests can assess the severity of lung disease. Infants and young children may need to have these tests at a center that has special equipment for children. Bronchoalveolar lavage (BRONG-ko-al-VE-o-lar lah-VAHZH). For this procedure, the doctor injects a small amount of saline (salt water) through a tube inserted in the child's lungs. The fluid helps bring up cells from the tissues around the air sacs. The doctor can then look at these cells under a microscope. This procedure can help detect an infection, lung injury, bleeding, aspiration, or an airway problem. Various tests to rule out conditions such as asthma, cystic fibrosis, acid reflux, heart disease, neuromuscular disease, and immune deficiency. Various tests for systemic diseases linked to chILD. Systemic diseases are diseases that involve many of the body's organs. Blood tests to check for inherited (genetic) diseases and disorders. If these tests don't provide enough information, your child's doctor may recommend a lung biopsy. A lung biopsy is the most reliable way to diagnose chILD and the specific disease involved. A lung biopsy is a surgical procedure that's done in a hospital. Before the biopsy, your child will receive medicine to make him or her sleep. During the biopsy, the doctor will take small samples of lung tissue from several places in your child's lungs. This often is done using video-assisted thoracoscopy (thor-ah-KOS-ko-pe). For this procedure, the doctor inserts a small tube with a light and camera (endoscope) into your child's chest through small cuts between the ribs. The endoscope provides a video image of the lungs and allows the doctor to collect tissue samples. After the biopsy, the doctor will look at these samples under a microscope.
What are the treatments for Childhood Interstitial Lung Disease ?
Childhood interstitial lung disease (chILD) is rare, and little research has been done on how to treat it. At this time, chILD has no cure. However, some children who have certain diseases, such as neuroendocrine cell hyperplasia of infancy, may slowly improve over time. Current treatment approaches include supportive therapy, medicines, and, in the most serious cases, lung transplants. Supportive Therapy Supportive therapy refers to treatments that help relieve symptoms or improve quality of life. Supportive approaches used to relieve common chILD symptoms include: Oxygen therapy. If your child's blood oxygen level is low, he or she may need oxygen therapy. This treatment can improve breathing, support growth, and reduce strain on the heart. Bronchodilators. These medications relax the muscles around your childs airways, which helps open the airways and makes breathing easier. Breathing devices. Children who have severe disease may need ventilators or other devices to help them breathe easier. Extra nutrition. This treatment can help improve your child's growth and help him or her gain weight. Close monitoring of growth is especially important. Techniques and devices to help relieve lung congestion. These may include chest physical therapy (CPT) or wearing a vest that helps move mucus (a sticky substance) to the upper airways so it can be coughed up. CPT may involve pounding the chest and back over and over with your hands or a device to loosen mucus in the lungs so that your child can cough it up. Supervised pulmonary rehabilitation (PR). PR is a broad program that helps improve the well-being of people who have chronic (ongoing) breathing problems. Medicines Corticosteroids are a common treatment for many children who have chILD. These medicines help reduce lung inflammation. Other medicines can help treat specific types or causes of chILD. For example, antimicrobial medicines can treat a lung infection. Acid-blocking medicines can prevent acid reflux, which can lead to aspiration. Lung Transplant A lung transplant may be an option for children who have severe chILD if other treatments haven't worked. Currently, lung transplants are the only effective treatment for some types of chILD that have a high risk of death, such as alveolar capillary dysplasia and certain surfactant dysfunction mutations. Early diagnosis of these diseases gives children the chance to receive lung transplants. So far, chILD doesn't appear to come back in patients' transplanted lungs. For more information about this treatment, go to the Health Topics Lung Transplant article.
How to prevent Childhood Interstitial Lung Disease ?
At this time, most types of childhood interstitial lung disease (chILD) can't be prevented. People who have a family history of inherited (genetic) interstitial lung disease may want to consider genetic counseling. A counselor can explain the risk of children inheriting chILD. You and your child can take steps to help prevent infections and other illnesses that worsen chILD and its symptoms. For example: Make hand washing a family habit to avoid germs and prevent illnesses. Try to keep your child away from people who are sick. Even a common cold can cause problems for someone who has chILD. Talk with your child's doctor about vaccines that your child needs, such as an annual flu shot. Make sure everyone in your household gets all of the vaccines that their doctors recommend. Talk with your child's doctor about how to prevent your child from getting respiratory syncytial (sin-SIT-e-al) virus. This common virus leads to cold and flu symptoms for most people. However, it can make children who have lung diseases very sick. Avoid exposing your child to air pollution, tobacco smoke, and other substances that can irritate his or her lungs. Strongly advise your child not to smoke now or in the future.
What is (are) Tetralogy of Fallot ?
Tetralogy (teh-TRAL-o-je) of Fallot (fah-LO) is a congenital heart defect. This is a problem with the heart's structure that's present at birth. Congenital heart defects change the normal flow of blood through the heart. Tetralogy of Fallot is a rare, complex heart defect. It occurs in about 5out of every 10,000 babies. The defect affects boys and girls equally. To understand tetralogy of Fallot, it helps to know how a healthy heart works. The Health Topics How the Heart Works article describes the structure and function of a healthy heart. The article also has animations that show how your heart pumps blood and how your heart's electrical system works. Overview Tetralogy of Fallot involves four heart defects: A large ventricular septal defect (VSD) Pulmonary (PULL-mun-ary) stenosis Right ventricular hypertrophy (hi-PER-tro-fe) An overriding aorta Ventricular Septal Defect The heart has an inner wall that separates the two chambers on its left side from the two chambers on its right side. This wall is called a septum. The septum prevents blood from mixing between the two sides of the heart. A VSD is a hole in the septum between the heart's two lower chambers, the ventricles. The hole allows oxygen-rich blood from the left ventricle to mix with oxygen-poor blood from the right ventricle. Pulmonary Stenosis This defect involves narrowing of the pulmonary valve and the passage from the right ventricle to the pulmonary artery. Normally, oxygen-poor blood from the right ventricle flows through the pulmonary valve and into the pulmonary artery. From there, the blood travels to the lungs to pick up oxygen. In pulmonary stenosis, the pulmonary valve cannot fully open. Thus, the heart has to work harder to pump blood through the valve. As a result, not enough blood reaches the lungs. Right Ventricular Hypertrophy With this defect, the muscle of the right ventricle is thicker than usual. This occurs because the heart has to work harder than normal to move blood through the narrowed pulmonary valve. Overriding Aorta This defect occurs in the aorta, the main artery that carries oxygen-rich blood from the heart to the body. In a healthy heart, the aorta is attached to the left ventricle. This allows only oxygen-rich blood to flow to the body. In tetralogy of Fallot, the aorta is located between the left and right ventricles, directly over the VSD. As a result, oxygen-poor blood from the right ventricle flows directly into the aorta instead of into the pulmonary artery. Outlook With tetralogy of Fallot, not enough blood is able to reach the lungs to get oxygen, and oxygen-poor blood flows to the body. Cross-Section of a Normal Heart and a Heart With Tetralogy of Fallot Babies and children who have tetralogy of Fallot have episodes of cyanosis (si-ah-NO-sis). Cyanosis is a bluish tint to the skin, lips, and fingernails. It occurs because the oxygen level in the blood leaving the heart is below normal. Tetralogy of Fallot is repaired with open-heart surgery, either soon after birth or later in infancy. The timing of the surgery will depend on how narrow the pulmonary artery is. Over the past few decades, the diagnosis and treatment of tetralogy of Fallot have greatly improved. Most children who have this heart defect survive to adulthood. However, they'll need lifelong medical care from specialists to help them stay as healthy as possible.
What causes Tetralogy of Fallot ?
Doctors often don't know what causes tetralogy of Fallot and other congenital heart defects. Some conditions or factors that occur during pregnancy may raise your risk of having a child who has tetralogy of Fallot. These conditions and factors include: German measles (rubella) and some other viral illnesses Poor nutrition Alcohol use Age (being older than 40) Diabetes Heredity may play a role in causing tetralogy of Fallot. An adult who has tetralogy of Fallot may be more likely than other people to have a baby with the condition. Children who have certain genetic disorders, such as Down syndrome and DiGeorge syndrome, often have congenital heart defects, including tetralogy of Fallot. Researchers continue to search for the causes of tetralogy of Fallot and other congenital heart defects.
What are the symptoms of Tetralogy of Fallot ?
Cyanosis is an important sign of tetralogy of Fallot. Cyanosis is a bluish tint to the skin, lips, and fingernails. Low oxygen levels in the blood cause cyanosis. Babies who have unrepaired tetralogy of Fallot sometimes have "tet spells." These spells happen in response to an activity like crying or having a bowel movement. A tet spell occurs when the oxygen level in the blood suddenly drops. This causes the baby to become very blue. The baby also may: Have a hard time breathing Become very tired and limp Not respond to a parent's voice or touch Become very fussy Pass out In years past, when tetralogy of Fallot wasn't treated in infancy, children would get very tired during exercise and could faint. Now, doctors repair tetralogy of Fallot in infancy to prevent these symptoms. Another common sign of tetralogy of Fallot is a heart murmur. A heart murmur is an extra or unusual sound that doctors might hear while listening to the heart. The sound occurs because the heart defect causes abnormal blood flow through the heart. However, not all heart murmurs are signs of congenital heart defects. Many healthy children have heart murmurs. Babies who have tetralogy of Fallot may tire easily while feeding. Thus, they may not gain weight or grow as quickly as children who have healthy hearts. Also, normal growth depends on a normal workload for the heart and normal flow of oxygen-rich blood to all parts of the body. Children who have tetralogy of Fallot also may have clubbing. Clubbing is the widening or rounding of the skin or bone around the tips of the fingers.
How to diagnose Tetralogy of Fallot ?
Doctors diagnose tetralogy of Fallot based on a baby's signs and symptoms, a physical exam, and the results from tests and procedures. Signs and symptoms of the heart defect usually occur during the first weeks of life. Your infant's doctor may notice signs or symptoms during a routine checkup. Some parents also notice cyanosis or poor feeding and bring the baby to the doctor. (Cyanosis is a bluish tint to the skin, lips, and fingernails.) Specialists Involved If your child has tetralogy of Fallot, a pediatric cardiologist and pediatric cardiac surgeon may be involved in his or her care. A pediatric cardiologist is a doctor who specializes in diagnosing and treating heart problems in children. Pediatric cardiac surgeons repair children's heart defects using surgery. Physical Exam During a physical exam, the doctor may: Listen to your baby's heart and lungs with a stethoscope. Look for signs of a heart defect, such as a bluish tint to the skin, lips, or fingernails and rapid breathing. Look at your baby's general appearance. Some children who have tetralogy of Fallot also have DiGeorge syndrome. This syndrome causes characteristic facial traits, such as wide-set eyes. Diagnostic Tests and Procedures Your child's doctor may recommend several tests to diagnose tetralogy of Fallot. These tests can provide information about the four heart defects that occur in tetralogy of Fallot and how serious they are. Echocardiography Echocardiography (echo) is a painless test that uses sound waves to create a moving picture of the heart. During the test, the sound waves (called ultrasound) bounce off the structures of the heart. A computer converts the sound waves into pictures on a screen. Echo allows the doctor to clearly see any problem with the way the heart is formed or the way it's working. Echo is an important test for diagnosing tetralogy of Fallot because it shows the four heart defects and how the heart is responding to them. This test helps the cardiologist decide when to repair the defects and what type of surgery to use. Echo also is used to check a child's condition over time, after the defects have been repaired. EKG (Electrocardiogram) An EKG is a simple, painless test that records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through the heart. This test can help the doctor find out whether your child's right ventricle is enlarged (ventricular hypertrophy). Chest X Ray A chest x ray is a painless test that creates pictures of the structures in the chest, such as the heart and lungs. This test can show whether the heart is enlarged or whether the lungs have extra blood flow or extra fluid, a sign of heart failure. Pulse Oximetry For this test, a small sensor is attached to a finger or toe (like an adhesive bandage). The sensor gives an estimate of how much oxygen is in the blood. Cardiac Catheterization During cardiac catheterization (KATH-eh-ter-ih-ZA-shun), a thin, flexible tube called a catheter is put into a vein in the arm, groin (upper thigh), or neck. The tube is threaded to the heart. Special dye is injected through the catheter into a blood vessel or one of the heart's chambers. The dye allows the doctor to see the flow of blood through the heart and blood vessels on an x-ray image. The doctor also can use cardiac catheterization to measure the pressure and oxygen level inside the heart chambers and blood vessels. This can help the doctor figure out whether blood is mixing between the two sides of the heart.
What are the treatments for Tetralogy of Fallot ?
Tetralogy of Fallot is repaired with open-heart surgery, either soon after birth or later in infancy. The goal of surgery is to repair the four defects of tetralogy of Fallot so the heart can work as normally as possible. Repairing the defects can greatly improve a child's health and quality of life. The pediatric cardiologist and cardiac surgeon will decide the best time to do the surgery. They will base their decision on your baby's health and weight and the severity of the defects and symptoms. Some teenagers or adults who had tetralogy of Fallot repaired in childhood need additional surgery to correct heart problems that develop over time. For more information, go to "Living With Tetralogy of Fallot." Types of Surgery Complete Intracardiac Repair Surgery to repair tetralogy of Fallot improves blood flow to the lungs. Surgery also ensures that oxygen-rich and oxygen-poor blood flow to the right places. The surgeon will: Widen the narrowed pulmonary blood vessels. The pulmonary valve is widened or replaced. Also, the passage from the right ventricle to the pulmonary artery is enlarged. These procedures improve blood flow to the lungs. This allows the blood to get enough oxygen to meet the body's needs. Repair the ventricular septal defect (VSD). A patch is used to cover the hole in the septum. This patch stops oxygen-rich and oxygen-poor blood from mixing between the ventricles. Fixing these two defects resolves problems caused by the other two defects. When the right ventricle no longer has to work so hard to pump blood to the lungs, it will return to a normal thickness. Fixing the VSD means that only oxygen-rich blood will flow out of the left ventricle into the aorta. The incision (cut) that the surgeon makes to reach the heart usually heals in about 6weeks. The surgeon or a hospital staff member will explain when it's okay to give your baby a bath, pick him or her up under the arms, and take your baby for regular shots (immunizations). Temporary or Palliative Surgery It was common in the past to do temporary surgery during infancy for tetralogy of Fallot. This surgery improved blood flow to the lungs. A complete repair of the four defects was done later in childhood. Now, tetralogy of Fallot usually is fully repaired in infancy. However, some babies are too weak or too small to have the full repair. They must have temporary surgery first. This surgery improves oxygen levels in the blood. The surgery also gives the baby time to grow and get strong enough for the full repair. For temporary surgery, the surgeon places a tube between a large artery branching off the aorta and the pulmonary artery. The tube is called a shunt. One end of the shunt is sewn to the artery branching off the aorta. The other end is sewn to the pulmonary artery. The shunt creates an additional pathway for blood to travel to the lungs to get oxygen. The surgeon removes the shunt when the baby's heart defects are fixed during the full repair. After temporary surgery, your baby may need medicines to keep the shunt open while waiting for the full repair. These medicines are stopped after the surgeon removes the shunt.
