Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 15 new columns ({'archetype', 'id', 'climate_zone', 'window_wall_ratio', 'thermal_scenario', 'roof_u_value', 'created_date', 'orientation', 'variation_type', 'file_size', 'wall_u_value', 'window_u_value', 'occupancy_schedule', 'window_shgc', 'filepath'}) and 19 missing columns ({'year', 'building_archetype', 'elevation', 'building_id', 'city', 'weather_id', 'weather_file_path', 'combination_id', 'building_variation', 'building_name', 'weather_country', 'longitude', 'building_file_path', 'weather_type', 'weather_climate_zone', 'weather_filename', 'latitude', 'weather_location', 'building_climate_zone'}).

This happened while the csv dataset builder was generating data using

hf://datasets/BuildingBench/HOT/tables/buildings.csv (at revision 06e84189e6c1e196f689dee26acd49533aa5f3af)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              id: int64
              archetype: string
              filepath: string
              created_date: string
              file_size: int64
              variation_type: string
              climate_zone: string
              orientation: double
              window_wall_ratio: double
              wall_u_value: double
              roof_u_value: double
              window_u_value: double
              window_shgc: double
              occupancy_schedule: string
              thermal_scenario: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2117
              to
              {'combination_id': Value('int64'), 'building_id': Value('int64'), 'building_name': Value('string'), 'building_file_path': Value('string'), 'building_archetype': Value('string'), 'building_variation': Value('string'), 'city': Value('string'), 'building_climate_zone': Value('string'), 'weather_id': Value('string'), 'weather_file_path': Value('string'), 'weather_filename': Value('string'), 'weather_location': Value('string'), 'weather_country': Value('string'), 'weather_climate_zone': Value('string'), 'weather_type': Value('string'), 'year': Value('float64'), 'latitude': Value('float64'), 'longitude': Value('float64'), 'elevation': Value('float64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1451, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 994, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 15 new columns ({'archetype', 'id', 'climate_zone', 'window_wall_ratio', 'thermal_scenario', 'roof_u_value', 'created_date', 'orientation', 'variation_type', 'file_size', 'wall_u_value', 'window_u_value', 'occupancy_schedule', 'window_shgc', 'filepath'}) and 19 missing columns ({'year', 'building_archetype', 'elevation', 'building_id', 'city', 'weather_id', 'weather_file_path', 'combination_id', 'building_variation', 'building_name', 'weather_country', 'longitude', 'building_file_path', 'weather_type', 'weather_climate_zone', 'weather_filename', 'latitude', 'weather_location', 'building_climate_zone'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/BuildingBench/HOT/tables/buildings.csv (at revision 06e84189e6c1e196f689dee26acd49533aa5f3af)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

