Search is not available for this dataset
text
string |
---|
1907, Charles Krause identified the colour as being due to the presence of solvated electrons, which contribute to the high electrical conductivity of these solutions. At low concentrations (below 3 M), the solution is dark blue and has ten times the conductivity of aqueous sodium chloride; at higher concentrations (above 3 M), the solution is copper-coloured and has approximately the conductivity of liquid metals like mercury. In addition to the alkali metal amide salt and solvated electrons, such ammonia solutions also contain the alkali metal cation (M+), the neutral alkali metal atom (M), diatomic alkali metal molecules (M2) and alkali metal anions (M−). These are unstable and eventually become the more thermodynamically stable alkali metal amide and hydrogen gas. Solvated electrons are powerful reducing agents and are often used in chemical synthesis. Organometallic Organolithium Being the smallest alkali metal, lithium forms the widest variety of and most stable organometallic compounds, which are bonded covalently. Organolithium compounds are electrically non-conducting volatile solids or liquids that melt at low temperatures, and tend to form oligomers with the structure (RLi)x where R is the organic group. As the electropositive nature of lithium puts most of the charge density of the bond on the carbon atom, effectively creating a carbanion, organolithium compounds are extremely powerful bases and nucleophiles. For use as bases, butyllithiums are often used and are commercially available. An example of an organolithium compound is methyllithium ((CH3Li)x), which exists in tetrameric (x = 4, tetrahedral) and hexameric (x = 6, octahedral) forms. Organolithium compounds, especially n-butyllithium, are useful reagents in organic synthesis, as might be expected given lithium's diagonal relationship with magnesium, which plays an important role in the Grignard reaction. For example, alkyllithiums and aryllithiums may be used to synthesise aldehydes and ketones by reaction with metal carbonyls. The reaction with nickel tetracarbonyl, for example, proceeds through an unstable acyl nickel carbonyl complex which then undergoes electrophilic substitution to give the desired aldehyde (using H+ as the electrophile) or ketone (using an alkyl halide) product. LiR + [Ni(CO)4] Li+[RCONi(CO)3]− Li+[RCONi(CO)3]− Li+ + RCHO + [(solvent)Ni(CO)3] Li+[RCONi(CO)3]− Li+ + R'COR + [(solvent)Ni(CO)3] Alkyllithiums and aryllithiums may also react with N,N-disubstituted amides to give aldehydes and ketones, and symmetrical ketones by reacting with carbon monoxide. They thermally decompose to eliminate a β-hydrogen, producing alkenes and lithium hydride: another route is the reaction of ethers with alkyl- and aryllithiums that act as strong bases. |
In non-polar solvents, aryllithiums react as the carbanions they effectively are, turning carbon dioxide to aromatic carboxylic acids (ArCO2H) and aryl ketones to tertiary carbinols (Ar'2C(Ar)OH). Finally, they may be used to synthesise other organometallic compounds through metal-halogen exchange. Heavier alkali metals Unlike the organolithium compounds, the organometallic compounds of the heavier alkali metals are predominantly ionic. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity. The principal organosodium compound of commercial importance is sodium cyclopentadienide. Sodium tetraphenylborate can also be classified as an organosodium compound since in the solid state sodium is bound to the aryl groups. Organometallic compounds of the higher alkali metals are even more reactive than organosodium compounds and of limited utility. A notable reagent is Schlosser's base, a mixture of n-butyllithium and potassium tert-butoxide. This reagent reacts with propene to form the compound allylpotassium (KCH2CHCH2). cis-2-Butene and trans-2-butene equilibrate when in contact with alkali metals. Whereas isomerisation is fast with lithium and sodium, it is slow with the heavier alkali metals. The heavier alkali metals also favour the sterically congested conformation. Several crystal structures of organopotassium compounds have been reported, establishing that they, like the sodium compounds, are polymeric. Organosodium, organopotassium, organorubidium and organocaesium compounds are all mostly ionic and are insoluble (or nearly so) in nonpolar solvents. Alkyl and aryl derivatives of sodium and potassium tend to react with air. They cause the cleavage of ethers, generating