What is (are) Pleurisy and Other Pleural Disorders ?
Pleurisy (PLUR-ih-se) is a condition in which the pleura is inflamed. The pleura is a membrane that consists of two large, thin layers of tissue. One layer wraps around the outside of your lungs. The other layer lines the inside of your chest cavity. Between the layers of tissue is a very thin space called the pleural space. Normally this space is filled with a small amount of fluidabout 4 teaspoons full. The fluid helps the two layers of the pleura glide smoothly past each other as you breathe in and out. Pleurisy occurs if the two layers of the pleura become irritated and inflamed. Instead of gliding smoothly past each other, they rub together every time you breathe in. The rubbing can cause sharp pain. Many conditions can cause pleurisy, including viral infections. Other Pleural Disorders Pneumothorax Air or gas can build up in the pleural space. When this happens, it's called a pneumothorax (noo-mo-THOR-aks). A lung disease or acute lung injury can cause a pneumothorax. Some lung procedures also can cause a pneumothorax. Examples include lung surgery, drainage of fluid with a needle,bronchoscopy (bron-KOS-ko-pee), andmechanical ventilation. Sometimes the cause of a pneumothorax isn't known. The most common symptoms of a pneumothorax are sudden pain in one side of the lung and shortness of breath. The air or gas in the pleural space also can put pressure on the lung and cause it to collapse. Pleurisy and Pneumothorax A small pneumothorax may go away without treatment. A large pneumothorax may require a procedure to remove air or gas from the pleural space. A very large pneumothorax can interfere with blood flow through your chest and cause your blood pressure to drop. This is called a tension pneumothorax. Pleural Effusion In some cases of pleurisy, excess fluid builds up in the pleural space. This is called a pleural effusion. A lot of extra fluid can push the pleura against your lung until the lung, or part of it, collapses. This can make it hard for you to breathe. Sometimes the extra fluid gets infected and turns into an abscess. When this happens, it's called an empyema (em-pi-E-ma). You can develop a pleural effusion even if you don't have pleurisy. For example,pneumonia, (nu-MO-ne-ah),heart failure, cancer, or pulmonary embolism (PULL-mun-ary EM-bo-lizm) can lead to a pleural effusion. Hemothorax Blood also can build up in the pleural space. This condition is called a hemothorax (he-mo-THOR-aks). An injury to your chest, chest or heart surgery, or lung or pleural cancer can cause a hemothorax. A hemothorax can put pressure on the lung and cause it to collapse. A hemothorax also can cause shock. In shock, not enough blood and oxygen reach your body's vital organs. Outlook Pleurisy and other pleural disorders can be serious, depending on their causes. If the condition that caused the pleurisy or other pleural disorder isn't too serious and is diagnosed and treated early, you usually can expect a full recovery.
What causes Pleurisy and Other Pleural Disorders ?
Pleurisy Many conditions can cause pleurisy. Viral infections are likely the most common cause. Other causes of pleurisy include: Bacterial infections, such as pneumonia (nu-MO-ne-ah) and tuberculosis, and infections from fungi or parasites Pulmonary embolism, a blood clot that travels through the blood vessels to the lungs Autoimmune disorders, such as lupus and rheumatoid arthritis Cancer, such as lung cancer, lymphoma, and mesothelioma (MEZ-o-thee-lee-O-ma) Chest and heart surgery, especially coronary artery bypass grafting Lung diseases, such as LAM (lymphangioleiomyomatosis) or asbestosis (as-bes-TO-sis) Inflammatory bowel disease Familial Mediterranean fever, an inherited condition that often causes fever and swelling in the abdomen or lungs Other causes of pleurisy include chest injuries, pancreatitis (an inflamed pancreas), and reactions to certain medicines. Reactions to certain medicines can cause a condition similar to lupus. These medicines include procainamide, hydralazine, and isoniazid. Sometimes doctors can't find the cause of pleurisy. Pneumothorax Lung diseases or acute lung injury can make it more likely that you will develop a pneumothorax (a buildup of air or gas in the pleural space). Such lung diseases may include COPD (chronic obstructive pulmonary disease), tuberculosis, and LAM. Surgery or a chest injury also may cause a pneumothorax. You can develop a pneumothorax without having a recognized lung disease or chest injury. This is called a spontaneous pneumothorax. Smoking increases your risk of spontaneous pneumothorax. Having a family history of the condition also increases your risk. Pleural Effusion The most common cause of a pleural effusion (a buildup of fluid in the pleural space) is heart failure. Lung cancer, LAM, pneumonia, tuberculosis, and other lung infections also can lead to a pleural effusion. Sometimes kidney or liver disease can cause fluid to build up in the pleural space. Asbestosis, sarcoidosis (sar-koy-DO-sis), and reactions to some medicines also can lead to a pleural effusion. Hemothorax An injury to the chest, chest or heart surgery, or lung or pleural cancer can cause a hemothorax (buildup of blood in the pleural space). A hemothorax also can be a complication of an infection (for example, pneumonia), tuberculosis, or a spontaneous pneumothorax.
What are the symptoms of Pleurisy and Other Pleural Disorders ?
Pleurisy The main symptom of pleurisy is a sharp or stabbing pain in your chest that gets worse when you breathe in deeply or cough or sneeze. The pain may stay in one place or it may spread to your shoulders or back. Sometimes the pain becomes a fairly constant dull ache. Depending on what's causing the pleurisy, you may have other symptoms, such as: Shortness of breath or rapid, shallow breathing Coughing Fever and chills Unexplained weight loss Pneumothorax The symptoms of pneumothorax include: Sudden, sharp chest pain that gets worse when you breathe in deeply or cough Shortness of breath Chest tightness Easy fatigue (tiredness) A rapid heart rate A bluish tint to the skin caused by lack of oxygen Other symptoms of pneumothorax include flaring of the nostrils; anxiety, stress, and tension; and hypotension (low blood pressure). Pleural Effusion Pleural effusion often has no symptoms. Hemothorax The symptoms of hemothorax often are similar to those of pneumothorax. They include: Chest pain Shortness of breath Respiratory failure A rapid heart rate Anxiety Restlessness
How to diagnose Pleurisy and Other Pleural Disorders ?
Your doctor will diagnose pleurisy or another pleural disorder based on your medical history, a physical exam, and test results. Your doctor will want to rule out other causes of your symptoms. He or she also will want to find the underlying cause of the pleurisy or other pleural disorder so it can be treated. Medical History Your doctor may ask detailed questions about your medical history. He or she likely will ask you to describe any pain, especially: What it feels like Where it's located and whether you can feel it in your arms, jaw, or shoulders When it started and whether it goes away and then comes back What makes it better or worse Your doctor also may ask whether you have other symptoms, such as shortness of breath, coughing, or palpitations. Palpitations are feelings that your heart is skipping a beat, fluttering, or beating too hard or fast. Your doctor also may ask whether you've ever: Had heart disease. Smoked. Traveled to places where you may have been exposed to tuberculosis. Had a job that exposed you to asbestos. Asbestos is a mineral that, at one time, was widely used in many industries. Your doctor also may ask about medicines you take or have taken. Reactions to some medicines can cause pleurisy or other pleural disorders. Physical Exam Your doctor will listen to your breathing with a stethoscope to find out whether your lungs are making any abnormal sounds. If you have pleurisy, the inflamed layers of the pleura make a rough, scratchy sound as they rub against each other when you breathe. Doctors call this a pleural friction rub. If your doctor hears the friction rub, he or she will know that you have pleurisy. If you have a pleural effusion, fluid buildup in the pleural space will prevent a friction rub. But if you have a lot of fluid, your doctor may hear a dull sound when he or she taps on your chest. Or, he or she may have trouble hearing any breathing sounds. Muffled or dull breathing sounds also can be a sign of a pneumothorax (a buildup of air or gas in the pleural space). Diagnostic Tests Depending on the results of your physical exam, your doctor may recommend tests. Chest X Ray Achest x rayis a painless test that creates a picture of the structures in your chest, such as your heart, lungs, and blood vessels. This test may show air or fluid in the pleural space. A chest x ray also may show what's causing a pleural disorderfor example, pneumonia, a fractured rib, or a lung tumor. Sometimes a chest x ray is taken while you lie on your side. This position can show fluid that didn't appear on an x ray taken while you were standing. Chest CT Scan A chest computed tomography (to-MOG-rah-fee) scan, orchest CT scan,is a painless test that creates precise pictures of the structures in your chest. This test provides a computer-generated picture of your lungs that can show pockets of fluid. A chest CT scan also may show signs of pneumonia, a lung abscess, a tumor, or other possible causes of pleural disorders. Ultrasound This test uses sound waves to create pictures of your lungs. An ultrasound may show where fluid is located in your chest. The test also can show some tumors. Chest MRI A chest magnetic resonance imaging scan, orchest MRI,uses radio waves, magnets, and a computer to created detailed pictures of the structures in your chest. This test can show pleural effusions and tumors. This test also is called a magnetic resonance (MR) scan or a nuclear magnetic resonance (NMR) scan. Blood Tests Blood testscan show whether you have an illness that increases your risk of pleurisy or another pleural disorder. Such illnesses include bacterial or viral infections, pneumonia, pancreatitis (an inflamed pancreas), kidney disease, or lupus. Arterial Blood Gas Test For this test, a blood sample is taken from an artery, usually in your wrist. The blood's oxygen and carbon dioxide levels are checked. This test shows how well your lungs are taking in oxygen. Thoracentesis Once your doctor knows whether fluid has built up in the pleural space and where it is, he or she can remove a sample for testing. This is done using a procedure calledthoracentesis(THOR-ah-sen-TE-sis). During the procedure, your doctor inserts a thin needle or plastic tube into the pleural space and draws out the excess fluid. After the fluid is removed from your chest, it's sent for testing. The risks of thoracentesissuch as pain, bleeding, and infectionusually are minor. They get better on their own, or they're easily treated. Your doctor may do a chest x ray after the procedure to check for complications. Fluid Analysis The fluid removed during thoracentesis is examined under a microscope. It's checked for signs of infection, cancer, or other conditions that can cause fluid or blood to build up in the pleural space. Biopsy Your doctor may suspect that tuberculosis or cancer has caused fluid to build up in your pleural space. If so, he or she may want to look at a small piece of the pleura under a microscope. To take a tissue sample, your doctor may do one of the following procedures: Insert a needle into your chest to remove a small sample of the pleura's outer layer. Insert a tube with a light on the end (endoscope) into tiny cuts in your chest wall so that he or she can see the pleura. Your doctor can then snip out small pieces of tissue. This procedure must be done in a hospital. You'll be given medicine to make you sleep during the procedure. Snip out a sample of the pleura through a small cut in your chest wall. This is called an open pleural biopsy. It's usually done if the sample from the needle biopsy is too small for an accurate diagnosis. This procedure must be done in a hospital. You'll be given medicine to make you sleep during the procedure.
What are the treatments for Pleurisy and Other Pleural Disorders ?
Pleurisy and other pleural disorders are treated with procedures, medicines, and other methods. The goals of treatment include: Relieving symptoms Removing the fluid, air, or blood from the pleural space (if a large amount is present) Treating the underlying condition Relieving Symptoms To relieve pleurisy symptoms, your doctor may recommend: Acetaminophen or anti-inflammatory medicines (such as ibuprofen) to control pain. Codeine-based cough syrups to controlcoughing. Lying on your painful side. This might make you more comfortable. Breathing deeply and coughing to clear mucus as the pain eases. Otherwise, you may developpneumonia. Getting plenty of rest. Removing Fluid, Air, or Blood From the Pleural Space Your doctor may recommend removing fluid, air, or blood from your pleural space to prevent a lung collapse. The procedures used to drain fluid, air, or blood from the pleural space are similar. Duringthoracentesis, your doctor will insert a thin needle or plastic tube into the pleural space. An attached syringe will draw fluid out of your chest. This procedure can remove more than 6 cups of fluid at a time. If your doctor needs to remove a lot of fluid, he or she may use a chest tube. Your doctor will inject a painkiller into the area of your chest wall where the fluid is. He or she will then insert a plastic tube into your chest between two ribs. The tube will be connected to a box that suctions out the fluid. Your doctor will use achest x ray to check the tube's position. Your doctor also can use a chest tube to drain blood and air from the pleural space. This process can take several days. The tube will be left in place, and you'll likely stay in the hospital during this time. Sometimes the fluid in the pleural space contains thick pus or blood clots. It may form a hard skin or peel, which makes the fluid harder to drain. To help break up the pus or blood clots, your doctor may use a chest tube to deliver medicines called fibrinolytics to the pleural space. If the fluid still won't drain, you may need surgery. If you have a small, persistent air leak into the pleural space, your doctor may attach a one-way valve to the chest tube. The valve allows air to exit the pleural space, but not reenter. Using this type of valve may allow you to continue your treatment from home. Treat the Underlying Condition The fluid sample that was removed during thoracentesis will be checked under a microscope. This can tell your doctor what's causing the fluid buildup, and he or she can decide the best way to treat it. If the fluid is infected, treatment will involve antibiotics and drainage. If you have tuberculosis or a fungal infection, treatment will involve long-term use of antibiotics or antifungal medicines. If tumors in the pleura are causing fluid buildup, the fluid may quickly build up again after it's drained. Sometimes antitumor medicines will prevent further fluid buildup. If they don't, your doctor may seal the pleural space. Sealing the pleural space is called pleurodesis (plur-OD-eh-sis). For this procedure, your doctor will drain all of the fluid out of your chest through a chest tube. Then he or she will push a substance through the chest tube into the pleural space. The substance will irritate the surface of the pleura. This will cause the two layers of the pleura to stick together, preventing more fluid from building up. Chemotherapy or radiation treatment also may be used to reduce the size of the tumors. Ifheart failureis causing fluid buildup, treatment usually includes diuretics (medicines that help reduce fluid buildup) and other medicines.
What is (are) Sudden Cardiac Arrest ?
Sudden cardiac arrest (SCA) is a condition in which the heart suddenly and unexpectedly stops beating. If this happens, blood stops flowing to the brain and other vital organs. SCA usually causes death if it's not treated within minutes. Overview To understand SCA, it helps to understand how the heart works. The heart has an electrical system that controls the rate and rhythm of the heartbeat. Problems with the heart's electrical system can cause irregular heartbeats called arrhythmias. There are many types of arrhythmias. During an arrhythmia, the heart can beat too fast, too slow, or with an irregular rhythm. Some arrhythmias can cause the heart to stop pumping blood to the bodythese arrhythmias cause SCA. SCA is not the same as a heart attack. A heart attack occurs if blood flow to part of the heart muscle is blocked. During a heart attack, the heart usually doesn't suddenly stop beating. SCA, however, may happen after or during recovery from a heart attack. People who have heart disease are at higher risk for SCA. However, SCA can happen in people who appear healthy and have no known heart disease or other risk factors for SCA. Outlook Most people who have SCA die from itoften within minutes. Rapid treatment of SCA with a defibrillator can be lifesaving. A defibrillator is a device that sends an electric shock to the heart to try to restore its normal rhythm. Automated external defibrillators (AEDs) can be used by bystanders to save the lives of people who are having SCA. These portable devices often are found in public places, such as shopping malls, golf courses, businesses, airports, airplanes, casinos, convention centers, hotels, sports venues, and schools.