combination_id
int64
building_id
int64
building_name
string
building_file_path
string
building_archetype
string
building_variation
string
city
string
building_climate_zone
string
weather_id
string
weather_file_path
string
weather_filename
string
weather_location
string
weather_country
string
weather_climate_zone
string
weather_type
string
year
null
latitude
null
longitude
null
elevation
null
0
0
OfficeSmall_STD2013_Seattle
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Seattle.epJSON
OfficeSmall
base
seattle
4C
base_17
data/weather/base/USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
Seattle-Tacoma Intl AP
USA
4C
base
null
null
null
null
1
1
OfficeSmall_STD2013_HoChiMinh
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_HoChiMinh.epJSON
OfficeSmall
base
hochiminh
0A
base_18
data/weather/base/VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP
VNM
0A
base
null
null
null
null
2
2
OfficeSmall_STD2013_GreatFalls
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_GreatFalls.epJSON
OfficeSmall
base
greatfalls
6B
base_11
data/weather/base/USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
Great Falls Intl AP
USA
6B
base
null
null
null
null
3
3
OfficeSmall_STD2013_Buffalo
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Buffalo.epJSON
OfficeSmall
base
buffalo
5A
base_13
data/weather/base/USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
Buffalo Niagara Intl AP
USA
5A
base
null
null
null
null
4
4
OfficeSmall_STD2013_Atlanta
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Atlanta.epJSON
OfficeSmall
base
atlanta
3A
base_8
data/weather/base/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
Atlanta-Hartsfield-Jackson Intl AP
USA
3A
base
null
null
null
null
5
5
OfficeSmall_STD2013_Dubai
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Dubai.epJSON
OfficeSmall
base
dubai
0B
base_0
data/weather/base/ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
Dubai.Intl.AP
ARE
0B
base
null
null
null
null
6
6
OfficeSmall_STD2013_Rochester
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Rochester.epJSON
OfficeSmall
base
rochester
6A
base_10
data/weather/base/USA_MN_Rochester.Intl.AP.726440_TMY3.epw
USA_MN_Rochester.Intl.AP.726440_TMY3.epw
Rochester Intl AP
USA
6A
base
null
null
null
null
7
7
OfficeSmall_STD2013_Albuquerque
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Albuquerque.epJSON
OfficeSmall
base
albuquerque
4B
base_12
data/weather/base/USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
Albuquerque Intl Sunport
USA
4B
base
null
null
null
null
8
8
OfficeSmall_STD2013_Miami
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Miami.epJSON
OfficeSmall
base
miami
1A
base_6
data/weather/base/USA_FL_Miami.Intl.AP.722020_TMY3.epw
USA_FL_Miami.Intl.AP.722020_TMY3.epw
Miami Intl AP
USA
1A
base
null
null
null
null
9
9
OfficeSmall_STD2013_NewYork
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_NewYork.epJSON
OfficeSmall
base
newyork
4A
base_14
data/weather/base/USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
New York-Kennedy Intl AP
USA
4A
base
null
null
null
null
10
10
OfficeSmall_STD2013_Fairbanks
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Fairbanks.epJSON
OfficeSmall
base
fairbanks
8
base_2
data/weather/base/USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
Fairbanks Intl AP
USA
8
base
null
null
null
null
11
11
OfficeSmall_STD2013_SanDiego
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_SanDiego.epJSON
OfficeSmall
base
sandiego
3C
base_4
data/weather/base/USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
Chula Vista-Brown Muni Field AP
USA
3C
base
null
null
null
null
12
12
OfficeSmall_STD2013_Denver
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Denver.epJSON
OfficeSmall
base
denver
5B
base_5
data/weather/base/USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
Aurora-Buckley AFB
USA
5B
base
null
null
null
null
13
13
OfficeSmall_STD2013_PortAngeles
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_PortAngeles.epJSON
OfficeSmall
base
portangeles
5C
base_16
data/weather/base/USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
Port Angeles-Fairchild Intl AP
USA
5C
base
null
null
null
null
14
14
OfficeSmall_STD2013_Tampa
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Tampa.epJSON
OfficeSmall
base
tampa
2A
base_7
data/weather/base/USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
Tampa-MacDill AFB
USA
2A
base
null
null
null
null
15
15
OfficeSmall_STD2013_Tucson
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Tucson.epJSON
OfficeSmall
base
tucson
2B
base_3
data/weather/base/USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
Tucscon-Davis-Monthan AFB
USA
2B
base
null
null
null
null
16
16
OfficeSmall_STD2013_Jaipur
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_Jaipur.epJSON
OfficeSmall
base
jaipur
1B
base_1
data/weather/base/IND_Jaipur.423480_ISHRAE.epw
IND_Jaipur.423480_ISHRAE.epw
Jaipur
IND
1B
base
null
null
null
null
17
17
OfficeSmall_STD2013_InternationalFalls
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_InternationalFalls.epJSON
OfficeSmall
base
internationalfalls
7
base_9
data/weather/base/USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
International Falls-Falls Intl AP
USA
7
base
null
null
null
null
18
18
OfficeSmall_STD2013_ElPaso
processed/base/OfficeSmall__STD2013/OfficeSmall_STD2013_ElPaso.epJSON
OfficeSmall
base
elpaso
3B
base_15
data/weather/base/USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
El Paso Intl AP
USA
3B
base
null
null
null
null
19
19
ApartmentMidRise_STD2013_Denver
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Denver.epJSON
ApartmentMidRise
base
denver
5B
base_5
data/weather/base/USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
Aurora-Buckley AFB
USA
5B
base
null
null
null
null
20
20
