Datasets:
dataset_info:
- config_name: BindingDB_filtered
features:
- name: Index
dtype: string
- name: Drug_ID
dtype: string
- name: Drug
dtype: string
- name: Target_ID
dtype: string
- name: Target
dtype: string
- name: 'Y'
dtype: float32
splits:
- name: train
num_examples: 24700
- config_name: CATS
features:
- name: Index
dtype: string
- name: Drug
dtype: string
- name: IC50
dtype: float32
- name: Target
dtype: string
- name: 'Y'
dtype: float32
splits:
- name: train
num_examples: 393
- config_name: HIF2A
features:
- name: Index
dtype: string
- name: 'Y'
dtype: float32
- name: Drug
dtype: string
- name: Target
dtype: string
splits:
- name: train
num_examples: 37
- config_name: HSP90
features:
- name: Index
dtype: string
- name: Drug
dtype: string
- name: IC50 (nM)
dtype: float32
- name: Target
dtype: string
- name: 'Y'
dtype: float32
splits:
- name: train
num_examples: 147
- config_name: LeakyPDB
features:
- name: Index
dtype: string
- name: header
dtype: string
- name: smiles
dtype: string
- name: category
dtype: string
- name: seq
dtype: string
- name: resolution
dtype: float32
- name: date
dtype: string
- name: type
dtype: string
- name: new_split
dtype: string
- name: CL1
dtype: bool
- name: CL2
dtype: bool
- name: CL3
dtype: bool
- name: remove_for_balancing_val
dtype: bool
- name: kd/ki
dtype: string
- name: value
dtype: float32
- name: covalent
dtype: bool
splits:
- name: train
num_examples: 19443
- config_name: MCL1
features:
- name: Index
dtype: string
- name: 'Y'
dtype: float32
- name: Drug
dtype: string
- name: Target
dtype: string
splits:
- name: train
num_examples: 25
- config_name: Mpro
features:
- name: Index
dtype: string
- name: Drug
dtype: string
- name: 'Y'
dtype: float32
- name: Target
dtype: string
splits:
- name: train
num_examples: 2062
- config_name: SYK
features:
- name: Index
dtype: string
- name: 'Y'
dtype: float32
- name: Drug
dtype: string
- name: Target
dtype: string
splits:
- name: train
num_examples: 44
configs:
- config_name: BindingDB_filtered
data_files:
- split: train
path: BindingDB_filtered/train/data-*
- config_name: CATS
data_files:
- split: train
path: CATS/train/data-*
- config_name: HIF2A
data_files:
- split: train
path: HIF2A/train/data-*
- config_name: HSP90
data_files:
- split: train
path: HSP90/train/data-*
- config_name: LeakyPDB
data_files:
- split: train
path: LeakyPDB/train/data-*
- config_name: MCL1
data_files:
- split: train
path: MCL1/train/data-*
- config_name: Mpro
data_files:
- split: train
path: Mpro/train/data-*
- config_name: SYK
data_files:
- split: train
path: SYK/train/data-*
license: cc-by-4.0
pretty_name: BALM-Benchmark
tags:
- chemistry
- biology
size_categories:
- 10K<n<100K
Dataset Card for BALM-Benchmark
BALM-Benchmark is a comprehensive benchmark suite that combines multiple seminal binding affinity prediction datasets in one place. ...
Dataset Details
Dataset Description
- Dataset Repository: https://huggingface.co/datasets/BALM/BALM-benchmark
- Code Repository: https://github.com/meyresearch/BALM
- Paper: TBA
- Language(s) (NLP): English
- License: CC-BY-4.0
Dataset Columns
- BindingDB_filtered:
- Index (
string): Index of the ligand-target pair. - Drug_ID (
string): Index of the ligand from the TDC. - Drug (
string): Ligand sequence (i.e., SMILES string). - Target_ID (
string): Index of the target protein from the TDC. - Target (
string): Protein sequence (i.e., sequence of amino acids). - Y (
float32): binding affinity value in pKd.
- Index (
- CATS:
- Index (
string): Index of the ligand-target pair. - Drug (
string): Ligand sequence (i.e., SMILES string). - IC50 (
float32): binding affinity value in IC50. - Target (
string): Protein sequence (i.e., sequence of amino acids). - Y (
float32): binding affinity value in pKd.
- Index (
- HIF2A:
- Index (
string): Index of the ligand-target pair. - Y (
float32): binding affinity value in pKd. - Drug (
string): Ligand sequence (i.e., SMILES string). - Target (
string): Protein sequence (i.e., sequence of amino acids).
- Index (
- HSP90:
- Index (
string): Index of the ligand-target pair. - Drug (
string): Ligand sequence (i.e., SMILES string). - IC50 (nM) (
float32): binding affinity value in IC50. - Target (
string): Protein sequence (i.e., sequence of amino acids). - Y (
float32): binding affinity value in pKd.
- Index (
- LeakyPDB:
- Index (
string): Index of the ligand-target pair. - header (
string): TBA - smiles (
string): TBA - category (
string): TBA - seq (
string): TBA - resolution (
float32): TBA - date (
string): TBA - type (
string): TBA - new_split (
string): TBA - CL1 (
bool): TBA - CL2 (
bool): TBA - CL3 (
bool): TBA - remove_for_balancing_val (
bool): TBA - kd/ki (
string): TBA - value (
float32): TBA - covalent (
bool): TBA
- Index (
- MCL1:
- Index (
string): Index of the ligand-target pair. - Y (
float32): binding affinity value in pKd. - Drug (
string): Ligand sequence (i.e., SMILES string). - Target (
string): Protein sequence (i.e., sequence of amino acids).
- Index (
- Mpro:
- Index (
string): Index of the ligand-target pair. - Y (
float32): binding affinity value in pKd. - Drug (
string): Ligand sequence (i.e., SMILES string). - Target (
string): Protein sequence (i.e., sequence of amino acids).
- Index (
- SYK:
- Index (
string): Index of the ligand-target pair. - Y (
float32): binding affinity value in pKd. - Drug (
string): Ligand sequence (i.e., SMILES string). - Target (
string): Protein sequence (i.e., sequence of amino acids).
- Index (
Dataset Sources
- BindingDB_filtered:
- CATS:
- HIF2A:
- HSP90:
- LeakyPDB:
- MCL1:
- Mpro:
- SYK:
Uses
BALM-Benchmark was initially created as a part of the BALM project (https://github.com/meyresearch/BALM) which fine-tunes Protein and Ligand Language Models by optimizing the distance between protein and ligand embeddings in a shared space using the cosine similarity metric that directly represents experimental binding affinity. Nevertheless, BALM-Benchmark can be used by itself, just like any other HuggingFace dataset:
from datasets import load_dataset
# For instance, you want to load SYK data. Change the second argument into SYK
syk_data = load_dataset("BALM/BALM-benchmark", "SYK", split="train")
As mentioned in the Dataset Sources, the available datasets are:
BindingDB_filteredCATSHIF2AHSP90LeakyPDBMCL1MproSYK
Notice that all datasets only have one split (train). This is intentional such that the users can define their own splits, and can experiment with more random seeds for robustness.
We highly recommend checking out different strategies for splitting the data (e.g., BindingDB) in our BALM code repository.
Citation
BibTeX:
In preparation
Dataset Card Contact
- Rohan Gorantla ([email protected])
- Aryo Pradipta Gema ([email protected])
- Antonia Mey ([email protected])