What causes Sudden Cardiac Arrest ?
Ventricular fibrillation (v-fib) causes most sudden cardiac arrests (SCAs). V-fib is a type of arrhythmia. During v-fib, the ventricles (the heart's lower chambers) don't beat normally. Instead, they quiver very rapidly and irregularly. When this happens, the heart pumps little or no blood to the body. V-fib is fatal if not treated within a few minutes. Other problems with the heart's electrical system also can cause SCA. For example, SCA can occur if the rate of the heart's electrical signals becomes very slow and stops. SCA also can occur if the heart muscle doesn't respond to the heart's electrical signals. Certain diseases and conditions can cause the electrical problems that lead to SCA. Examples include coronary heart disease (CHD), also called coronary artery disease; severe physical stress; certain inherited disorders; and structural changes in the heart. Several research studies are under way to try to find the exact causes of SCA and how to prevent them. Coronary Heart Disease CHD is a disease in which a waxy substance called plaque (plak) builds up in the coronary arteries. These arteries supply oxygen-rich blood to your heart muscle. Plaque narrows the arteries and reduces blood flow to your heart muscle. Eventually, an area of plaque can rupture (break open). This may cause a blood clot to form on the plaque's surface. A blood clot can partly or fully block the flow of oxygen-rich blood to the portion of heart muscle fed by the artery. This causes a heart attack. During a heart attack, some heart muscle cells die and are replaced with scar tissue. The scar tissue damages the heart's electrical system. As a result, electrical signals may spread abnormally throughout the heart. These changes to the heart increase the risk of dangerous arrhythmias and SCA. CHD seems to cause most cases of SCA in adults. Many of these adults, however, have no signs or symptoms of CHD before having SCA. Physical Stress Certain types of physical stress can cause your heart's electrical system to fail. Examples include: Intense physical activity. The hormone adrenaline is released during intense physical activity. This hormone can trigger SCA in people who have heart problems. Very low blood levels of potassium or magnesium. These minerals play an important role in your heart's electrical signaling. Major blood loss. Severe lack of oxygen. Inherited Disorders A tendency to have arrhythmias runs in some families. This tendency is inherited, which means it's passed from parents to children through the genes. Members of these families may be at higher risk for SCA. An example of an inherited disorder that makes you more likely to have arrhythmias is long QT syndrome (LQTS). LQTS is a disorder of the heart's electrical activity. Problems with tiny pores on the surface of heart muscle cells cause the disorder. LQTS can cause sudden, uncontrollable, dangerous heart rhythms. People who inherit structural heart problems also may be at higher risk for SCA. These types of problems often are the cause of SCA in children. Structural Changes in the Heart Changes in the heart's normal size or structure may affect its electrical system. Examples of such changes include an enlarged heart due to high blood pressure or advanced heart disease. Heart infections also may cause structural changes in the heart.
Who is at risk for Sudden Cardiac Arrest? ?
The risk of sudden cardiac arrest (SCA) increases: With age If you are a man. Men are more likely than women to have SCA. Some studies show that blacksparticularly those with underlying conditions such as diabetes, high blood pressure, heart failure, and chronic kidney disease or certain cardiac findings on tests such as an electrocardiogramhave a higher risk forSCA. Major Risk Factor The major risk factor for SCA is coronary heart disease. Most people who have SCA have some degree of coronary heart disease; however, many people may not know that they have coronary heart disease until SCA occurs. Usually their coronary heart disease is silentthat is, it has no signs or symptoms. Because of this, doctors and nurses have not detected it. Many people who have SCA also have silent, or undiagnosed, heart attacks before sudden cardiac arrest happens. These people have no clear signs of heart attack, and they dont even realize that theyve had one. Read more about coronary heart disease risk factors. Other Risk Factors Other risk factors for SCA include: A personal history of arrhythmias A personal or family history of SCA or inherited disorders that make you prone toarrhythmias Drug or alcohol abuse Heart attack Heart failure
What are the symptoms of Sudden Cardiac Arrest ?
Usually, the first sign of sudden cardiac arrest (SCA) is loss of consciousness (fainting). At the same time, no heartbeat (or pulse) can be felt. Some people may have a racing heartbeat or feel dizzy or light-headed just before they faint. Within an hour before SCA, some people have chest pain, shortness of breath, nausea (feeling sick to the stomach), or vomiting.
How to diagnose Sudden Cardiac Arrest ?
Sudden cardiac arrest (SCA) happens without warning and requires emergency treatment. Doctors rarely diagnose SCA with medical tests as it's happening. Instead, SCA often is diagnosed after it happens. Doctors do this by ruling out other causes of a person's sudden collapse. Specialists Involved If you're at high risk for SCA, your doctor may refer you to a cardiologist. This is a doctor who specializes in diagnosing and treating heart diseases and conditions. Your cardiologist will work with you to decide whether you need treatment to prevent SCA. Some cardiologists specialize in problems with the heart's electrical system. These specialists are called cardiac electrophysiologists. Diagnostic Tests and Procedures Doctors use several tests to help detect the factors that put people at risk for SCA. EKG (Electrocardiogram) An EKG is a simple, painless test that detects and records the heart's electrical activity. The test shows how fast the heart is beating and its rhythm (steady or irregular). An EKG also records the strength and timing of electrical signals as they pass through each part of the heart. An EKG can show evidence of heart damage due to coronary heart disease (CHD). The test also can show signs of a previous or current heart attack. Echocardiography Echocardiography, or echo, is a painless test that uses sound waves to create pictures of your heart. The test shows the size and shape of your heart and how well your heart chambers and valves are working. Echo also can identify areas of poor blood flow to the heart, areas of heart muscle that aren't contracting normally, and previous injury to the heart muscle caused by poor blood flow. There are several types of echo, including stress echo. This test is done both before and after a cardiac stress test. During this test, you exercise (or are given medicine if you're unable to exercise) to make your heart work hard and beat fast. Stress echo shows whether you have decreased blood flow to your heart (a sign of CHD). MUGA Test or Cardiac MRI A MUGA (multiple gated acquisition) test shows how well your heart is pumping blood. For this test, a small amount of radioactive substance is injected into a vein and travels to your heart. The substance releases energy, which special cameras outside of your body can detect. The cameras use the energy to create pictures of many parts of your heart. Cardiac MRI (magnetic resonance imaging) is a safe procedure that uses radio waves and magnets to create detailed pictures of your heart. The test creates still and moving pictures of your heart and major blood vessels. Doctors use cardiac MRI to get pictures of the beating heart and to look at the structure and function of the heart. Cardiac Catheterization Cardiac catheterization is a procedure used to diagnose and treat certain heart conditions. A long, thin, flexible tube called a catheter is put into a blood vessel in your arm, groin (upper thigh), or neck and threaded to your heart. Through the catheter, your doctor can do diagnostic tests and treatments on your heart. Sometimes dye is put into the catheter. The dye will flow through your bloodstream to your heart. The dye makes your coronary (heart) arteries visible on x-ray pictures. The dye can show whether plaque has narrowed or blocked any of your coronary arteries. Electrophysiology Study For an electrophysiology study, doctors use cardiac catheterization to record how your heart's electrical system responds to certain medicines and electrical stimulation. This helps your doctor find where the heart's electrical system is damaged. Blood Tests Your doctor may recommend blood tests to check the levels of potassium, magnesium, and other chemicals in your blood. These chemicals play an important role in your heart's electrical signaling.
What are the treatments for Sudden Cardiac Arrest ?
Emergency Treatment Sudden cardiac arrest (SCA) is an emergency. A person having SCA needs to be treated with a defibrillator right away. This device sends an electric shock to the heart. The electric shock can restore a normal rhythm to a heart that's stopped beating. To work well, defibrillation must be done within minutes of SCA. With every minute that passes, the chances of surviving SCA drop rapidly. Police, emergency medical technicians, and other first responders usually are trained and equipped to use a defibrillator. Call 911 right away if someone has signs or symptoms of SCA. The sooner you call for help, the sooner lifesaving treatment can begin. Automated External Defibrillators Automated external defibrillators (AEDs) are special defibrillators that untrained bystanders can use. These portable devices often are found in public places, such as shopping malls, golf courses, businesses, airports, airplanes, casinos, convention centers, hotels, sports venues, and schools. AEDs are programmed to give an electric shock if they detect a dangerous arrhythmia, such as ventricular fibrillation. This prevents giving a shock to someone who may have fainted but isn't having SCA. You should give cardiopulmonary resuscitation (CPR) to a person having SCA until defibrillation can be done. People who are at risk for SCA may want to consider having an AED at home. A 2008 study by the National Heart, Lung, and Blood Institute and the National Institutes of Health found that AEDs in the home are safe and effective. Some people feel that placing these devices in homes will save many lives because many SCAs occur at home.Others note that no evidence supports the idea that home-use AEDs save more lives. These people fear that people who have AEDs in their homes will delay calling for help during an emergency. They're also concerned that people who have home-use AEDs will not properly maintain the devices or forget where they are. When considering a home-use AED, talk with your doctor. He or she can help you decide whether having an AED in your home will benefit you. Treatment in a Hospital If you survive SCA, you'll likely be admitted to a hospital for ongoing care and treatment. In the hospital, your medical team will closely watch your heart. They may give you medicines to try to reduce the risk of another SCA. While in the hospital, your medical team will try to find out what caused your SCA. If you're diagnosed with coronary heart disease, you may havepercutaneous coronary intervention, also known as coronary angioplasty,or coronary artery bypass grafting. These procedures help restore blood flow through narrowed or blocked coronary arteries. Often, people who have SCA get a device called an implantable cardioverter defibrillator (ICD). This small device is surgically placed under the skin in your chest or abdomen. An ICD uses electric pulses or shocks to help control dangerous arrhythmias. (For more information, go to "How Can Death Due to Sudden Cardiac Arrest Be Prevented?")
How to prevent Sudden Cardiac Arrest ?
Ways to prevent death due to sudden cardiac arrest (SCA) differ depending on whether: You've already had SCA You've never had SCA but are at high risk for the condition You've never had SCA and have no known risk factors for the condition For People Who Have Survived Sudden Cardiac Arrest If you've already had SCA, you're at high risk of having it again. Research shows that an implantable cardioverter defibrillator (ICD) reduces the chances of dying from a second SCA.An ICD is surgically placed under the skin in your chest or abdomen. The device has wires with electrodes on the ends that connect to your heart's chambers. The ICD monitors your heartbeat. If the ICD detects a dangerous heart rhythm, it gives an electric shock to restore the heart's normal rhythm. Your doctor may give you medicine to limit irregular heartbeats that can trigger the ICD. Implantable Cardioverter Defibrillator An ICD isn't the same as a pacemaker. The devices are similar, but they have some differences. Pacemakers give off low-energy electrical pulses. They're often used to treat less dangerous heart rhythms, such as those that occur in the upper chambers of the heart. Most new ICDs work as both pacemakers and ICDs. For People at High Risk for a First Sudden Cardiac Arrest If you have severe coronary heart disease (CHD), you're at increased risk for SCA. This is especially true if you've recently had a heart attack. Your doctor may prescribe a type of medicine called a beta blocker to help lower your risk for SCA. Your doctor also may discuss beginning statin treatment if you have an elevated risk for developing heart disease or having a stroke. Doctors usually prescribe statins for people who have: Diabetes Heart disease or had a prior stroke High LDL cholesterol levels Your doctor also may prescribe other medications to: Decrease your chance of having a heart attack or dying suddenly. Lower blood pressure. Prevent blood clots, which can lead to heart attack or stroke. Prevent or delay the need for a procedure or surgery, such as angioplasty or coronary artery bypass grafting. Reduce your hearts workload and relieve coronary heart disease symptoms. Take all medicines regularly, as your doctor prescribes. Dont change the amount of your medicine or skip a dose unless your doctor tells you to. You should still follow a heart-healthy lifestyle, even if you take medicines to treat your coronary heart disease. Other treatments for coronary heart diseasesuch as percutaneous coronary intervention, also known as coronary angioplasty, or coronary artery bypass graftingalso may lower your risk for SCA. Your doctor also may recommend an ICD if youre at high risk for SCA. For People Who Have No Known Risk Factors for Sudden Cardiac Arrest CHD seems to be the cause of most SCAs in adults. CHD also is a major risk factor for angina (chest pain or discomfort) and heart attack, and it contributes to other heart problems. Following a healthy lifestyle can help you lower your risk for CHD, SCA, and other heart problems. A heart-healthy lifestyle includes: Heart-healthy eating Maintaining a healthy weight Managing stress Physical activity Quitting smoking Heart-Healthy Eating Heart-healthy eating is an important part of a heart-healthy lifestyle. Your doctor may recommend heart-healthy eating, which should include: Fat-free or low-fat dairy products, such as skim milk Fish high in omega-3 fatty acids, such as salmon, tuna, and trout, about twice a week Fruits, such as apples, bananas, oranges, pears, and prunes Legumes, such as kidney beans, lentils, chickpeas, black-eyed peas, and lima beans Vegetables, such as broccoli, cabbage, and carrots Whole grains, such as oatmeal, brown rice, and corn tortillas When following a heart-healthy diet, you should avoid eating: A lot of red meat Palm and coconut oils Sugary foods and beverages Two nutrients in your diet make blood cholesterol levels rise: Saturated fatfound mostly in foods that come from animals Trans fat (trans fatty acids)found in foods made with hydrogenated oils and fats, such as stick margarine; baked goods, such as cookies, cakes, and pies; crackers; frostings; and coffee creamers. Some trans fats also occur naturally in animal fats and meats. Saturated fat raises your blood cholesterol more than anything else in your diet. When you follow a heart-healthy eating plan, only 5percent to 6percent of your daily calories should come from saturated fat. Food labels list the amounts of saturated fat. To help you stay on track, here are some examples: If you eat: Try to eat no more than: 1,200 calories a day 8 grams of saturated fat a day 1,500 calories a day 10 grams of saturated fat a day 1,800 calories a day 12 grams of saturated fat a day 2,000 calories a day 13 grams of saturated fat a day 2,500 calories a day 17 grams of saturated fat a day Not all fats are bad. Monounsaturated and polyunsaturated fats actually help lower blood cholesterol levels. Some sources of monounsaturated and polyunsaturated fats are: Avocados Corn, sunflower, and soybean oils Nuts and seeds, such as walnuts Olive, canola, peanut, safflower, and sesame oils Peanut butter Salmon and trout Tofu Sodium You should try to limit the amount of sodium that you eat. This means choosing and preparing foods that are lower in salt and sodium. Try to use low-sodium and no added salt foods and seasonings at the table or while cooking. Food labels tell you what you need to know about choosing foods that are lower in sodium. Try to eat no more than 2,300milligrams of sodium a day. If you have high blood pressure, you may need to restrict your sodium intake even more. Dietary Approaches to Stop Hypertension Your doctor may recommend the Dietary Approaches to Stop Hypertension (DASH) eating plan if you have high blood pressure. The DASH eating plan focuses on fruits, vegetables, whole grains, and other foods that are heart healthy and low in fat, cholesterol, and sodium and salt. The DASH eating plan is a good heart-healthy eating plan, even for those who dont have high blood pressure. Read more about DASH. Limiting Alcohol Try to limit alcohol intake. Too much alcohol can raise your blood pressure and triglyceride levels, a type of fat found in the blood. Alcohol also adds extra calories, which may cause weight gain. Men should have no more than two drinks containing alcohol a day. Women should have no more than one drink containing alcohol a day. One drink is: 12 ounces of beer 5 ounces of wine 1 ounces of liquor Maintaining a Healthy Weight Maintaining a healthy weight is important for overall health and can lower your risk for sudden cardiac arrest. Aim for a Healthy Weight by following a heart-healthy eating plan and keeping physically active. Knowing your body mass index (BMI) helps you find out if youre a healthy weight in relation to your height and gives an estimate of your total body fat. To figure out your BMI, check out the National Heart, Lung, and Blood Institutes online BMI calculator or talk to your doctor. A BMI: Below 18.5 is a sign that you are underweight. Between 18.5 and 24.9 is in the normal range Between 25.0 and 29.9 is considered overweight Of 30.0 or higher is considered obese A general goal to aim for is a BMI of less than 25. Your doctor or health care provider can help you set an appropriate BMI goal. Measuring waist circumference helps screen for possible health risks. If most of your fat is around your waist rather than at your hips, youre at a higher risk for heart disease and type2 diabetes. This risk may be higher with a waist size that is greater than 35 inches for women or greater than 40 inches for men. To learn how to measure your waist, visit Assessing Your Weight and Health Risk. If youre overweight or obese, try to lose weight. A loss of just 3percent to 5percent of your current weight can lower your triglycerides, blood glucose, and the risk of developing type2 diabetes. Greater amounts of weight loss can improve blood pressure readings, lower LDL cholesterol, and increase HDL cholesterol. Managing Stress Managing and coping with stress. Learning how to manage stress, relax, and cope with problems can improve your emotional and physical health. Consider healthy stress-reducing activities, such as: A stress management program Meditation Physical activity Relaxation therapy Talking things out with friends or family Physical Activity Regular physical activity can lower your risk for coronary heart disease, sudden cardiac arrest, and other health problems. Everyone should try to participate in moderate-intensity aerobic exercise at least 2hours and 30minutes per week or vigorous aerobic exercise for 1hour and 15minutes per week. Aerobic exercise, such as brisk walking, is any exercise in which your heart beats faster and you use more oxygen than usual. The more active you are, the more you will benefit. Participate in aerobic exercise for at least 10minutes at a time spread throughout the week. Talk with your doctor before you start a new exercise plan. Ask your doctor how much and what kinds of physical activity are safe for you. Read more about physical activity at: Physical Activity and Your Heart U.S. Department of Health and Human Services, 2008 Physical Activity Guidelines for Americans Quitting Smoking People who smoke are more likely to have a heart attack than are people who dont smoke. The risk of having a heart attack increases with the number of cigarettes smoked each day. Smoking also raises your risk for stroke and lung diseases, such as chronic obstructive pulmonary disease (COPD) and lung cancer. Quitting smoking can greatly reduce your risk for heart and lung diseases. Ask your doctor about programs and products that can help you quit. Also, try to avoid secondhand smoke. If you have trouble quitting smoking on your own, consider joining a support group. Many hospitals, workplaces, and community groups offer classes to help people quit smoking. Read more about how to quit smoking.