ApartmentMidRise_STD2013_Tucson
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Tucson.epJSON
ApartmentMidRise
base
tucson
2B
base_3
data/weather/base/USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
Tucscon-Davis-Monthan AFB
USA
2B
base
null
null
null
null
21
21
ApartmentMidRise_STD2013_Jaipur
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Jaipur.epJSON
ApartmentMidRise
base
jaipur
1B
base_1
data/weather/base/IND_Jaipur.423480_ISHRAE.epw
IND_Jaipur.423480_ISHRAE.epw
Jaipur
IND
1B
base
null
null
null
null
22
22
ApartmentMidRise_STD2013_GreatFalls
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_GreatFalls.epJSON
ApartmentMidRise
base
greatfalls
6B
base_11
data/weather/base/USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
Great Falls Intl AP
USA
6B
base
null
null
null
null
23
23
ApartmentMidRise_STD2013_Tampa
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Tampa.epJSON
ApartmentMidRise
base
tampa
2A
base_7
data/weather/base/USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
Tampa-MacDill AFB
USA
2A
base
null
null
null
null
24
24
ApartmentMidRise_STD2013_Albuquerque
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Albuquerque.epJSON
ApartmentMidRise
base
albuquerque
4B
base_12
data/weather/base/USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
Albuquerque Intl Sunport
USA
4B
base
null
null
null
null
25
25
ApartmentMidRise_STD2013_PortAngeles
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_PortAngeles.epJSON
ApartmentMidRise
base
portangeles
5C
base_16
data/weather/base/USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
Port Angeles-Fairchild Intl AP
USA
5C
base
null
null
null
null
26
26
ApartmentMidRise_STD2013_Atlanta
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Atlanta.epJSON
ApartmentMidRise
base
atlanta
3A
base_8
data/weather/base/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
Atlanta-Hartsfield-Jackson Intl AP
USA
3A
base
null
null
null
null
27
27
ApartmentMidRise_STD2013_Fairbanks
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Fairbanks.epJSON
ApartmentMidRise
base
fairbanks
8
base_2
data/weather/base/USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
Fairbanks Intl AP
USA
8
base
null
null
null
null
28
28
ApartmentMidRise_STD2013_HoChiMinh
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_HoChiMinh.epJSON
ApartmentMidRise
base
hochiminh
0A
base_18
data/weather/base/VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP
VNM
0A
base
null
null
null
null
29
29
ApartmentMidRise_STD2013_NewYork
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_NewYork.epJSON
ApartmentMidRise
base
newyork
4A
base_14
data/weather/base/USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
New York-Kennedy Intl AP
USA
4A
base
null
null
null
null
30
30
ApartmentMidRise_STD2013_SanDiego
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_SanDiego.epJSON
ApartmentMidRise
base
sandiego
3C
base_4
data/weather/base/USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
Chula Vista-Brown Muni Field AP
USA
3C
base
null
null
null
null
31
31
ApartmentMidRise_STD2013_ElPaso
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_ElPaso.epJSON
ApartmentMidRise
base
elpaso
3B
base_15
data/weather/base/USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
El Paso Intl AP
USA
3B
base
null
null
null
null
32
32
ApartmentMidRise_STD2013_Buffalo
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Buffalo.epJSON
ApartmentMidRise
base
buffalo
5A
base_13
data/weather/base/USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
Buffalo Niagara Intl AP
USA
5A
base
null
null
null
null
33
33
ApartmentMidRise_STD2013_Dubai
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Dubai.epJSON
ApartmentMidRise
base
dubai
0B
base_0
data/weather/base/ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
Dubai.Intl.AP
ARE
0B
base
null
null
null
null
34
34
ApartmentMidRise_STD2013_Miami
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Miami.epJSON
ApartmentMidRise
base
miami
1A
base_6
data/weather/base/USA_FL_Miami.Intl.AP.722020_TMY3.epw
USA_FL_Miami.Intl.AP.722020_TMY3.epw
Miami Intl AP
USA
1A
base
null
null
null
null
35
35
ApartmentMidRise_STD2013_Seattle_FIXED
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Seattle_FIXED.epJSON
ApartmentMidRise
base
seattle
4C
base_17
data/weather/base/USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
Seattle-Tacoma Intl AP
USA
4C
base
null
null
null
null
36
36
ApartmentMidRise_STD2013_InternationalFalls
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_InternationalFalls.epJSON
ApartmentMidRise
base
internationalfalls
7
base_9
data/weather/base/USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
International Falls-Falls Intl AP
USA
7
base
null
null
null
null
37
37
ApartmentMidRise_STD2013_Rochester
processed/base/ApartmentMidRise_STD2013/ApartmentMidRise_STD2013_Rochester.epJSON
ApartmentMidRise
base
rochester
6A
base_10
data/weather/base/USA_MN_Rochester.Intl.AP.726440_TMY3.epw
USA_MN_Rochester.Intl.AP.726440_TMY3.epw
Rochester Intl AP
USA
6A
base
null
null
null
null
38
38
HotelSmall_STD2013_Seattle
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Seattle.epJSON
HotelSmall
base
seattle
4C
base_17
data/weather/base/USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
Seattle-Tacoma Intl AP
USA
4C
base
null
null
null
null
39
39
HotelSmall_STD2013_ElPaso
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_ElPaso.epJSON
HotelSmall
base
elpaso
3B
base_15
data/weather/base/USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
El Paso Intl AP
USA
3B
base
null
null
null
null
40
40
HotelSmall_STD2013_Fairbanks
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Fairbanks.epJSON
HotelSmall
base
fairbanks
8
base_2
data/weather/base/USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
Fairbanks Intl AP
USA
8
base
null
null
null
null
41
41
HotelSmall_STD2013_HoChiMinh
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_HoChiMinh.epJSON
HotelSmall
base
hochiminh
0A
base_18
data/weather/base/VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP
VNM
0A
base
null
null
null
null
42
42
HotelSmall_STD2013_PortAngeles
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_PortAngeles.epJSON
HotelSmall
base
portangeles
5C
base_16
data/weather/base/USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
Port Angeles-Fairchild Intl AP
USA
5C
base
null
null
null
null
43
43
HotelSmall_STD2013_NewYork
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_NewYork.epJSON
HotelSmall
base
newyork
4A
base_14
data/weather/base/USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
New York-Kennedy Intl AP
USA
4A
base
null
null
null
null
44
44
HotelSmall_STD2013_Albuquerque
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Albuquerque.epJSON
HotelSmall
base
albuquerque
4B
base_12
data/weather/base/USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
Albuquerque Intl Sunport
USA
4B
base
null
null
null
null
45
45
HotelSmall_STD2013_GreatFalls
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_GreatFalls.epJSON
HotelSmall
base
greatfalls
6B
base_11
data/weather/base/USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
Great Falls Intl AP
USA
6B
base
null
null
null
null
46
46
HotelSmall_STD2013_Atlanta
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Atlanta.epJSON
HotelSmall
base
atlanta
3A
base_8
data/weather/base/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
Atlanta-Hartsfield-Jackson Intl AP
USA
3A
base
null
null
null
null
47
47
HotelSmall_STD2013_Rochester
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Rochester.epJSON
HotelSmall
base
rochester
6A
base_10
data/weather/base/USA_MN_Rochester.Intl.AP.726440_TMY3.epw
USA_MN_Rochester.Intl.AP.726440_TMY3.epw
Rochester Intl AP
USA
6A
base
null
null
null
null
48
48
HotelSmall_STD2013_Dubai
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Dubai.epJSON
HotelSmall
base
dubai
0B
base_0
data/weather/base/ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
Dubai.Intl.AP
ARE
0B
base
null
null
null
null
49
49
HotelSmall_STD2013_Buffalo
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Buffalo.epJSON
HotelSmall
base
buffalo
5A
base_13
data/weather/base/USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
Buffalo Niagara Intl AP
USA
5A
base
null
null
null
null
50
50
HotelSmall_STD2013_Miami
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Miami.epJSON
HotelSmall
base
miami
1A
base_6
data/weather/base/USA_FL_Miami.Intl.AP.722020_TMY3.epw
USA_FL_Miami.Intl.AP.722020_TMY3.epw
Miami Intl AP
USA
1A
base
null
null
null
null
51
51
HotelSmall_STD2013_InternationalFalls
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_InternationalFalls.epJSON
HotelSmall
base
internationalfalls
7
base_9
data/weather/base/USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
International Falls-Falls Intl AP
USA
7
base
null
null
null
null
52
52
HotelSmall_STD2013_SanDiego
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_SanDiego.epJSON
HotelSmall
base
sandiego
3C
base_4
data/weather/base/USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
Chula Vista-Brown Muni Field AP
USA
3C
base
null
null
null
null
53
53
HotelSmall_STD2013_Jaipur
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Jaipur.epJSON
HotelSmall
base
jaipur
1B
base_1
data/weather/base/IND_Jaipur.423480_ISHRAE.epw
IND_Jaipur.423480_ISHRAE.epw
Jaipur
IND
1B
base
null
null
null
null
54
54
HotelSmall_STD2013_Denver
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Denver.epJSON
HotelSmall
base
denver
5B
base_5
data/weather/base/USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
Aurora-Buckley AFB
USA
5B
base
null
null
null
null
55
55
HotelSmall_STD2013_Tucson
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Tucson.epJSON
HotelSmall
base
tucson
2B
base_3
data/weather/base/USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
Tucscon-Davis-Monthan AFB
USA
2B
base
null
null
null
null
56
56
HotelSmall_STD2013_Tampa
processed/base/HotelSmall_STD2013/HotelSmall_STD2013_Tampa.epJSON
HotelSmall
base
tampa
2A
base_7
data/weather/base/USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
Tampa-MacDill AFB
USA
2A
base
null
null
null
null
57
57
SchoolSecondary_STD2013_InternationalFalls
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_InternationalFalls.epJSON
SchoolSecondary
base
internationalfalls
7
base_9
data/weather/base/USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
International Falls-Falls Intl AP
USA
7
base
null
null
null
null
58
58
SchoolSecondary_STD2013_Miami
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Miami.epJSON
SchoolSecondary
base
miami
1A
base_6
data/weather/base/USA_FL_Miami.Intl.AP.722020_TMY3.epw
USA_FL_Miami.Intl.AP.722020_TMY3.epw
Miami Intl AP
USA
1A
base
null
null
null
null
59
59
SchoolSecondary_STD2013_SanDiego
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_SanDiego.epJSON
SchoolSecondary
base
sandiego
3C
base_4
data/weather/base/USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
Chula Vista-Brown Muni Field AP
USA
3C
base
null
null
null
null
60
60
SchoolSecondary_STD2013_Buffalo
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Buffalo.epJSON
SchoolSecondary
base
buffalo
5A
base_13
data/weather/base/USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
Buffalo Niagara Intl AP
USA
5A
base
null
null
null
null
61
61
SchoolSecondary_STD2013_Fairbanks
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Fairbanks.epJSON
SchoolSecondary
base
fairbanks
8
base_2
data/weather/base/USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
Fairbanks Intl AP
USA
8
base
