metadata
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: id
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: image
dtype: image
splits:
- name: train
num_bytes: 103857954.75
num_examples: 3498
- name: validation
num_bytes: 21699876
num_examples: 740
- name: test
num_bytes: 23003112
num_examples: 760
download_size: 147406131
dataset_size: 148560942.75
Qwen2.5-VL Product Classification Dataset
This dataset is designed for fine-tuning the Qwen2.5-VL model on product classification tasks.
Dataset Description
The dataset consists of product images with 10 balanced categories:
- 蛋白粉 (Protein powder)
- 纸巾 (Tissue paper)
- 衣服 (Clothes)
- 膏药贴 (Medicinal plasters)
- 胶囊 (Capsules)
- 电脑 (Computer)
- 手表 (Watch)
- 弓箭 (Bow and arrow)
- 医疗器械 (Medical equipment)
- 包 (Bag)
Each item has two types of samples:
- Image classification: Given a product image, determine its category
- Title classification: Given a product title, determine its category
Dataset Structure
This dataset follows the ShareGPT format:
For image classification items:
{
'id': 'classification_[unique_id]',
'image_path': PIL.Image.Image(...), # The product image
'item_type': 'image_classification',
'conversations': [
{'from': 'human', 'value': 'Prompt text with <image> token'},
{'from': 'assistant', 'value': 'Model expected response (class label)'}
]
}
For title classification items:
{
'id': 'title_classification_[unique_id]',
'item_type': 'title_classification',
'conversations': [
{'from': 'human', 'value': 'Prompt text with product title'},
{'from': 'assistant', 'value': 'Model expected response (class label)'}
]
}
Dataset Statistics
- Train samples: 3498
- Validation samples: 740
- Test samples: 760
Usage
from datasets import load_dataset
# Load dataset from Hugging Face Hub
dataset = load_dataset("BrightXiaoHan/tari-product-image")
# Access an example
example = dataset["train"][0]
print(example["conversations"][0]['value'])
print(example["conversations"][1]['value'])
if "image_path" in example:
image = example["image_path"]
This dataset is intended for fine-tuning Qwen2.5-VL models for product classification tasks.