What is (are) Sickle Cell Disease ?
Espaol The term sickle cell disease (SCD) describes a group of inherited red blood cell disorders. People with SCD have abnormal hemoglobin, called hemoglobin S or sickle hemoglobin, in their red blood cells. Hemoglobin is a protein in red blood cells that carries oxygen throughout the body. Inherited means that the disease is passed by genes from parents to their children. SCD is not contagious. A person cannot catch it, like a cold or infection, from someone else. People who have SCD inherit two abnormal hemoglobin genes, one from each parent. In all forms of SCD, at least one of the two abnormal genes causes a persons body to make hemoglobin S. When a person has two hemoglobin S genes, Hemoglobin SS, the disease is called sickle cell anemia. This is the most common and often most severe kind of SCD. Hemoglobin SC disease and hemoglobin S thalassemia (thal-uh-SEE-me-uh) are two other common forms of SCD. Some Forms of Sickle Cell Disease Hemoglobin SS Hemoglobin SC Hemoglobin S0 thalassemia Hemoglobin S+ thalassemia Hemoglobin SD Hemoglobin SE Overview Cells in tissues need a steady supply of oxygen to work well. Normally, hemoglobin in red blood cells takes up oxygen in the lungs and carries it to all the tissues of the body. Red blood cells that contain normal hemoglobin are disc shaped (like a doughnut without a hole). This shape allows the cells to be flexible so that they can move through large and small blood vessels to deliver oxygen. Sickle hemoglobin is not like normal hemoglobin. It can form stiff rods within the red cell, changing it into a crescent, or sickle shape. Sickle-shaped cells are not flexible and can stick to vessel walls, causing a blockage that slows or stops the flow of blood. When this happens, oxygen cant reach nearby tissues. Normal Red Cells and Sickle Red Cells The lack of tissue oxygen can cause attacks of sudden, severe pain, called pain crises. These pain attacks can occur without warning, and a person often needs to go to the hospital for effective treatment. Most children with SCD are pain free between painful crises, but adolescents and adults may also suffer with chronic ongoing pain. The red cell sickling and poor oxygen delivery can also cause organ damage. Over a lifetime, SCD can harm a persons spleen, brain, eyes, lungs, liver, heart, kidneys, penis, joints, bones, or skin. Sickle cells cant change shape easily, so they tend to burst apart or hemolyze. Normal red blood cells live about 90 to 120 days, but sickle cells last only 10 to 20 days. The body is always making new red blood cells to replace the old cells; however, in SCD the body may have trouble keeping up with how fast the cells are being destroyed. Because of this, the number of red blood cells is usually lower than normal. This condition, called anemia, can make a person have less energy. Outlook Sickle cell disease is a life-long illness. The severity of the disease varies widely from person to person. In high-income countries like the United States, the life expectancy of a person with SCD is now about 4060 years. In 1973, the average lifespan of a person with SCD in the United States was only 14 years. Advances in the diagnosis and care of SCD have made this improvement possible. At the present time, hematopoietic stem cell transplantation (HSCT) is the only cure for SCD. Unfortunately, most people with SCD are either too old for a transplant or dont have a relative who is a good enough genetic match for them to act as a donor. A well-matched donor is needed to have the best chance for a successful transplant. There are effective treatments that can reduce symptoms and prolong life. Early diagnosis and regular medical care to prevent complications also contribute to improved well-being.
What causes Sickle Cell Disease ?
Abnormal hemoglobin, called hemoglobin S, causes sickle cell disease (SCD). The problem in hemoglobin S is caused by a small defect in the gene that directs the production of the beta globin part of hemoglobin. This small defect in the beta globin gene causes a problem in the beta globin part of hemoglobin, changing the way that hemoglobin works. (See Overview.) How Is Sickle Cell Disease Inherited? When the hemoglobin S gene is inherited from only one parent and a normal hemoglobin gene is inherited from the other, a person will have sickle cell trait. People with sickle cell trait are generally healthy. Only rarely do people with sickle cell trait have complications similar to those seen in people with SCD. But people with sickle cell trait are carriers of a defective hemoglobin S gene. So, they can pass it on when they have a child. If the childs other parent also has sickle cell trait or another abnormal hemoglobin gene (like thalassemia, hemoglobin C, hemoglobin D, hemoglobin E), that child has a chance of having SCD. Example of an Inheritance Pattern In the image above, each parent has one hemoglobin A gene and one hemoglobin S gene, and each of their children has: A 25 percent chance of inheriting two normal genes: In this case the child does not have sickle cell trait or disease. (Case 1) A 50 percent chance of inheriting one hemoglobin A gene and one hemoglobin S gene: This child has sickle cell trait. (Cases 2 and 3) A 25 percent chance of inheriting two hemoglobin S genes: This child has sickle cell disease. (Case 4) It is important to keep in mind that each time this couple has a child, the chances of that child having sickle cell disease remain the same. In other words, if the first-born child has sickle cell disease, there is still a 25 percent chance that the second child will also have the disease. Both boys and girls can inherit sickle cell trait, sickle cell disease, or normal hemoglobin. If a person wants to know if he or she carries a sickle hemoglobin gene, a doctor can order a blood test to find out.
Who is at risk for Sickle Cell Disease? ?
In the United States, most people with sickle cell disease (SCD) are of African ancestry or identify themselves as black. About 1 in 13 African American babies is born with sickle cell trait. About 1 in every 365 black children is born with sickle cell disease. There are also many people with this disease who come from Hispanic, southern European, Middle Eastern, or Asian Indian backgrounds. Approximately 100,000 Americans have SCD.
What are the symptoms of Sickle Cell Disease ?
Early Signs and Symptoms If a person has sickle cell disease (SCD), it is present at birth. But most infants do not have any problems from the disease until they are about 5 or 6 months of age. Every state in the United States, the District of Columbia, and the U.S. territories requires that all newborn babies receive screening for SCD. When a child has SCD, parents are notified before the child has symptoms. Some children with SCD will start to have problems early on, and some later. Early symptoms of SCD may include: Painful swelling of the hands and feet, known as dactylitis Fatigue or fussiness from anemia A yellowish color of the skin, known as jaundice, or whites of the eyes, known as icteris, that occurs when a large number of red cells hemolyze The signs and symptoms of SCD will vary from person to person and can change over time. Most of the signs and symptoms of SCD are related to complications of the disease. Major Complications of Sickle Cell Disease Acute Pain (Sickle Cell or Vaso-occlusive) Crisis Pain episodes (crises) can occur without warning when sickle cells block blood flow and decrease oxygen delivery. People describe this pain as sharp, intense, stabbing, or throbbing. Severe crises can be even more uncomfortable than post-surgical pain or childbirth. Pain can strike almost anywhere in the body and in more than one spot at a time. But the pain often occurs in the Lower back Legs Arms Abdomen Chest A crisis can be brought on by Illness Temperature changes Stress Dehydration (not drinking enough) Being at high altitudes But often a person does not know what triggers, or causes, the crisis. (See acute pain management.) Chronic Pain Many adolescents and adults with SCD suffer from chronic pain. This kind of pain has been hard for people to describe, but it is usually different from crisis pain or the pain that results from organ damage. Chronic pain can be severe and can make life difficult. Its cause is not well understood. (See chronic pain management.) Severe Anemia People with SCD usually have mild to moderate anemia. At times, however, they can have severe anemia. Severe anemia can be life threatening. Severe anemia in an infant or child with SCD may be caused by: Splenic sequestration crisis. The spleen is an organ that is located in the upper left side of the belly. The spleen filters germs in the blood, breaks up blood cells, and makes a kind of white blood cell. A splenic sequestration crisis occurs when red blood cells get stuck in the spleen, making it enlarge quickly. Since the red blood cells are trapped in the spleen, there are fewer cells to circulate in the blood. This causes severe anemia. A big spleen may also cause pain in the left side of the belly. A parent can usuallypalpate or feel the enlarged spleen in the belly of his or her child. A big spleen may also cause pain in the left side of the belly. A parent can usuallypalpate or feel the enlarged spleen in the belly of his or her child. Aplastic crisis. This crisis is usually caused by a parvovirus B19 infection, also called fifth disease or slapped cheek syndrome. Parvovirus B19 is a very common infection, but in SCD it can cause the bone marrow to stop producing new red cells for a while, leading to severe anemia. Splenic sequestration crisis and aplastic crisis most commonly occur in infants and children with SCD. Adults with SCD may also experience episodes of severe anemia, but these usually have other causes. No matter the cause, severe anemia may lead to symptoms that include: Shortness of breath Being very tired Feeling dizzy Having pale skin Babies and infants with severe anemia may feed poorly and seem very sluggish. (See anemia management.) Infections The spleen is important for protection against certain kinds of germs. Sickle cells can damage the spleen and weaken or destroy its function early in life. People with SCD who have damaged spleens are at risk for serious bacterial infections that can be life-threatening. Some of these bacteria include: Pneumococcus Hemophilus influenza type B Meningococcus Salmonella Staphylococcus Chlamydia Mycoplasma pneumoniae Bacteria can cause: Blood infection (septicemia) Lung infection (pneumonia) Infection of the covering of the brain and spinal cord (meningitis) Bone infection (osteomyelitis) (See how to prevent infections and infection management.) Acute Chest Syndrome Sickling in blood vessels of the lungs can deprive a persons lungs of oxygen. When this happens, areas of lung tissue are damaged and cannot exchange oxygen properly. This condition is known as acute chest syndrome. In acute chest syndrome, at least one segment of the lung is damaged. This condition is very serious and should be treated right away at a hospital. Acute chest syndrome often starts a few days after a painful crisis begins. A lung infection may accompany acute chest syndrome. Symptoms may include: Chest pain Fever Shortness of breath Rapid breathing Cough (See acute chest syndrome management.) Brain Complications Clinical Stroke A stroke occurs when blood flow is blocked to a part of the brain. When this happens, brain cells can be damaged or can die. In SCD, a clinical stroke means that a person shows outward signs that something is wrong. The symptoms depend upon what part of the brain is affected. Symptoms of stroke may include: Weakness of an arm or leg on one side of the body Trouble speaking, walking, or understanding Loss of balance Severe headache As many as 24 percent of people with hemoglobin SS and 10 percent of people with hemoglobin SC may suffer a clinical stroke by age 45. In children, clinical stroke occurs most commonly between the ages of 2 and 9, but recent prevention strategies have lowered the risk. (See Transcranial Doppler (TCD) Ultrasound Screening) and Red Blood Cell Transfusions.) When people with SCD show symptoms of stroke, their families or friends should call 9-1-1 right away. (See clinical stroke management.) Silent Stroke and Thinking Problems Brain imaging and tests of thinking (cognitive studies) have shown that children and adults with hemoglobin SS and hemoglobin S0 thalassemia often have signs of silent brain injury, also called silent stroke. Silent brain injury is damage to the brain without showing outward signs of stroke. This injury is common. Silent brain injury can lead to learning problems or trouble making decisions or holding down a job. (See Cognitive Screening and silent stroke management.) Eye Problems Sickle cell disease can injure blood vessels in the eye. The most common site of damage is the retina, where blood vessels can overgrow, get blocked, or bleed. The retina is the light-sensitive layer of tissue that lines the inside of the eye and sends visual messages through the optic nerve to the brain. Detachment of the retina can occur. When the retina detaches, it is lifted or pulled from its normal position. These problems can cause visual impairment or loss. (See Eye Examinations.) Heart Disease People with SCD can have problems with blood vessels in the heart and with heart function. The heart can become enlarged. People can also develop pulmonary hypertension. People with SCD who have received frequent blood transfusions may also have heart damage from iron overload. (See transfusion management.) Pulmonary Hypertension In adolescents and adults, injury to blood vessels in the lungs can make it hard for the heart to pump blood through them. This causes the pressure in lung blood vessels to rise. High pressure in these blood vessels is called pulmonary hypertension. Symptoms may include shortness of breath and fatigue. When this condition is severe, it has been associated with a higher risk of death. (See screening for pulmonary hypertension.) Kidney Problems The kidneys are sensitive to the effects of red blood cell sickling. SCD causes the kidneys to have trouble making the urine as concentrated as it should be. This may lead to a need to urinate often and to have bedwetting or uncontrolled urination during the night (nocturnal enuresis). This often starts in childhood. Other problems may include: Blood in the urine Decreased kidney function Kidney disease Protein loss in the urine Priapism Males with SCD can have unwanted, sometimes prolonged, painful erections. This condition is called priapism. Priapism happens when blood flow out of the erect penis is blocked by sickled cells. If it goes on for a long period of time, priapism can cause permanent damage to the penis and lead to impotence. If priapism lasts for more than 4 hours, emergency medical care should be sought to avoid complications. (See priapism management.) Gallstones When red cells hemolyze, they release hemoglobin. Hemoglobin gets broken down into a substance called bilirubin. Bilirubin can form stones that get stuck in the gallbladder. The gallbladder is a small, sac-shaped organ beneath the liver that helps with digestion. Gallstones are a common problem in SCD. Gallstones may be formed early on but may not produce symptoms for years. When symptoms develop, they may include: Right-sided upper belly pain Nausea Vomiting If problems continue or recur, a person may need surgery to remove the gallbladder. Liver Complications There are a number of ways in which the liver may be injured in SCD. Sickle cell intrahepatic cholestasis is an uncommon, but severe, form of liver damage that occurs when sickled red cells block blood vessels in the liver. This blockage prevents enough oxygen from reaching liver tissue. These episodes are usually sudden and may recur. Children often recover, but some adults may have chronic problems that lead to liver failure. People with SCD who have received frequent blood transfusions may develop liver damage from iron overload. Leg Ulcers Sickle cell ulcers are sores that usually start small and then get larger and larger. The number of ulcers can vary from one to many. Some ulcers will heal quickly, but others may not heal and may last for long periods of time. Some ulcers come back after healing. People with SCD usually dont get ulcers until after the age of 10. Joint Complications Sickling in the bones of the hip and, less commonly, the shoulder joints, knees, and ankles, can decrease oxygen flow and result in severe damage. This damage is a condition called avascular or aseptic necrosis. This disease is usually found in adolescents and adults. Symptoms include pain and problems with walking and joint movement. A person may need pain medicines, surgery, or joint replacement if symptoms persist. Delayed Growth and Puberty Children with SCD may grow and develop more slowly than their peers because of anemia. They will reach full sexual maturity, but this may be delayed. Pregnancy Pregnancies in women with SCD can be risky for both the mother and the baby. Mothers may have medical complications including: Infections Blood clots High blood pressure Increased pain episodes They are also at higher risk for: Miscarriages Premature births Small-for-dates babies or underweight babies (See pregnancy management.) Mental Health As in other chronic diseases, people with SCD may feel sad and frustrated at times. The limitations that SCD can impose on a persons daily activities may cause them to feel isolated from others. Sometimes they become depressed. People with SCD may also have trouble coping with pain and fatigue, as well as with frequent medical visits and hospitalizations. (See living with emotional issues.)