null
null
null
null
62
62
SchoolSecondary_STD2013_HoChiMinh
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_HoChiMinh.epJSON
SchoolSecondary
base
hochiminh
0A
base_18
data/weather/base/VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP
VNM
0A
base
null
null
null
null
63
63
SchoolSecondary_STD2013_Dubai
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Dubai.epJSON
SchoolSecondary
base
dubai
0B
base_0
data/weather/base/ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
Dubai.Intl.AP
ARE
0B
base
null
null
null
null
64
64
SchoolSecondary_STD2013_Atlanta
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Atlanta.epJSON
SchoolSecondary
base
atlanta
3A
base_8
data/weather/base/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
Atlanta-Hartsfield-Jackson Intl AP
USA
3A
base
null
null
null
null
65
65
SchoolSecondary_STD2013_Jaipur
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Jaipur.epJSON
SchoolSecondary
base
jaipur
1B
base_1
data/weather/base/IND_Jaipur.423480_ISHRAE.epw
IND_Jaipur.423480_ISHRAE.epw
Jaipur
IND
1B
base
null
null
null
null
66
66
SchoolSecondary_STD2013_Seattle
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Seattle.epJSON
SchoolSecondary
base
seattle
4C
base_17
data/weather/base/USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
Seattle-Tacoma Intl AP
USA
4C
base
null
null
null
null
67
67
SchoolSecondary_STD2013_Tampa
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Tampa.epJSON
SchoolSecondary
base
tampa
2A
base_7
data/weather/base/USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
Tampa-MacDill AFB
USA
2A
base
null
null
null
null
68
68
SchoolSecondary_STD2013_PortAngeles
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_PortAngeles.epJSON
SchoolSecondary
base
portangeles
5C
base_16
data/weather/base/USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
Port Angeles-Fairchild Intl AP
USA
5C
base
null
null
null
null
69
69
SchoolSecondary_STD2013_NewYork
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_NewYork.epJSON
SchoolSecondary
base
newyork
4A
base_14
data/weather/base/USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
New York-Kennedy Intl AP
USA
4A
base
null
null
null
null
70
70
SchoolSecondary_STD2013_Tucson
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Tucson.epJSON
SchoolSecondary
base
tucson
2B
base_3
data/weather/base/USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
Tucscon-Davis-Monthan AFB
USA
2B
base
null
null
null
null
71
71
SchoolSecondary_STD2013_Albuquerque
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Albuquerque.epJSON
SchoolSecondary
base
albuquerque
4B
base_12
data/weather/base/USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
Albuquerque Intl Sunport
USA
4B
base
null
null
null
null
72
72
SchoolSecondary_STD2013_Rochester
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Rochester.epJSON
SchoolSecondary
base
rochester
6A
base_10
data/weather/base/USA_MN_Rochester.Intl.AP.726440_TMY3.epw
USA_MN_Rochester.Intl.AP.726440_TMY3.epw
Rochester Intl AP
USA
6A
base
null
null
null
null
73
73
SchoolSecondary_STD2013_ElPaso
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_ElPaso.epJSON
SchoolSecondary
base
elpaso
3B
base_15
data/weather/base/USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
El Paso Intl AP
USA
3B
base
null
null
null
null
74
74
SchoolSecondary_STD2013_Denver
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_Denver.epJSON
SchoolSecondary
base
denver
5B
base_5
data/weather/base/USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
Aurora-Buckley AFB
USA
5B
base
null
null
null
null
75
75
SchoolSecondary_STD2013_GreatFalls
processed/base/SchoolSecondary_STD2013/SchoolSecondary_STD2013_GreatFalls.epJSON
SchoolSecondary
base
greatfalls
6B
base_11
data/weather/base/USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
Great Falls Intl AP
USA
6B
base
null
null
null
null
76
76
RestaurantFastFood_STD2013_Buffalo
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Buffalo.epJSON
RestaurantFastFood
base
buffalo
5A
base_13
data/weather/base/USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
USA_NY_Buffalo.Niagara.Intl.AP.725280_TMY3.epw
Buffalo Niagara Intl AP
USA
5A
base
null
null
null
null
77
77
RestaurantFastFood_STD2013_Atlanta
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Atlanta.epJSON
RestaurantFastFood
base
atlanta
3A
base_8
data/weather/base/USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
USA_GA_Atlanta-Hartsfield-Jackson.Intl.AP.722190_TMY3.epw
Atlanta-Hartsfield-Jackson Intl AP
USA
3A
base
null
null
null
null
78
78
RestaurantFastFood_STD2013_Miami
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Miami.epJSON
RestaurantFastFood
base
miami
1A
base_6
data/weather/base/USA_FL_Miami.Intl.AP.722020_TMY3.epw
USA_FL_Miami.Intl.AP.722020_TMY3.epw
Miami Intl AP
USA
1A
base
null
null
null
null
79
79
RestaurantFastFood_STD2013_Tucson
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Tucson.epJSON
RestaurantFastFood
base
tucson
2B
base_3
data/weather/base/USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
USA_AZ_Tucson-Davis-Monthan.AFB.722745_TMY3.epw
Tucscon-Davis-Monthan AFB
USA
2B
base
null
null
null
null
80
80
RestaurantFastFood_STD2013_Dubai
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Dubai.epJSON
RestaurantFastFood
base
dubai
0B
base_0
data/weather/base/ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
ARE_DU_Dubai.Intl.AP.411940_TMYx.epw
Dubai.Intl.AP
ARE
0B
base
null
null
null
null
81
81
RestaurantFastFood_STD2013_Albuquerque
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Albuquerque.epJSON
RestaurantFastFood
base
albuquerque
4B
base_12
data/weather/base/USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
USA_NM_Albuquerque.Intl.Sunport.723650_TMY3.epw
Albuquerque Intl Sunport
USA
