Datasets:
metadata
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: text-only
data_files:
- split: train
path: text-only/train-*
- split: validation
path: text-only/validation-*
- split: test
path: text-only/test-*
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 15368746858.779654
num_examples: 5673373
- name: validation
num_bytes: 404439922.64724064
num_examples: 149299
- name: test
num_bytes: 404442631.57310516
num_examples: 149300
download_size: 9703633440
dataset_size: 16177629413
- config_name: text-only
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 14834731398.280304
num_examples: 5673373
- name: validation
num_bytes: 390386911.46022856
num_examples: 149299
- name: test
num_bytes: 390389526.2594667
num_examples: 149300
download_size: 9374463601
dataset_size: 15615507835.999998
license: cc-by-sa-3.0
task_categories:
- text-generation
- fill-mask
- feature-extraction
language:
- en
tags:
- wiki
- wikipedia
- pretrain
size_categories:
- 1M<n<10M
source_datasets: graelo/wikipedia
wikipedia - 20230901.en - deduped
purpose: train with less data while maintaining (most) of the quality
This is really more of a "high quality diverse sample" rather than "we are trying to remove literal duplicate documents". Source dataset: graelo/wikipedia.
configs
default
command:
python -m text_dedup.minhash \
--path $ds_name \
--name $dataset_config \
--split $data_split \
--cache_dir "./cache" \
--output $out_dir \
--column $text_column \
--ngram 4 --threshold 0.6 \
--hash_func xxh3 --hash_bits 16 --num_perm 64 \
--batch_size 10000
dedup:
Fingerprinting... (num_proc=40): 100% 6705754/6705754 [06:57<00:00, 16063.27 examples/s]
Iterating MinHashes...: 100% 671/671 [04:13<00:00, 2.65it/s]
Clustering...: 100% 10/10 [00:21<00:00, 2.18s/it]
Finding clusters... (num_proc=40): 100% 6705754/6705754 [06:38<00:00, 16839.42 examples/s]
Filtering clusters... (num_proc=40): 100% 6705754/6705754 [02:25<00:00, 46058.39 examples/s]
Saving the dataset (39/39 shards): 100% 5971972/5971972 [03:47<00:00, 26266.10 examples/s]
[10/23/23 02:29:41] INFO Loading : 78.82s
result:
DatasetDict({
train: Dataset({
features: ['id', 'url', 'title', 'text'],
num_rows: 5673373
})
validation: Dataset({
features: ['id', 'url', 'title', 'text'],
num_rows: 149299
})
test: Dataset({
features: ['id', 'url', 'title', 'text'],
num_rows: 149300
})
})
text-only
This is the same thing but with all columns except for 'text' removed.
from datasets import load_dataset
# If the dataset is gated/private, make sure you have run huggingface-cli login
config_name = "text-only"
dataset = load_dataset("BEE-spoke-data/wikipedia-deduped", config_name)
token counts
train
Using tiktoken
GPT-4 tokenizer, train
split, and text
column:
num_tokens | |
---|---|
count | 5.67337e+06 |
mean | 612.413 |
std | 739.331 |
min | 3 |
25% | 163 |
50% | 359 |
75% | 761 |
max | 34298 |
total: 3,474,446,396