How to diagnose Sickle Cell Disease ?
Screening Tests People who do not know whether they make sickle hemoglobin (hemoglobin S) or another abnormal hemoglobin (such as C, thalassemia, E) can find out by having their blood tested. This way, they can learn whether they carry a gene (i.e., have the trait) for an abnormal hemoglobin that they could pass on to a child. When each parent has this information, he or she can be better informed about the chances of having a child with some type of sickle cell disease (SCD), such as hemoglobin SS, SC, S thalassemia, or others. Newborn Screening When a child has SCD, it is very important to diagnose it early to better prevent complications. Every state in the United States, the District of Columbia, and the U.S. territories require that every baby is tested for SCD as part of a newborn screening program. In newborn screening programs, blood from a heel prick is collected in spots on a special paper. The hemoglobin from this blood is then analyzed in special labs. Newborn screening results are sent to the doctor who ordered the test and to the childs primary doctor. If a baby is found to have SCD, health providers from a special follow-up newborn screening group contact the family directly to make sure that the parents know the results. The child is always retested to be sure that the diagnosis is correct. Newborn screening programs also find out whether the baby has an abnormal hemoglobin trait. If so, parents are informed, and counseling is offered. Remember that when a child has sickle cell trait or SCD, a future sibling, or the childs own future child, may be at risk. These possibilities should be discussed with the primary care doctor, a blood specialist called a hematologist, and/or a genetics counselor. Prenatal Screening Doctors can also diagnose SCD before a baby is born. This is done using a sample of amniotic fluid, the liquid in the sac surrounding a growing embryo, or tissue taken from the placenta, the organ that attaches the umbilical cord to the mothers womb. Testing before birth can be done as early as 810 weeks into the pregnancy. This testing looks for the sickle hemoglobin gene rather than the abnormal hemoglobin.
What are the treatments for Sickle Cell Disease ?
Health Maintenance To Prevent Complications Babies with sickle cell disease (SCD) should be referred to a doctor or provider group that has experience taking care of people with this disease. The doctor might be a hematologist (a doctor with special training in blood diseases) or an experienced general pediatrician, internist, or family practitioner. For infants, the first SCD visit should take place before 8 weeks of age. If someone was born in a country that doesnt perform newborn SCD screening, he or she might be diagnosed with SCD later in childhood. These people should also be referred as soon as possible for special SCD care. Examining the person Giving medicines and immunizations Performing tests Educating families about the disease and what to watch out for Preventing Infection In SCD, the spleen doesnt work properly or doesnt work at all. This problem makes people with SCD more likely to get severe infections. Penicillin In children with SCD, taking penicillin two times a day has been shown to reduce the chance of having a severe infection caused by the pneumococcus bacteria. Infants need to take liquid penicillin. Older children can take tablets. Many doctors will stop prescribing penicillin after a child has reached the age of 5. Some prefer to continue this antibiotic throughout life, particularly if a person has hemoglobin SS or hemoglobin S0 thalassemia, since people with SCD are still at risk. All people who have had surgical removal of the spleen, called a splenectomy, or a past infection with pneumococcus should keep taking penicillin throughout life. Immunizations People with SCD should receive all recommended childhood vaccines. They should also receive additional vaccines to prevent other infections. Pneumococcus. Even though all children routinely receive the vaccine against pneumococcus (PCV13), children with SCD should also receive a second kind of vaccine against pneumococcus (PPSV23). This second vaccine is given after 24 months of age and again 5 years later. Adults with SCD who have not received any pneumococcal vaccine should get a dose of the PCV13 vaccine. They should later receive the PPSV23 if they have not already received it or it has been more than 5 years since they did. A person should follow these guidelines even if he or she is still taking penicillin. Influenza. All people with SCD should receive an influenza shot every year at the start of flu season. This should begin at 6 months of age. Only the inactivated vaccine, which comes as a shot, should be used in people with SCD. Meningococcus. A child with SCD should receive this vaccine (Menactra or Menveo) at 2, 4, 6, and 1215 months of age. The child should receive a booster vaccine 3 years after this series of shots, then every 5 years after that. Screening Tests and Evaluations Height, Weight, Blood Pressure, and Oxygen Saturation Doctors will monitor height and weight to be sure that a child is growing properly and that a person with SCD is maintaining a healthy weight. Doctors will also track a persons blood pressure. When a person with SCD has high blood pressure, it needs to be treated promptly because it can increase the risk of stroke. Oxygen saturation testing provides information about how much oxygen the blood is carrying. Blood and Urine Testing People with SCD need to have frequent lab tests. Blood tests help to establish a persons baseline for problems like anemia. Blood testing also helps to show whether a person has organ damage, so that it can be treated early. Urine testing can help to detect early kidney problems or infections. Transcranial Doppler (TCD) Ultrasound Screening Children who have hemoglobin SS or hemoglobin S0 thalassemia and are between the ages of 2 and 16 should have TCD testing once a year. This study can find out whether a child is at higher risk for stroke. When the test is abnormal, regular blood transfusions can decrease the chances of having a stroke. The child is awake during the TCD exam. The test does not hurt at all. The TCD machine uses sound waves to measure blood flow like the ultrasound machine used to examine pregnant women. Eye Examinations An eye doctor, or ophthalmologist, should examine a persons eyes every 12 years from the age of 10 onwards. These exams can detect if there are SCD-related problems of the eye. Regular exams can help doctors find and treat problems early to prevent loss of vision. A person should see his or her doctor right away for any sudden change in vision. Pulmonary Hypertension Doctors have different approaches to screening for pulmonary hypertension. This is because studies have not given clear information as to when and how a person should receive the screening. People with SCD and their caretakers should discuss with their doctor whether screening makes sense for them. Cognitive Screening People with sickle cell disease can develop cognitive (thinking) problems that may be hard to notice early in life. Sometimes these problems are caused by silent strokes that can only be seen with magnetic resonance imaging (MRI) of the brain. People with SCD should tell their doctors or nurses if they have thinking problems, such as difficulties learning in school, slowed decision making, or trouble organizing their thoughts. People can be referred for cognitive testing. This testing can identify areas in which a person could use extra help. Children with SCD who have thinking problems may qualify for an Individualized Education Program, or IEP. An IEP is a plan that helps students to reach their educational goals. Adults may be able to enroll in vocational rehabilitation programs that can help them with job training. Education and Guidance Doctors and other providers will talk with people who have SCD and their caretakers about complications and also review information at every visit. Because there are a lot of things to discuss, new topics are often introduced as a child or adult reaches an age when that subject is important to know about. Doctors and nurses know that there is a lot of information to learn, and they dont expect people to know everything after one discussion. People with SCD and their families should not be afraid to ask questions. Topics that are usually covered include: Hours that medical staff are available and contact information to use when people with SCD or caretakers have questions A plan for what to do and where to get care if a person has a fever, pain, or other signs of SCD complications that need immediate attention How SCD is inherited and the risk of having a child with SCD The importance of regular medical visits, screening tests, and evaluations How to recognize and manage pain How to palpate (feel) a childs spleen. Because of the risk of splenic sequestration crisis, caretakers should learn how to palpate a childs spleen. They should try to feel for the spleen daily and more frequently when the child is ill. If they feel that the spleen is bigger than usual, they should call the care provider. Transitioning Care When children with SCD become adolescents or young adults, they often need to transition from a pediatric care team to an adult care team. This period has been shown to be associated with increased hospital admissions and medical problems. There seem to be many reasons for this. Some of the increased risk is directly related to the disease. As people with SCD get older, they often develop more organ damage and more disabilities. The shift in care usually occurs at the same time that adolescents are undergoing many changes in their emotional, social, and academic lives. The transition to more independent self-management may be difficult, and following treatment plans may become less likely. When compared with pediatrics, there are often fewer adult SCD programs available in a given region. This makes it more difficult for a person with SCD to find appropriate doctors, particularly those with whom they feel comfortable. To improve use of regular medical care by people with SCD and to reduce age-related complications, many SCD teams have developed special programs that the make transition easier. Such programs should involve the pediatric and the adult care teams. They should also start early and continue over several years. Managing Some Complications of SCD Acute Pain Each person with SCD should have a home treatment regimen that is best suited to their needs. The providers on the SCD team usually help a person develop a written, tailored care plan. If possible, the person with SCD should carry this plan with them when they go to the emergency room. When an acute crisis is just starting, most doctors will advise the person to drink lots of fluids and to take a non-steroidal anti-inflammatory (NSAID) pain medication, such as ibuprofen. When a person has kidney problems, acetaminophen is often preferred. If pain persists, many people will find that they need a stronger medicine. Combining additional interventions, such as massage, relaxation methods, or a heating pad, may also help. If a person with SCD cannot control the pain at home, he or she should go to an SCD day hospital/outpatient unit or an emergency room to receive additional, stronger medicines and intravenous (IV) fluids. Some people may be able to return home once their pain is under better control. In this case, the doctor may prescribe additional pain medicines for a short course of therapy. People often need to be admitted to the hospital to fully control an acute pain crisis. When taken daily, hydroxyurea has been found to decrease the number and severity of pain episodes. Chronic Pain Sometimes chronic pain results from a complication, such as a leg ulcer or aseptic necrosis of the hip. In this case, doctors try to treat the complication causing the pain. While chronic pain is common in adults with SCD, the cause is often poorly understood. Taking pain medicines daily may help to decrease the pain. Some examples of these medicines include: NSAID drugs, such as ibuprofen Duloxetine Gabapentin Amitriptyline Strong pain medicines, such as opiates Other approaches, such as massage, heat, or acupuncture may be helpful in some cases. Chronic pain often comes with feelings of depression and anxiety. Supportive counseling and, sometimes, antidepressant medicines may help. (See coping and emotional issues.) Severe Anemia People should see their doctors or go to a hospital right away if they develop anemia symptoms from a splenic sequestration crisis or an aplastic crisis. These conditions can be life-threatening, and the person will need careful monitoring and treatment in the hospital. A person also usually needs a blood transfusion. People with SCD and symptoms of severe anemia from other causes should also see a doctor right away. Infections Fever is a medical emergency in SCD. All caretakers of infants and children with SCD should take their child to their doctor or go to a hospital right away when their child has a fever. Adults with SCD should also seek care for fever or other signs of infection. All children and adults who have SCD and a fever (over 38.50 C or 101.30 F) must be seen by a doctor and treated with antibiotics right away. Some people will need to be hospitalized, while others may receive care and follow-up as an outpatient. Acute Chest Syndrome People with SCD and symptoms of acute chest syndrome should see their doctor or go to a hospital right away. They will need to be admitted to the hospital where they should receive antibiotics and close monitoring. They may need oxygen therapy and a blood transfusion. When taken daily, the medicine hydroxyurea has been found to decrease the number and severity of acute chest events. Clinical Stroke People with SCD who have symptoms of stroke should be brought to the hospital right away by an ambulance. If a person is having symptoms of stroke, someone should call 9-1-1. Symptoms of stroke may include: Weakness of an arm or leg on one side of the body Trouble speaking, walking, or understanding Loss of balance Severe headache If imaging studies reveal that the person has had an acute stroke, he or she may need an exchange transfusion. This procedure involves slowly removing an amount of the persons blood and replacing it with blood from a donor who does not have SCD or sickle cell trait. Afterward, the person may need to receive monthly transfusions or other treatments to help to prevent another stroke. Silent Stroke and Cognitive Problems Children and adults with SCD and cognitive problems may be able to get useful help based upon the results of their testing. For instance, children may qualify for an IEP. Adults may be able to enroll in vocational, or job, training programs. Priapism Sometimes, a person may be able to relieve priapism by: Emptying the bladder by urinating Taking medicine Increasing fluid intake Doing light exercise If a person has an episode that lasts for 4 hours or more, he should go to the hospital to see a hematologist and urologist. Pregnancy Pregnant women with SCD are at greater risk for problems. They should always see an obstetrician, or OB, who has experience with SCD and high-risk pregnancies and deliveries. The obstetrician should work with a hematologist or primary medical doctor who is well informed about SCD and its complications. Pregnant women with SCD need more frequent medical visits so that their doctors can follow them closely. The doctor may prescribe certain vitamins and will be careful to prescribe pain medicines that are safe for the baby. A pregnant woman with SCD may need to have one or more blood transfusions during her pregnancy to treat complications, such as worsening anemia or an increased number of pain or acute chest syndrome events. Hydroxyurea What Is Hydroxyurea? Hydroxyurea is an oral medicine that has been shown to reduce or prevent several SCD complications. This medicine was