4B
base
null
null
null
null
82
82
RestaurantFastFood_STD2013_ElPaso
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_ElPaso.epJSON
RestaurantFastFood
base
elpaso
3B
base_15
data/weather/base/USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
USA_TX_El.Paso.Intl.AP.722700_TMY3.epw
El Paso Intl AP
USA
3B
base
null
null
null
null
83
83
RestaurantFastFood_STD2013_Seattle
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Seattle.epJSON
RestaurantFastFood
base
seattle
4C
base_17
data/weather/base/USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
Seattle-Tacoma Intl AP
USA
4C
base
null
null
null
null
84
84
RestaurantFastFood_STD2013_GreatFalls
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_GreatFalls.epJSON
RestaurantFastFood
base
greatfalls
6B
base_11
data/weather/base/USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
USA_MT_Great.Falls.Intl.AP.727750_TMY3.epw
Great Falls Intl AP
USA
6B
base
null
null
null
null
85
85
RestaurantFastFood_STD2013_Rochester
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Rochester.epJSON
RestaurantFastFood
base
rochester
6A
base_10
data/weather/base/USA_MN_Rochester.Intl.AP.726440_TMY3.epw
USA_MN_Rochester.Intl.AP.726440_TMY3.epw
Rochester Intl AP
USA
6A
base
null
null
null
null
86
86
RestaurantFastFood_STD2013_Denver
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Denver.epJSON
RestaurantFastFood
base
denver
5B
base_5
data/weather/base/USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
USA_CO_Aurora-Buckley.AFB.724695_TMY3.epw
Aurora-Buckley AFB
USA
5B
base
null
null
null
null
87
87
RestaurantFastFood_STD2013_HoChiMinh
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_HoChiMinh.epJSON
RestaurantFastFood
base
hochiminh
0A
base_18
data/weather/base/VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP
VNM
0A
base
null
null
null
null
88
88
RestaurantFastFood_STD2013_Tampa
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Tampa.epJSON
RestaurantFastFood
base
tampa
2A
base_7
data/weather/base/USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
USA_FL_Tampa-MacDill.AFB.747880_TMY3.epw
Tampa-MacDill AFB
USA
2A
base
null
null
null
null
89
89
RestaurantFastFood_STD2013_NewYork
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_NewYork.epJSON
RestaurantFastFood
base
newyork
4A
base_14
data/weather/base/USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
New York-Kennedy Intl AP
USA
4A
base
null
null
null
null
90
90
RestaurantFastFood_STD2013_PortAngeles
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_PortAngeles.epJSON
RestaurantFastFood
base
portangeles
5C
base_16
data/weather/base/USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
USA_WA_Port.Angeles-Fairchild.Intl.AP.727885_TMY3.epw
Port Angeles-Fairchild Intl AP
USA
5C
base
null
null
null
null
91
91
RestaurantFastFood_STD2013_InternationalFalls
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_InternationalFalls.epJSON
RestaurantFastFood
base
internationalfalls
7
base_9
data/weather/base/USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
USA_MN_International.Falls-Falls.Intl.AP.727470_TMY3.epw
International Falls-Falls Intl AP
USA
7
base
null
null
null
null
92
92
RestaurantFastFood_STD2013_SanDiego
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_SanDiego.epJSON
RestaurantFastFood
base
sandiego
3C
base_4
data/weather/base/USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
Chula Vista-Brown Muni Field AP
USA
3C
base
null
null
null
null
93
93
RestaurantFastFood_STD2013_Jaipur
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Jaipur.epJSON
RestaurantFastFood
base
jaipur
1B
base_1
data/weather/base/IND_Jaipur.423480_ISHRAE.epw
IND_Jaipur.423480_ISHRAE.epw
Jaipur
IND
1B
base
null
null
null
null
94
94
RestaurantFastFood_STD2013_Fairbanks
processed/base/RestaurantFastFood_STD2013/RestaurantFastFood_STD2013_Fairbanks.epJSON
RestaurantFastFood
base
fairbanks
8
base_2
data/weather/base/USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
USA_AK_Fairbanks.Intl.AP.702610_TMY3.epw
Fairbanks Intl AP
USA
8
base
null
null
null
null
95
95
ApartmentHighRise_STD2013_Seattle
processed/base/ApartmentHighRise_STD2013/ApartmentHighRise_STD2013_Seattle.epJSON
ApartmentHighRise
base
seattle
4C
base_17
data/weather/base/USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
USA_WA_Seattle-Tacoma.Intl.AP.727930_TMY3.epw
Seattle-Tacoma Intl AP
USA
4C
base
null
null
null
null
96
96
ApartmentHighRise_STD2013_HoChiMinh
processed/base/ApartmentHighRise_STD2013/ApartmentHighRise_STD2013_HoChiMinh.epJSON
ApartmentHighRise
base
hochiminh
0A
base_18
data/weather/base/VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
VNM_SVN_Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP.489000_TMYx.epw
Ho.Chi.Minh-Tan.Son.Nhat.Intl.AP
VNM
0A
base
null
null
null
null
97
97
ApartmentHighRise_STD2013_SanDiego
processed/base/ApartmentHighRise_STD2013/ApartmentHighRise_STD2013_SanDiego.epJSON
ApartmentHighRise
base
sandiego
3C
base_4
data/weather/base/USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
USA_CA_Chula.Vista-Brown.Muni.Field.AP.722904_TMY3.epw
Chula Vista-Brown Muni Field AP
USA
3C
base
null
null
null
null
98
98
ApartmentHighRise_STD2013_NewYork
processed/base/ApartmentHighRise_STD2013/ApartmentHighRise_STD2013_NewYork.epJSON
ApartmentHighRise
base
newyork
4A
base_14
data/weather/base/USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
USA_NY_New.York-Kennedy.Intl.AP.744860_TMY3.epw
New York-Kennedy Intl AP
USA
4A
base
null
null
null
null
99
99
ApartmentHighRise_STD2013_Jaipur
processed/base/ApartmentHighRise_STD2013/ApartmentHighRise_STD2013_Jaipur.epJSON
ApartmentHighRise
base
jaipur
1B
base_1
data/weather/base/IND_Jaipur.423480_ISHRAE.epw
IND_Jaipur.423480_ISHRAE.epw
Jaipur
IND
1B
base
null
null
null
null
End of preview.