studied in patients with SCD because it was known to increase the amount of fetal hemoglobin (hemoglobin F) in the blood. Increased hemoglobin F provides some protection against the effects of hemoglobin S. Hydroxyurea was later found to have several other benefits for a person with SCD, such as decreasing inflammation. Use in adults. Many studies of adults with hemoglobin SS or hemoglobin S thalassemia showed that hydroxyurea reduced the number of episodes of pain crises and acute chest syndrome. It also improved anemia and decreased the need for transfusions and hospital admissions. Use in children. Studies in children with severe hemoglobin SS or S thalassemia showed that hydroxyurea reduced the number of vaso-occlusive crises and hospitalizations. A study of very young children (between the ages of 9 and 18 months) with hemoglobin SS or hemoglobin S thalassemia also showed that hydroxyurea decreased the number of episodes of pain and dactylitis. Who Should Use Hydroxyurea? Since hydroxyurea can decrease several complications of SCD, most experts recommend that children and adults with hemoglobin SS or S0 thalassemia who have frequent painful episodes, recurrent chest crises, or severe anemia take hydroxyurea daily. Some experts offer hydroxyurea to all infants over 9 months of age and young children with hemoglobin SS or S0 thalassemia, even if they do not have severe clinical problems, to prevent or reduce the chance of complications. There is no information about how safe or effective hydroxyurea is in children under 9 months of age. Some experts will prescribe hydroxyurea to people with other types of SCD who have severe, recurrent pain. There is little information available about how effective hydroxyurea is for these types of SCD. In all situations, people with SCD should discuss with their doctors whether or not hydroxyurea is an appropriate medication for them. Pregnant women should not use hydroxyurea. How Is Hydroxyurea Taken? To work properly, hydroxyurea should be taken by mouth daily at the prescribed dose. When a person does not take it regularly, it will not work as well, or it wont work at all. A person with SCD who is taking hydroxyurea needs careful monitoring. This is particularly true in the early weeks of taking the medicine. Monitoring includes regular blood testing and dose adjustments. What Are the Risks of Hydroxyurea? Hydroxyurea can cause the bloods white cell count or platelet count to drop. In rare cases, it can worsen anemia. These side effects usually go away quickly if a person stops taking the medication. When a person restarts it, a doctor usually prescribes a lower dose. Other short-term side effects are less common. It is still unclear whether hydroxyurea can cause problems later in life in people with SCD who take it for many years. Studies so far suggest that it does not put people at a higher risk of cancer and does not affect growth in children. But further studies are needed. Red Blood Cell Transfusions Doctors may use acute and chronic red blood cell transfusions to treat and prevent certain SCD complications. The red blood cells in a transfusion have normal hemoglobin in them. A transfusion helps to raise the number of red blood cells and provides normal red blood cells that are more flexible than red blood cells with sickle hemoglobin. These cells live longer in the circulation. Red blood cell transfusions decrease vaso-occlusion (blockage in the blood vessel) and improve oxygen delivery to the tissues and organs. Acute Transfusion in SCD Doctors use blood transfusions in SCD for complications that cause severe anemia. They may also use them when a person has an acute stroke, in many cases of acute chest crises, and in multi-organ failure. A person with SCD usually receives blood transfusions before surgery to prevent SCD-related complications afterwards. Chronic Transfusion Doctors recommend regular or ongoing blood transfusions for people who have had an acute stroke, since transfusions decrease the chances of having another stroke. Doctors also recommend chronic blood transfusions for children who have abnormal TCD ultrasound results because transfusions can reduce the chance of having a first stroke. Some doctors use this approach to treat complications that do not improve with hydroxyurea. They may also use transfusions in people who have too many side effects from hydroxyurea. What Are the Risks of Transfusion Therapy? Possible complications include: Hemolysis Iron overload, particularly in people receiving chronic transfusions (can severely impair heart and lung function) Infection Alloimmunization (can make it hard to find a matching unit of blood for a future transfusion) All blood banks and hospital personnel have adopted practices to reduce the risk of transfusion problems. People with SCD who receive transfusions should be monitored for and immunized against hepatitis. They should also receive regular screenings for iron overload. If a person has iron overload, the doctor will give chelation therapy, a medicine to reduce the amount of iron in the body and the problems that iron overload causes. Hematopoietic Stem Cell Transplantation At the present time, hematopoietic stem cell transplantation (HSCT) is the only cure for SCD. People with SCD and their families should ask their doctor about this procedure. What Are Stem Cells? Stem cells are special cells that can divide over and over again. After they divide, these cells can go on to become blood red cells, white cells, or platelets. A person with SCD has stem cells that make red blood cells that can sickle. People without SCD have stem cells that make red cells that usually wont sickle. What Stem Cells Are Used in HSCT? In HSCT, stem cells are taken from the bone marrow or blood of a person who does not have sickle cell disease (the donor). The donor, however, may have sickle cell trait. The donor is often the persons sister or brother. This is because the safest and most successful transplants use stem cells that are matched for special proteins called HLA antigens. Since these antigens are inherited from parents, a sister or brother is the most likely person to have the same antigens as the person with SCD. What Happens During HSCT? First, stem cells are taken from the donor. After this, the person with SCD (the recipient) is treated with drugs that destroy or reduce his or her own bone marrow stem cells. The donor stem cells are then injected into the persons vein. The injected cells will make a home in the recipients bone marrow, gradually replacing the recipients cells. The new stem cells will make red cells that do not sickle. Which People Receive HSCT? At the present time, most SCD transplants are performed in children who have had complications such as strokes, acute chest crises, and recurring pain crises. These transplants usually use a matched donor. Because only about 1 in 10 children with SCD has a matched donor without SCD in their families, the number of people with SCD who get transplants is low. HSCT is more risky in adults, and that is why most transplants are done in children. There are several medical centers that are researching new SCD HSCT techniques in children and adults who dont have a matched donor in the family or are older than most recipients. Hopefully, more people with SCD will be able to receive a transplant in the future, using these new methods. What Are the Risks? HSCT is successful in about 85 percent of children when the donor is related and HLA matched. Even with this high success rate, HSCT still has risks. Complications can include severe infections, seizures, and other clinical problems. About 5 percent of people have died. Sometimes transplanted cells attack the recipients organs (graft versus host disease). Medicines are given to prevent many of the complications, but they still can happen.
How to prevent Sickle Cell Disease ?
People who do not know whether they carry an abnormal hemoglobin gene can ask their doctor to have their blood tested. Couples who are planning to have children and know that they are at risk of having a child with sickle cell disease (SCD) may want to meet with a genetics counselor. A genetics counselor can answer questions about the risk and explain the choices that are available.
What is (are) Pneumonia ?
Pneumonia (nu-MO-ne-ah) is an infection in one or both of the lungs. Many germssuch as bacteria, viruses, and fungican cause pneumonia. The infection inflames your lungs' air sacs, which are called alveoli (al-VEE-uhl-eye). The air sacs may fill up with fluid or pus, causing symptoms such as a cough with phlegm (a slimy substance), fever, chills, and trouble breathing. Overview Pneumonia and its symptoms can vary from mild to severe. Many factors affect how serious pneumonia is, such as the type of germ causing the infection and your age and overall health. Pneumonia tends to be more serious for: Infants and young children. Older adults (people 65 years or older). People who have other health problems, such as heart failure, diabetes, or COPD (chronic obstructive pulmonary disease). People who have weak immune systems as a result of diseases or other factors. Examples of these diseases and factors include HIV/AIDS, chemotherapy (a treatment for cancer), and an organ transplant or blood and marrow stem cell transplant. Outlook Pneumonia is common in the United States. Treatment for pneumonia depends on its cause, how severe your symptoms are, and your age and overall health. Many people can be treated at home, often with oral antibiotics. Children usually start to feel better in 1 to 2 days. For adults, it usually takes 2 to 3 days. Anyone who has worsening symptoms should see a doctor. People who have severe symptoms or underlying health problems may need treatment in a hospital. It may take 3 weeks or more before they can go back to their normal routines. Fatigue (tiredness) from pneumonia can last for a month or more.
What causes Pneumonia ?
Many germs can cause pneumonia. Examples include different kinds of bacteria, viruses, and, less often, fungi. Most of the time, the body filters germs out of the air that we breathe to protect the lungs from infection. Your immune system, the shape of your nose and throat, your ability to cough, and fine, hair-like structures called cilia (SIL-e-ah) help stop the germs from reaching your lungs. (For more information, go to the Diseases and Conditions Index How the Lungs Work article.) Sometimes, though, germs manage to enter the lungs and cause infections. This is more likely to occur if: Your immune system is weak A germ is very strong Your body fails to filter germs out of the air that you breathe For example, if you can't cough because you've had a stroke or are sedated, germs may remain in your airways. ("Sedated" means you're given medicine to make you sleepy.) When germs reach your lungs, your immune system goes into action. It sends many kinds of cells to attack the germs. These cells cause the alveoli (air sacs) to become red and inflamed and to fill up with fluid and pus. This causes the symptoms of pneumonia. Germs That Can Cause Pneumonia Bacteria Bacteria are the most common cause of pneumonia in adults. Some people, especially the elderly and those who are disabled, may get bacterial pneumonia after having the flu or even a common cold. Many types of bacteria can cause pneumonia. Bacterial pneumonia can occur on its own or develop after you've had a cold or the flu. This type of pneumonia often affects one lobe, or area, of a lung. When this happens, the condition is called lobar pneumonia. The most common cause of pneumonia in the United States is the bacterium Streptococcus (strep-to-KOK-us) pneumoniae, or pneumococcus (nu-mo-KOK-us). Lobar Pneumonia Another type of bacterial pneumonia is called atypical pneumonia. Atypical pneumonia includes: Legionella pneumophila. This type of pneumonia sometimes is called Legionnaire's disease, and it has caused serious outbreaks. Outbreaks have been linked to exposure to cooling towers, whirlpool spas, and decorative fountains. Mycoplasma pneumonia. This is a common type of pneumonia that usually affects people younger than 40 years old. People who live or work in crowded places like schools, homeless shelters, and prisons are at higher risk for this type of pneumonia. It's usually mild and responds well to treatment with antibiotics. However, mycoplasma pneumonia can be very serious. It may be associated with a skin rash and hemolysis (the breakdown of red blood cells). Chlamydophila pneumoniae. This type of pneumonia can occur all year and often is mild. The infection is most common in people 65 to 79 years old. Viruses Respiratory viruses cause up to one-third of the pneumonia cases in the United States each year. These viruses are the most common cause of pneumonia in children younger than 5 years old. Most cases of viral pneumonia are mild. They get better in about 1 to 3 weeks without treatment. Some cases are more serious and may require treatment in a hospital. If you have viral pneumonia, you run the risk of getting bacterial pneumonia as well. The flu virus is the most common cause of viral pneumonia in adults. Other viruses that cause pneumonia include respiratory syncytial virus, rhinovirus, herpes simplex virus, severe acute respiratory syndrome (SARS), and more. Fungi Three types of fungi in the soil in some parts of the United States can cause pneumonia. These fungi are: Coccidioidomycosis (kok-sid-e-OY-do-mi-KO-sis). This fungus is found in Southern California and the desert Southwest. Histoplasmosis (HIS-to-plaz-MO-sis). This fungus is found in the Ohio and Mississippi River Valleys. Cryptococcus (krip-to-KOK-us). This fungus is found throughout the United States in bird droppings and soil contaminated with bird droppings. Most people exposed to these fungi don't get sick, but some do and require treatment. Serious fungal infections are most common in people who have weak immune systems due to the long-term use of medicines to suppress their immune systems or having HIV/AIDS. Pneumocystis jiroveci (nu-mo-SIS-tis ye-RO-VECH-e), formerly Pneumocystis carinii, sometimes is considered a fungal pneumonia. However, it's not treated with the usual antifungal medicines. This type of infection is most common in people who: Have HIV/AIDS or cancer Have had an organ transplant and/or blood and marrow stem cell transplant Take medicines that affect their immune systems Other kinds of fungal infections also can lead to pneumonia.
Who is at risk for Pneumonia? ?
Pneumonia can affect people of all ages. However, two age groups are at greater risk of developing pneumonia: Infants who are 2 years old or younger (because their immune systems are still developing during the first few years of life) People who are 65 years old or older Other conditions and factors also raise your risk for pneumonia. You're more likely to get pneumonia if you have a lung disease or other serious disease. Examples include cystic fibrosis, asthma, COPD (chronic obstructive pulmonary disease), bronchiectasis, diabetes, heart failure, and sickle cell anemia. You're at greater risk for pneumonia if you're in a hospital intensive-care unit, especially if you're on a ventilator (a machine that helps you breathe). Having a weak or suppressed immune system also raises your risk for pneumonia. A weak immune system may be the result of a disease such as HIV/AIDS. A suppressed immune system may be due to an organ transplant or blood and marrow stem cell transplant, chemotherapy (a treatment for cancer), or long-term steroid use. Your risk for pneumonia also increases if you have trouble coughing because of a stroke or problems swallowing. You're also at higher risk if you can't move around much or are sedated (given medicine to make you relaxed or sleepy). Smoking cigarettes, abusing alcohol, or being undernourished also raises your risk for pneumonia. Your risk also goes up if you've recently had a cold or the flu, or if you're exposed to certain chemicals, pollutants, or toxic fumes.
What are the symptoms of Pneumonia ?