HOT Dataset: HVAC Operations Transfer

Overview

The HOT (HVAC Operations Transfer) dataset is the first large-scale open-source dataset purpose-built for transfer learning research in building control systems. Buildings account for approximately 10-15% of global energy consumption through HVAC systems, making intelligent control optimization critical for energy efficiency and climate change mitigation. Beyond technical advances, the field needs standardized evaluation protocols analogous to machine learning's model cards - comprehensive building data cards that systematically document building characteristics, performance baselines, and transfer learning suitability. Such standardisation would accelerate deployment decisions and enable practitioners to confidently assess transfer feasibility without extensive pilot studies. HOT establishes the foundation for this transformation.

image/png

Key Statistics

  • 159,744 unique building-weather combinations
  • 15,808 building models with controllable zone-level setpoints
  • 19 ASHRAE climate zones across 76 global locations
  • 16 commercial building types (office, retail, school, hospital, etc.)
  • 12 systematic occupancy patterns
  • 3 thermal performance scenarios
  • 15-minute timestep resolution for control applications

Dataset Description

HOT addresses the critical infrastructure gap in building control transfer learning by providing systematic variations across four key context dimensions:

๐Ÿข Building Geometry (16 Types)

  • Office: Small (511 mยฒ), Medium (4,983 mยฒ), Large (46,323 mยฒ)
  • Retail: Standalone (2,294 mยฒ), Strip Mall (2,294 mยฒ)
  • Educational: Primary School (6,874 mยฒ), Secondary School (19,592 mยฒ)
  • Healthcare: Hospital (22,443 mยฒ), Outpatient (3,805 mยฒ)
  • Hospitality: Small Hotel (3,726 mยฒ), Large Hotel (11,349 mยฒ)
  • Residential: Midrise Apartment (2,825 mยฒ), Highrise Apartment (7,063 mยฒ)
  • Food Service: Sit-down Restaurant (511 mยฒ), Fast Food (232 mยฒ)
  • Industrial: Warehouse (4,835 mยฒ)

๐ŸŒก๏ธ Thermal Performance (3 Scenarios)

  • Default: Baseline thermal properties (R_mult = 1.0)
  • High Performance: Enhanced insulation (R_mult = 2.0, U_mult = 0.5)
  • Low Performance: Minimal insulation (R_mult = 0.5, U_mult = 2.0)

๐ŸŒ Climate Conditions (76 Locations)

  • Complete ASHRAE coverage: All 19 climate zones (0A through 8)
  • Global diversity: From tropical (Ho Chi Minh) to subarctic (Fairbanks)
  • Weather data types: TMY (Typical Meteorological Year) + Real historical (2014-2024)
  • Temperature range: -44.4ยฐC to 47.0ยฐC
  • HDD range: 0 to 7,673 heating degree days
  • CDD range: 6 to 4,301 cooling degree days

๐Ÿ‘ฅ Occupancy Patterns (12 Schedules)

  • Standard: Traditional office hours (8 AM - 5 PM weekdays)
  • Low/High Occupancy: 50%/150% intensity variations
  • Shift Operations: Early (6 AM-3 PM), Late (2 PM-11 PM)
  • Sector-Specific: Retail (10 AM-9 PM), School (7 AM-4 PM + evening)
  • Healthcare: Hospital 24/7 with shift patterns
  • Modern Work: Flexible hybrid with staggered hours
  • Specialized: Gym (morning/evening peaks), Warehouse logistics
  • Continuous: 24/7 operations

Dataset Structure

HOT/
โ”œโ”€โ”€ data/
โ”‚   โ”œโ”€โ”€ base/                          # Raw building models by geometry type
โ”‚   โ”‚   โ”œโ”€โ”€ ApartmentHighRise_STD2013/
โ”‚   โ”‚   โ”œโ”€โ”€ ApartmentMidRise_STD2013/
โ”‚   โ”‚   โ”œโ”€โ”€ Hospital_STD2013/
โ”‚   โ”‚   โ”œโ”€โ”€ OfficeSmall_STD2013/
โ”‚   โ”‚   โ””โ”€โ”€ ...                        # 16 building geometry folders
โ”‚   โ”œโ”€โ”€ processed/
โ”‚   โ”‚   โ””โ”€โ”€ base/                      # Processed EPJSONs ready for control
โ”‚   โ”‚       โ”œโ”€โ”€ ApartmentHighRise_STD2013.epJSON
โ”‚   โ”‚       โ”œโ”€โ”€ Hospital_STD2013.epJSON
โ”‚   โ”‚       โ””โ”€โ”€ ...                    # All processed buildings
โ”‚   โ”œโ”€โ”€ variations/                    # Building variations
โ”‚   โ”‚   โ”œโ”€โ”€ occupancy/                 # Occupancy schedule variations
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ standard/
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ low_occupancy/
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ hospital/
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ...                    # 12 occupancy patterns
โ”‚   โ”‚   โ”œโ”€โ”€ thermal/                   # Thermal performance variations
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ default/
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ high_performance/
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ low_performance/
โ”‚   โ”‚   โ””โ”€โ”€ combined/                  # Multi-variable combinations
โ”‚   โ”‚       โ”œโ”€โ”€ occupancy_24_7_thermal_default/
โ”‚   โ”‚       โ”œโ”€โ”€ occupancy_hospital_thermal_high_performance/
โ”‚   โ”‚       โ””โ”€โ”€ ...                    # All combinations
โ”‚   โ”œโ”€โ”€ weather/                       # Weather data files (.epw)
โ”‚   โ”‚   โ”œโ”€โ”€ base/                      # Base TMY weather files (19 locations)
โ”‚   โ”‚   โ”œโ”€โ”€ expanded/                  # Extended TMY files (57 additional locations)
โ”‚   โ”‚   โ”œโ”€โ”€ real_base/                 # Historical weather (2014-2024)
โ”‚   โ”‚   โ””โ”€โ”€ tables/                    # Weather metadata tables
โ”‚   โ””โ”€โ”€ tables/                        # Dataset metadata and combinations
โ”‚       โ”œโ”€โ”€ buildings.csv              # Building characteristics
โ”‚       โ””โ”€โ”€ building_weather_combinations.csv  # All 159,744 pairings