The signs and symptoms of pneumonia vary from mild to severe. Many factors affect how serious pneumonia is, including the type of germ causing the infection and your age and overall health. (For more information, go to "Who Is at Risk for Pneumonia?") See your doctor promptly if you: Have a high fever Have shaking chills Have a cough with phlegm (a slimy substance), which doesn't improve or worsens Develop shortness of breath with normal daily activities Have chest pain when you breathe or cough Feel suddenly worse after a cold or the flu People who have pneumonia may have other symptoms, including nausea (feeling sick to the stomach), vomiting, and diarrhea. Symptoms may vary in certain populations. Newborns and infants may not show any signs of the infection. Or, they may vomit, have a fever and cough, or appear restless, sick, or tired and without energy. Older adults and people who have serious illnesses or weak immune systems may have fewer and milder symptoms. They may even have a lower than normal temperature. If they already have a lung disease, it may get worse. Older adults who have pneumonia sometimes have sudden changes in mental awareness. Complications of Pneumonia Often, people who have pneumonia can be successfully treated and not have complications. But some people, especially those in high-risk groups, may have complications such as: Bacteremia (bak-ter-E-me-ah). This serious complication occurs if the infection moves into your bloodstream. From there, it can quickly spread to other organs, including your brain. Lung abscesses. An abscess occurs if pus forms in a cavity in the lung. An abscess usually is treated with antibiotics. Sometimes surgery or drainage with a needle is needed to remove the pus. Pleural effusion. Pneumonia may cause fluid to build up in the pleural space. This is a very thin space between two layers of tissue that line the lungs and the chest cavity. Pneumonia can cause the fluid to become infecteda condition called empyema (em-pi-E-ma). If this happens, you may need to have the fluid drained through a chest tube or removed with surgery.
How to diagnose Pneumonia ?
Pneumonia can be hard to diagnose because it may seem like a cold or the flu. You may not realize it's more serious until it lasts longer than these other conditions. Your doctor will diagnose pneumonia based on your medical history, a physical exam, and test results. Medical History Your doctor will ask about your signs and symptoms and how and when they began. To find out what type of germ is causing the pneumonia, he or she also may ask about: Any recent traveling you've done Your hobbies Your exposure to animals Your exposure to sick people at home, school, or work Your past and current medical conditions, and whether any have gotten worse recently Any medicines you take Whether you smoke Whether you've had flu or pneumonia vaccinations Physical Exam Your doctor will listen to your lungs with a stethoscope. If you have pneumonia, your lungs may make crackling, bubbling, and rumbling sounds when you inhale. Your doctor also may hear wheezing. Your doctor may find it hard to hear sounds of breathing in some areas of your chest. Diagnostic Tests If your doctor thinks you have pneumonia, he or she may recommend one or more of the following tests. Chest X Ray A chest x ray is a painless test that creates pictures of the structures inside your chest, such as your heart, lungs, and blood vessels. A chest x ray is the best test for diagnosing pneumonia. However, this test won't tell your doctor what kind of germ is causing the pneumonia. Blood Tests Blood tests involve taking a sample of blood from a vein in your body. A complete blood count (CBC) measures many parts of your blood, including the number of white blood cells in the blood sample. The number of white blood cells can show whether you have a bacterial infection. Your doctor also may recommend a blood culture to find out whether the infection has spread to your bloodstream. This test is used to detect germs in the bloodstream. A blood culture may show which germ caused the infection. If so, your doctor can decide how to treat the infection. Other Tests Your doctor may recommend other tests if you're in the hospital, have serious symptoms, are older, or have other health problems. Sputum test. Your doctor may look at a sample of sputum (spit) collected from you after a deep cough. This may help your doctor find out what germ is causing your pneumonia. Then, he or she can plan treatment. Chest computed tomography (CT) scan. A chest CT scan is a painless test that creates precise pictures of the structures in your chest, such as your lungs. A chest CT scan is a type of x ray, but its pictures show more detail than those of a standard chest xray. Pleural fluid culture. For this test, a fluid sample is taken from the pleural space (a thin space between two layers of tissue that line the lungs and chest cavity). Doctors use a procedure called thoracentesis (THOR-ah-sen-TE-sis) to collect the fluid sample. The fluid is studied for germs that may cause pneumonia. Pulse oximetry. For this test, a small sensor is attached to your finger or ear. The sensor uses light to estimate how much oxygen is in your blood. Pneumonia can keep your lungs from moving enough oxygen into your bloodstream. If you're very sick, your doctor may need to measure the level of oxygen in your blood using a blood sample. The sample is taken from an artery, usually in your wrist. This test is called an arterial blood gas test. Bronchoscopy. Bronchoscopy (bron-KOS-ko-pee) is a procedure used to look inside the lungs' airways. If you're in the hospital and treatment with antibiotics isn't working well, your doctor may use this procedure. Your doctor passes a thin, flexible tube through your nose or mouth, down your throat, and into the airways. The tube has a light and small camera that allow your doctor to see your windpipe and airways and take pictures. Your doctor can see whether something is blocking your airways or whether another factor is contributing to your pneumonia.
What are the treatments for Pneumonia ?
Treatment for pneumonia depends on the type of pneumonia you have and how severe it is. Most people who have community-acquired pneumoniathe most common type of pneumoniaare treated at home. The goals of treatment are to cure the infection and prevent complications. General Treatment If you have pneumonia, follow your treatment plan, take all medicines as prescribed, and get ongoing medical care. Ask your doctor when you should schedule followup care. Your doctor may want you to have a chest x ray to make sure the pneumonia is gone. Although you may start feeling better after a few days or weeks, fatigue (tiredness) can persist for up to a month or more. People who are treated in the hospital may need at least 3 weeks before they can go back to their normal routines. Bacterial Pneumonia Bacterial pneumonia is treated with medicines called antibiotics. You should take antibiotics as your doctor prescribes. You may start to feel better before you finish the medicine, but you should continue taking it as prescribed. If you stop too soon, the pneumonia may come back. Most people begin to improve after 1 to 3 days of antibiotic treatment. This means that they should feel better and have fewer symptoms, such as cough and fever. Viral Pneumonia Antibiotics don't work when the cause of pneumonia is a virus. If you have viral pneumonia, your doctor may prescribe an antiviral medicine to treat it. Viral pneumonia usually improves in 1 to 3 weeks. Treating Severe Symptoms You may need to be treated in a hospital if: Your symptoms are severe You're at risk for complications because of other health problems If the level of oxygen in your bloodstream is low, you may receive oxygen therapy. If you have bacterial pneumonia, your doctor may give you antibiotics through an intravenous (IV) line inserted into a vein.
How to prevent Pneumonia ?
Pneumonia can be very serious and even life threatening. When possible, take steps to prevent the infection, especially if you're in a high-risk group. Vaccines Vaccines are available to prevent pneumococcal pneumonia and the flu. Vaccines can't prevent all cases of infection. However, compared to people who don't get vaccinated, those who do and still get pneumonia tend to have: Milder cases of the infection Pneumonia that doesn't last as long Fewer serious complications Pneumococcal Pneumonia Vaccine A vaccine is available to prevent pneumococcal pneumonia. In most adults, one shot is good for at least 5 years of protection. This vaccine often is recommended for: People who are 65 years old or older. People who have chronic (ongoing) diseases, serious long-term health problems, or weak immune systems. For example, this may include people who have cancer, HIV/AIDS, asthma, or damaged or removed spleens. People who smoke. Children who are younger than 5 years old. Children who are 518 years of age with certain medical conditions, such as heart or lung diseases or cancer. For more information, talk with your child's doctor. For more information about the pneumococcal pneumonia vaccine, go to the Centers for Disease Control and Prevention's (CDC's) Vaccines and Preventable Diseases: Pneumococcal Vaccination Web page. Influenza Vaccine The vaccine that helps prevent the flu is good for 1 year. It's usually given in October or November, before peak flu season. Because many people get pneumonia after having the flu, this vaccine also helps prevent pneumonia. For more information about the influenza vaccine, go to the CDC's Vaccines and Preventable Diseases: Seasonal Influenza (Flu) Vaccination Web page. Hib Vaccine Haemophilus influenzae type b (Hib) is a type of bacteria that can cause pneumonia and meningitis (men-in-JI-tis). (Meningitis is an infection of the covering of the brain and spinal cord.) The Hib vaccine is given to children to help prevent these infections. The vaccine is recommended for all children in the United States who are younger than 5 years old. The vaccine often is given to infants starting at 2 months of age. For more information about the Hib vaccine, go to the CDC's Vaccines and Preventable Diseases: Hib Vaccination Web page. Other Ways To Help Prevent Pneumonia You also can take the following steps to help prevent pneumonia: Wash your hands with soap and water or alcohol-based rubs to kill germs. Don't smoke. Smoking damages your lungs' ability to filter out and defend against germs. For information about how to quit smoking, go to the Health Topics Smoking and Your Heart article. Although this resource focuses on heart health, it includes general information about how to quit smoking. Keep your immune system strong. Get plenty of rest and physical activity and follow a healthy diet. If you have pneumonia, limit contact with family and friends. Cover your nose and mouth while coughing or sneezing, and get rid of used tissues right away. These actions help keep the infection from spreading.
What is (are) Marfan Syndrome ?
Marfan syndrome is a condition in which your body's connective tissue is abnormal. Connective tissue helps support all parts of your body. It also helps control how your body grows and develops. Marfan syndrome most often affects the connective tissue of the heart and blood vessels, eyes, bones, lungs, and covering of the spinal cord. Because the condition affects many parts of the body, it can cause many complications. Sometimes the complications are life threatening. Overview Marfan syndrome is a genetic disorder. A mutation, or change, in the gene that controls how the body makes fibrillin causes Marfan syndrome. Fibrillin is a protein that plays a major role in your body's connective tissue. Most people who have Marfan syndrome inherit it from their parents. If you have Marfan syndrome, you have a 50 percent chance of passing the altered gene to each of your children. In about 1 in 4 cases, the mutation that causes Marfan syndrome is not inherited. Thus, the affected person is the first in his or her family to have the condition. Marfan syndrome often affects the long bones of the body. This can lead to signs, or traits, such as: A tall, thin build. Long arms, legs, fingers, and toes and flexible joints. A spine that curves to one side. This condition is called scoliosis (sko-le-O-sis). A chest that sinks in or sticks out. These conditions are called pectus excavatum (eks-ka-VA-tum) and pectus carinatum (ka-ri-NA-tum), respectively. Teeth that are too crowded. Flat feet. Marfan syndrome traits vary from person to person, even in the same family. Some people who have the condition have many traits, while others have few. The most serious complications of Marfan syndrome involve the heart and blood vessels. Marfan syndrome can affect the aorta, the main blood vessel that supplies oxygen-rich blood to the body. In Marfan syndrome, the aorta can stretch and grow weak. This condition is called aortic dilation (di-LA-shun) or aortic aneurysm (AN-u-rism). If the aorta stretches and grows weak, it may tear or burst and leak blood. This condition is called aortic dissection. It's very serious and can lead to severe heart problems or even death. Marfan syndrome has no cure, but treatments can help delay or prevent complications. Treatments include medicines, surgery, and other therapies. Limiting certain activities, or changing how you do them, may help reduce the risks to the aorta, eyes, and joints. The type of treatment you receive depends on how the condition is affecting your body. Outlook About 1 out of every 5,000 people in the United States has Marfan syndrome. Men, women, children, and people of all races can have the condition. Advances have been made in the early diagnosis and treatment of Marfan syndrome. It's now possible for people who have the condition to live longer and enjoy a good quality of life. Many people who have Marfan syndrome and are properly diagnosed and treated may live an average lifespan. Researchers continue to study the condition and look for better treatments.
What causes Marfan Syndrome ?
Marfan syndrome is a genetic disorder. A mutation, or change, in the gene that controls how the body makes fibrillin causes Marfan syndrome. Fibrillin is a protein that plays a major role in your body's connective tissue. Most people who have Marfan syndrome inherit it from their parents. If you have the condition, you have a 50 percent chance of passing the altered gene to each of your children. Sometimes Marfan syndrome isn't inherited. The mutation in the fibrillin gene occurs in the egg or sperm cells. If a child is conceived, the altered gene may be passed on to the child. The risk of that child's brothers or sisters having Marfan syndrome is low.
Who is at risk for Marfan Syndrome? ?
People at highest risk for Marfan syndrome are those who have a family history of the condition. If you have Marfan syndrome, you have a 50 percent chance of passing the altered gene to each of your children. Marfan syndrome affects about 1 out of every 5,000 people in the United States. Men, women, and children, and people of all races, can have the condition.
What are the symptoms of Marfan Syndrome ?
Marfan syndrome can affect many parts of the body. As a result, the signs and symptoms of the disorder vary from person to person, even in the same family. Marfan complications also vary, depending on how the condition affects your body. Marfan syndrome most often affects the connective tissue of the heart, eyes, bones, lungs, and covering of the spinal cord. This can cause many complications, some of which are life threatening. Marfan Traits Marfan syndrome often affects the long bones of the body. This can lead to signs, or traits, such as: A tall, thin build. Long arms, legs, fingers, and toes and flexible joints. A spine that curves to one side. This condition is called scoliosis. A chest that sinks in or sticks out. These conditions are called pectus excavatum and pectus carinatum, respectively. Teeth that are too crowded. Flat feet. Stretch marks on the skin also are a common trait in people who have Marfan syndrome. Stretch marks usually appear on the lower back, buttocks, shoulders, breasts, thighs, and abdomen. Not everyone who has these traits has Marfan syndrome. Some of these traits also are signs of other connective tissue disorders. Complications of Marfan Syndrome Heart and Blood Vessel Complications The most serious complications of Marfan syndrome involve the heart and blood vessels. Marfan syndrome can affect the aorta, the main blood vessel that supplies oxygen-rich blood to the body. In Marfan syndrome, the aorta can stretch and grow weak. This condition is called aortic dilation or aortic aneurysm. If the aorta stretches and grows weak, it may tear and leak blood. This condition, called aortic dissection, can lead to severe heart problems or even death. Aortic dissection can cause severe pain in either the front or back of the chest or abdomen. The pain can travel upward or downward. If you have symptoms of aortic dissection, call 911. Marfan syndrome also can cause problems with the heart's mitral (MI-trul) valve. This valve controls blood flow between the upper and lower chambers on the left side of the heart. Marfan syndrome can lead to mitral valve prolapse (MVP). MVP is a condition in which the flaps of the mitral valve are floppy and don't close tightly. MVP can cause shortness of breath, palpitations (pal-pi-TA-shuns), chest pain, and other symptoms. If you have MVP, your doctor may hear a heart murmur if he or she listens to your heart with a stethoscope. A heart murmur is an extra or unusual sound heard during the heartbeat. Eye Complications Marfan syndrome can cause many eye problems. A common problem in Marfan syndrome is a dislocated lens in one or both of the eyes. In this condition, the lens (the part of the eye that helps focus light) shifts up, down, or to the side. This can affect your eyesight. A dislocated lens often is the first sign that someone has Marfan syndrome. Other eye complications of Marfan syndrome include nearsightedness, early glaucoma (high pressure in the fluid in the eyes), and early cataracts (clouding of an eye's lens). A detached retina also can occur. Nervous System Complications Fluid surrounds your brain and spinal cord. A substance called dura covers the fluid. In Marfan syndrome, the dura can stretch and grow weak. This condition, called dural ectasia (ek-TA-ze-ah), can occur in people who have Marfan syndrome as they grow older. Eventually, the bones of the spine may wear away. Symptoms of this condition are lower back pain, abdominal pain, headache, and numbness in the legs. Lung Complications Marfan syndrome can cause sudden pneumothorax (noo-mo-THOR-aks), or collapsed lung. In this condition, air or gas builds up in the space between the lungs and chest wall. If enough air or gas builds up, a lung can collapse. The most common symptoms of a collapsed lung are sudden pain in one side of the lung and shortness of breath. Conditions such as scoliosis (a curved spine) and pectus excavatum (a chest that sinks in) can prevent the lungs from expanding fully. This can cause breathing problems. Marfan syndrome also can cause changes in the lung tissue, and it can lead to early emphysema (em-fi-SE-ma). Marfan syndrome also has been linked to sleep apnea. In people who have Marfan syndrome, the shape of the face, oral cavity, or teeth may increase the risk of sleep apnea. Sleep apnea causes one or more pauses in breathing or shallow breaths while you sleep. Breathing pauses can last from a few seconds to minutes. They often occur 5 to 30 times or more an hour. Typically, normal breathing then starts again, sometimes with a loud snort or choking sound.
How to diagnose Marfan Syndrome ?
Your doctor will diagnose Marfan syndrome based on your medical and family histories, a physical exam, and test results. He or she also will consult a set of guidelines called Ghent criteria, which are used to diagnose Marfan syndrome. Marfan syndrome can be hard to diagnose. This is because its signs, or traits, are the same as or similar to the signs of other connective tissue disorders. If you're diagnosed with Marfan syndrome, all of your first-degree relatives (for example, parents, siblings, and children) also should be checked for the disorder. This is because, even in families, the outward traits of Marfan syndrome may vary quite a bit. Specialists Involved Your family doctor or another type of doctor, such as an orthopedist (bone specialist), may notice certain traits that suggest Marfan syndrome. If so, your doctor will likely refer you to a geneticist or cardiologist. A geneticist is hereditary disease expert. A cardiologist is a heart specialist. These two types of specialists often have the most experience working with people who have Marfan syndrome. A geneticist will ask for medical information about you and your family. He or she will examine you and perhaps other members of your family. The geneticist also will coordinate your visits with other doctors, including a cardiologist, an ophthalmologist (eye specialist), and an orthopedist. After reviewing the medical findings, the geneticist will determine whether you have Marfan syndrome. Medical and Family Histories Your doctor will ask about your medical history and your family's medical history. For example, your doctor may ask whether: You've had heart disease, eye problems, or problems with your spine. These complications are common in people who have Marfan syndrome. You have shortness of breath, palpitations, or chest pain. These are common symptoms of heart or lung problems linked to Marfan syndrome. Any of your family members have Marfan syndrome, have died from heart problems, or have died suddenly. Physical Exam During the physical exam, your doctor will look for Marfan syndrome traits. For example, he or she may check the curve of your spine and the shape of your feet. Your doctor also will listen to your heart and lungs with a stethoscope. Diagnostic Tests Your doctor may recommend one or more of the following tests to help diagnose Marfan syndrome. Echocardiography Echocardiography (EK-o-kar-de-OG-ra-fee), or echo, is a painless test that uses sound waves to create pictures of your heart and blood vessels. This test shows the size and shape of your heart and the diameter of your aorta or other blood vessels. (The aorta is the main artery that carries oxygen-rich blood to your body.) Echo also shows how well your heart's chambers and valves are working. For people who have Marfan syndrome, echo mainly is used to check the heart's valves and aorta. Magnetic Resonance Imaging and Computed Tomography Scans Magnetic resonance imaging (MRI) is a test that uses radio waves and magnets to create detailed pictures of your organs and tissues. Computed tomography (CT) uses an x-ray machine to take clear, detailed pictures of your organs. MRI and CT scans are used to check your heart valves and aorta. These scans also are used to check for dural ectasia, a nervous system complication of Marfan syndrome. Slit-Lamp Exam For this test, an ophthalmologist (eye specialist) will use a microscope with a light to check your eyes. A slit-lamp exam can find out whether you have a dislocated lens, cataracts, or a detached retina. Genetic Testing In general, genetic testing involves blood tests to detect changes in genes. However, because many different genetic changes can cause Marfan syndrome, no single blood test can diagnose the condition. Ghent Criteria Because no single test can diagnose Marfan syndrome, doctors use a set of guidelines called Ghent criteria to help diagnose the condition. The Ghent criteria are divided into major criteria and minor criteria. Sometimes genetic testing is part of this evaluation. Major criteria include traits that are common in people who have Marfan syndrome. Minor criteria include traits that are common in many people. Doctors use a scoring system based on the number and type of Ghent criteria present to diagnose Marfan syndrome. Talk with your doctor about which traits you have and your likelihood of having Marfan syndrome.
What are the treatments for Marfan Syndrome ?
Marfan syndrome has no cure. However, treatments can help delay or prevent complications, especially when started early. Marfan syndrome can affect many parts of your body, including your heart, bones and joints, eyes, nervous system, and lungs. The type of treatment you receive will depend on your signs and symptoms. Heart Treatments Aortic dilation, or aortic aneurysm, is the most common and serious heart problem linked to Marfan syndrome. In this condition, the aortathe main artery that carries oxygen-rich blood to your bodystretches and grows weak. Medicines are used to try to slow the rate of aortic dilation. Surgery is used to replace the dilated segment of aorta before it tears. If you have Marfan syndrome, you'll need routine care and tests to check your heart valves and aorta. Medicines Beta blockers are medicines that help your heart beat slower and with less force. These medicines may help relieve strain on your aorta and slow the rate of aortic dilation. Some people have side effects from beta blockers, such as tiredness and nausea (feeling sick to your stomach). If side effects occur, your doctor may prescribe a calcium channel blocker or ACE inhibitor instead of a beta blocker. Both medicines help relieve stress on the aorta. Studies suggest that blocking a protein called TGF-beta may help prevent some of the effects of Marfan syndrome. Research shows that the medicine losartan may block the protein in other conditions. The National Heart, Lung, and Blood Institute currently is sponsoring a study comparing losartan to a beta blocker in children and adults who have Marfan syndrome. The study's goal is to find out which medicine, if either, is best at slowing the rate of aortic dilation. Surgery If your aorta stretches, it's more likely to tear (a condition called aortic dissection). To prevent this, your doctor may recommend surgery to repair or replace part of your aorta. Surgery may involve: A composite valve graft. For this surgery, part of the aorta and the aortic valve are removed. The aorta is replaced with a man-made tube called a graft. A man-made valve replaces the original valve. Aortic valve-sparing surgery. If your aortic valve is working well, your doctor may recommend valve-sparing surgery. For this surgery, your doctor replaces the enlarged part of your aorta with a graft. Your aortic valve is left in place. After aortic surgery, you may need medicines or followup tests. For example, after a composite valve graft, your doctor will prescribe medicines called anticoagulants, or "blood thinners." Blood thinners help prevent blood clots from forming on your man-made aortic valve. You'll need to take these medicines for the rest of your life. If you've had valve-sparing surgery, you'll only need to take blood thinners for a short time, as your doctor prescribes. If you've had a composite valve graft, you're at increased risk for endocarditis (EN-do-kar-DI-tis). This is an infection of the inner lining of your heart chambers and valves. Your doctor may recommend that you take antibiotics before certain medical or dental procedures that increase your risk of endocarditis. Your doctor also may advise you to continue taking beta blockers or other medicines after either type of aortic surgery. After surgery, you may have routine cardiac magnetic resonance imaging (MRI) or cardiac computed tomography (CT) scans to check your aorta. Cardiac MRI is a painless test that uses radio waves and magnets to created detailed pictures of your organs and tissues. Cardiac CT is a painless test that uses an x-ray machine to take clear, detailed pictures of your heart. Bone and Joint Treatments If you have scoliosis (a curved spine), your doctor may suggest a brace or other device to prevent the condition from getting worse. Severe cases of scoliosis may require surgery. Some people who have Marfan syndrome need surgery to repair a chest that sinks in or sticks out. This surgery is done to prevent the chest from pressing on the lungs and heart. Eye Treatments Marfan syndrome can lead to many eye problems, such as a dislocated lens, nearsightedness, early glaucoma (high pressure in the fluid in the eyes), and cataracts (clouding of an eye's lens). Glasses or contact lenses can help with some of these problems. Sometimes surgery is needed. Nervous System Treatments Marfan syndrome can lead to dural ectasia. In this condition, a substance called the dura (which covers the fluid around your brain and spinal cord) stretches and grows weak. This can cause the bones of the spine to wear away. Dural ectasia usually is treated with pain medicines. Lung Treatments Marfan syndrome may cause pneumothorax, or collapsed lung. In this condition, air or gas builds up in the space between the lungs and the chest wall. If the condition is minor, it may go away on its own. However, you may need to have a tube placed through your skin and chest wall to remove the air. Sometimes surgery is needed.
What is (are) Respiratory Distress Syndrome ?
Respiratory distress syndrome (RDS) is a breathing disorder that affects newborns. RDS rarely occurs in full-term infants. The disorder is more common in premature infants born about 6 weeks or more before their due dates. RDS is more common in premature infants because their lungs aren't able to make enough surfactant (sur-FAK-tant). Surfactant is a liquid that coats the inside of the lungs. It helps keep them open so that infants can breathe in air once they're born. Without enough surfactant, the lungs collapse and the infant has to work hard to breathe. He or she might not be able to breathe in enough oxygen to support the body's organs. The lack of oxygen can damage the baby's brain and other organs if proper treatment isn't given. Most babies who develop RDS show signs of breathing problems and a lack of oxygen at birth or within the first few hours that follow. Overview RDS is a common lung disorder in premature infants. In fact, nearly all infants born before 28 weeks of pregnancy develop RDS. RDS might be an early phase of bronchopulmonary dysplasia (brong-ko-PUL-mo-nar-e dis-PLA-ze-ah), or BPD. This is another breathing disorder that affects premature babies. RDS usually develops in the first 24 hours after birth. If premature infants still have breathing problems by the time they reach their original due dates, they may be diagnosed with BPD. Some of the life-saving treatments used for RDS may cause BPD. Some infants who have RDS recover and never get BPD. Infants who do get BPD have lungs that are less developed or more damaged than the infants who recover. Infants who develop BPD usually have fewer healthy air sacs and tiny blood vessels in their lungs. Both the air sacs and the tiny blood vessels that support them are needed to breathe well. Outlook Due to improved treatments and medical advances, most infants who have RDS survive. However, these babies may need extra medical care after going home. Some babies have complications from RDS or its treatments. Serious complications include chronic (ongoing) breathing problems, such as asthma and BPD; blindness; and brain damage.
What causes Respiratory Distress Syndrome ?
The main cause of respiratory distress syndrome (RDS) is a lack of surfactant in the lungs. Surfactant is a liquid that coats the inside of the lungs. A fetus's lungs start making surfactant during the third trimester of pregnancy (weeks 26 through labor and delivery). The substance coats the insides of the air sacs in the lungs. This helps keep the lungs open so breathing can occur after birth. Without enough surfactant, the lungs will likely collapse when the infant exhales (breathes out). The infant then has to work harder to breathe. He or she might not be able to get enough oxygen to support the body's organs. Some full-term infants develop RDS because they have faulty genes that affect how their bodies make surfactant.
Who is at risk for Respiratory Distress Syndrome? ?
Certain factors may increase the risk that your infant will have respiratory distress syndrome (RDS). These factors include: Premature delivery. The earlier your baby is born, the greater his or her risk for RDS. Most cases of RDS occur in babies born before 28 weeks of pregnancy. Stress during your baby's delivery, especially if you lose a lot of blood. Infection. Your having diabetes. Your baby also is at greater risk for RDS if you require an emergency cesarean delivery (C-section) before your baby is full term. You may need an emergency C-section because of a condition, such as a detached placenta, that puts you or your infant at risk. Planned C-sections that occur before a baby's lungs have fully matured also can increase the risk of RDS. Your doctor can do tests before delivery that show whether it's likely that your baby's lungs are fully developed. These tests assess the age of the fetus or lung maturity.
What are the symptoms of Respiratory Distress Syndrome ?
Signs and symptoms of respiratory distress syndrome (RDS) usually occur at birth or within the first few hours that follow. They include: Rapid, shallow breathing Sharp pulling in of the chest below and between the ribs with each breath Grunting sounds Flaring of the nostrils The infant also may have pauses in breathing that last for a few seconds. This condition is called apnea (AP-ne-ah). Respiratory Distress Syndrome Complications Depending on the severity of an infant's RDS, he or she may develop other medical problems. Lung Complications Lung complications may include a collapsed lung (atelectasis), leakage of air from the lung into the chest cavity (pneumothorax), and bleeding in the lung (hemorrhage). Some of the life-saving treatments used for RDS may cause bronchopulmonary dysplasia, another breathing disorder. Blood and Blood Vessel Complications Infants who have RDS may develop sepsis, an infection of the bloodstream. This infection can be life threatening. Lack of oxygen may prevent a fetal blood vessel called the ductus arteriosus from closing after birth as it should. This condition is called patent ductus arteriosus, or PDA. The ductus arteriosus connects a lung artery to a heart artery. If it remains open, it can strain the heart and increase blood pressure in the lung arteries. Other Complications Complications of RDS also may include blindness and other eye problems and a bowel disease called necrotizing enterocolitis (EN-ter-o-ko-LI-tis). Infants who have severe RDS can develop kidney failure. Some infants who have RDS develop bleeding in the brain. This bleeding can delay mental development. It also can cause mental retardation or cerebral palsy.
How to diagnose Respiratory Distress Syndrome ?
Respiratory distress syndrome (RDS) is common in premature infants. Thus, doctors usually recognize and begin treating the disorder as soon as babies are born. Doctors also do several tests to rule out other conditions that could be causing an infant's breathing problems. The tests also can confirm that the doctors have diagnosed the condition correctly. The tests include: Chest x ray. A chest x ray creates a of the structures inside the chest, such as the heart and lungs. This test can show whether your infant has signs of RDS. A chest x ray also can detect problems, such as a collapsed lung, that may require urgent treatment. Blood tests. Blood tests are used to see whether an infant has enough oxygen in his or her blood. Blood tests also can help find out whether an infection is causing the infant's breathing problems. Echocardiography (echo). This test uses sound waves to create a moving picture of the heart. Echo is used to rule out heart defects as the cause of an infant's breathing problems.