Key Features

๐ŸŽฎ Reinforcement Learning Ready

  • Controllable setpoints: Zone-level heating/cooling temperature control
  • Gymnasium interface: Standard RL environment wrapper
  • Comprehensive state space: Zone temperatures, outdoor conditions, energy consumption
  • Multi-objective rewards: Energy efficiency + thermal comfort + control stability
  • EnergyPlus integration: Physics-based building simulation

๐Ÿ”ฌ Transfer Learning Framework

  • Similarity metrics: Quantitative compatibility assessment across 4 dimensions
  • Zero-shot evaluation: Direct policy transfer without retraining
  • Systematic variations: Single and multi-variable transfer scenarios
  • Benchmark protocols: Standardized evaluation methodology

๐ŸŒ Global Climate Coverage

  • All inhabited regions: Complete ASHRAE climate zone representation
  • Real vs. synthetic: TMY baseline + historical weather variability
  • Extreme conditions: From subarctic (-44ยฐC) to desert (+47ยฐC)
  • Transfer analysis: Climate adaptation and geographic deployment

๐Ÿ“Š Research Infrastructure

  • Standardized formats: Consistent EnergyPlus epJSON structure
  • Processing pipeline: Automated building modification tools
  • Validation tools: Building model verification and testing
  • Similarity analysis: Transfer feasibility assessment toolkit

Research Applications

๐Ÿค– Reinforcement Learning

  • Multi-agent control: Coordinate multiple HVAC zones
  • Meta-learning: Fast adaptation to new buildings (MAML, Reptile)
  • Foundation models: Pre-train on diverse building types
  • Safe RL: Constraint-aware control with comfort guarantees

๐Ÿ”„ Transfer Learning

  • Domain adaptation: Geographic and climate transfer
  • Few-shot learning: Minimal data adaptation for new buildings
  • Cross-building generalization: Policy transfer across archetypes
  • Similarity-guided selection: Optimal source building identification

๐Ÿ“ˆ Building Analytics

  • Energy benchmarking: Performance comparison across climates
  • Occupancy analysis: Usage pattern impact on energy consumption
  • Envelope optimization: Thermal performance sensitivity analysis
  • Climate resilience: Building adaptation to changing conditions

Dataset Statistics

Dimension Count Range Examples
Building Types 16 232-46,323 mยฒ Office, Hospital, School
Climate Zones 19 -44ยฐC to +47ยฐC 0A (Tropical) to 8 (Subarctic)
Occupancy Schedules 12 53-168 hrs/week Office, Retail, Hospital, 24/7
Thermal Scenarios 3 0.5-2.0ร— resistance High/Default/Low performance
Weather Files 192 TMY + Real (2014-2024) Geographic + temporal variation

File Formats

Building Models (.epJSON)

  • Format: EnergyPlus JSON input files
  • Features: Zone-level controllable setpoints, comprehensive meters
  • Compatibility: EnergyPlus 24.1+
  • Size: ~50-500 KB per building

Weather Files (.epw)

  • Format: EnergyPlus Weather format
  • Frequency: Hourly meteorological data
  • Variables: Temperature, humidity, solar, wind
  • Size: ~1-2 MB per location-year

Metadata Tables (.csv)

  • Buildings: Physical characteristics, variations, file paths
  • Weather: Climate statistics, location data, file paths
  • Combinations: Valid building-weather pairings (159,744 total)

Benchmarks and Baselines

Control Algorithms

  • Static Baseline: Seasonal ASHRAE setpoint schedules
  • PPO: Proximal Policy Optimization with building-specific tuning

Transfer Learning Methods

  • Zero-shot: Direct policy application without retraining
  • Fine-tuning: Limited adaptation with target building data
  • Meta-learning: MAML and Reptile for fast adaptation

Evaluation Metrics

  • Transfer Performance Ratio: Transferred vs. target-trained performance
  • Energy Efficiency: HVAC consumption reduction vs. baseline
  • Comfort Violations: Hours outside desired temperature range
  • Training Acceleration: Reduced learning time through transfer

Citation

If you use the HOT dataset in your research, please cite:

@inproceedings{2025hot,
  title={A HOT Dataset: 150,000 Buildings for HVAC Operations Transfer Research},
  author={anonymous},
  booktitle={x},
  year={2025},
  publisher={x}
}

License

This dataset is released under the MIT License. See LICENSE file for details.

Contributing

We welcome contributions to expand and improve the HOT dataset:

  • New building types: Additional commercial/residential archetypes
  • Climate expansion: More geographic locations and weather data
  • Enhanced metadata: Additional building characteristics
  • Analysis tools: Transfer learning evaluation scripts
  • Bug reports: Issues with building models or processing

Support and Contact


HOT Dataset - Advancing building energy research through comprehensive, standardized, and globally-representative data for intelligent HVAC control systems.

Downloads last month
497