alkoxides. Unlike alkyllithium compounds, alkylsodiums and alkylpotassiums cannot be made by reacting the metals with alkyl halides because Wurtz coupling occurs: RM + R'X → R–R' + MX As such, they have to be made by reacting alkylmercury compounds with sodium or potassium metal in inert hydrocarbon solvents. While methylsodium forms tetramers like methyllithium, methylpotassium is more ionic and has the nickel arsenide structure with discrete methyl anions and potassium cations. The alkali metals and their hydrides react with acidic hydrocarbons, for example cyclopentadienes and terminal alkynes, to give salts. Liquid ammonia, ether, or hydrocarbon solvents are used, the most common of which being tetrahydrofuran. The most important of these compounds is sodium cyclopentadienide, NaC5H5, an important precursor to many transition metal cyclopentadienyl derivatives. Similarly, the alkali metals react with cyclooctatetraene in tetrahydrofuran to give alkali metal cyclooctatetraenides; for example, dipotassium cyclooctatetraenide (K2C8H8) is an important precursor to many metal |
cyclooctatetraenyl derivatives, such as uranocene. The large and very weakly polarising alkali metal cations can stabilise large, aromatic, polarisable radical anions, such as the dark-green sodium naphthalenide, Na+[C10H8•]−, a strong reducing agent. Representative reactions of alkali metals Reaction with oxygen Upon reacting with oxygen, alkali metals form oxides, peroxides, superoxides and suboxides. However, the first three are more common. The table below shows the types of compounds formed in reaction with oxygen. The compound in brackets represents the minor product of combustion. The alkali metal peroxides are ionic compounds that are unstable in water. The peroxide anion is weakly bound to the cation, and it is hydrolysed, forming stronger covalent bonds. Na2O2 + 2H2O → 2NaOH + H2O2 The other oxygen compounds are also unstable in water. 2KO2 + 2H2O → 2KOH + H2O2 + O2 Li2O + H2O → 2LiOH Reaction with sulfur With sulfur, they form sulfides and polysulfides. 2Na + 1/8S8 → Na2S + 1/8S8 → Na2S2...Na2S7 Because alkali metal sulfides are essentially salts of a weak acid and a strong base, they form basic solutions. S2- + H2O → HS− + HO− HS− + H2O → H2S + HO− Reaction with nitrogen Lithium is the only metal that combines directly with nitrogen at room temperature. 3Li + 1/3N2 → Li3N Li3N can react with water to liberate ammonia. Li3N + 3H2O → 3LiOH + NH3 Reaction with hydrogen With hydrogen, alkali metals form saline hydrides that hydrolyse in water. Na + H2 → NaH (at high temperatures) NaH + H2O → NaOH + H2 Reaction with carbon Lithium is the only metal that reacts directly with carbon to give dilithium acetylide. Na and K can react with acetylene to give acetylides. 2Li + 2C → Li2C2 Na + C2H2 → NaC2H + 1/2H2 (at 1500C) Na + NaC2H → Na2C2 (at 2200C) Reaction with water On reaction with water, they generate hydroxide ions and hydrogen gas. This reaction is vigorous and highly exothermic and the hydrogen resulted may ignite in air or even explode in the case of Rb and Cs. Na + H2O → NaOH + 1/2H2 Reaction with other salts The alkali metals are very good reducing agents. They can reduce metal cations that are less electropositive. Titanium is produced industrially by the reduction of titanium tetrachloride with Na at 4000C (van Arkel–de Boer process). TiCl4 + 4Na → 4NaCl + Ti Reaction with |
organohalide compounds Alkali metals react with halogen derivatives to generate hydrocarbon via the Wurtz reaction. 2CH3-Cl + 2Na → H3C-CH3 + 2NaCl Alkali metals in liquid ammonia Alkali metals dissolve in liquid ammonia or other donor solvents like aliphatic amines or hexamethylphosphoramide to give blue solutions. These solutions are believed to contain free electrons. Na + xNH3 → Na+ + e(NH3)x− Due to the presence of solvated electrons, these solutions are very powerful reducing agents used in organic synthesis. Reaction 1) is known as Birch reduction. Other reductions that can be carried by these solutions are: S8 + 2e− → S82- Fe(CO)5 + 2e− → Fe(CO)42- + CO Extensions Although francium is the heaviest alkali metal that has been discovered, there has been some theoretical work predicting the physical and chemical characteristics of hypothetical heavier alkali metals. Being the first period 8 element, the undiscovered element ununennium (element 119) is predicted to be the next alkali metal after francium and behave much like their lighter congeners; however, it is also predicted to differ from the lighter alkali metals in some properties. Its chemistry is predicted to be closer to that of potassium or rubidium instead of caesium or francium. This is unusual as periodic trends, ignoring relativistic effects would predict ununennium to be even more reactive than caesium and francium. This lowered reactivity is due to the relativistic stabilisation of ununennium's valence electron, increasing ununennium's first ionisation energy and decreasing the metallic and ionic radii; this effect is already seen for francium. This assumes that ununennium will behave chemically as an alkali metal, which, although likely, may not be true due to relativistic effects. The relativistic stabilisation of the 8s orbital also increases ununennium's electron affinity far beyond that of caesium and francium; indeed, ununennium is expected to have an electron affinity higher than all the alkali metals lighter than it. Relativistic effects also cause a very large drop in the polarisability of ununennium. On the other hand, ununennium is predicted to continue the trend of melting points decreasing going down the group, being expected to have a melting point between 0 °C and 30 °C. The stabilisation of ununennium's valence electron and thus the contraction of the 8s orbital cause its atomic radius to be lowered to 240 pm, very close to that of rubidium (247 pm), so that the chemistry of ununennium in the +1 oxidation state should |
be more similar to the chemistry of rubidium than to that of francium. On the other hand, the ionic radius of the Uue+ ion is predicted to be larger than that of Rb+, because the 7p orbitals are destabilised and are thus larger than the p-orbitals of the lower shells. Ununennium may also show the +3 and +5 oxidation states, which are not seen in any other alkali metal, in addition to the +1 oxidation state that is characteristic of the other alkali metals and is also the main oxidation state of all the known alkali metals: this is because of the destabilisation and expansion of the 7p3/2 spinor, causing its outermost electrons to have a lower ionisation energy than what would otherwise be expected. Indeed, many ununennium compounds are expected to have a large covalent character, due to the involvement of the 7p3/2 electrons in the bonding. Not as much work has been done predicting the properties of the alkali metals beyond ununennium. Although a simple extrapolation of the periodic table (by the aufbau principle) would put element 169, unhexennium, under ununennium, Dirac-Fock calculations predict that the next element after ununennium with alkali-metal-like properties may be element 165, unhexpentium, which is predicted to have the electron configuration [Og] 5g18 6f14 7d10 8s2 8p1/22 9s1. This element would be intermediate in properties between an alkali metal and a group 11 element, and while its physical and atomic properties would be closer to the former, its chemistry may be closer to that of the latter. Further calculations show that unhexpentium would follow the trend of increasing ionisation energy beyond caesium, having an ionisation energy comparable to that of sodium, and that it should also continue the trend of decreasing atomic radii beyond caesium, having an atomic radius comparable to that of potassium. However, the 7d electrons of unhexpentium may also be able to participate in chemical reactions along with the 9s electron, possibly allowing oxidation states beyond +1, whence the likely transition metal behaviour of unhexpentium. Due to the alkali and alkaline earth metals both being s-block elements, these predictions for the trends and properties of ununennium and unhexpentium also mostly hold quite similarly for the corresponding alkaline earth metals unbinilium (Ubn) and unhexhexium (Uhh). Unsepttrium, element 173, may be an even better heavier homologue of ununennium; with a predicted electron configuration of [Usb] 6g1, it returns to the alkali-metal-like situation |
of having one easily removed electron far above a closed p-shell in energy, and is expected to be even more reactive than caesium. The probable properties of further alkali metals beyond unsepttrium have not been explored yet as of 2019, and they may or may not be able to exist. In periods 8 and above of the periodic table, relativistic and shell-structure effects become so strong that extrapolations from lighter congeners become completely inaccurate. In addition, the relativistic and shell-structure effects (which stabilise the s-orbitals and destabilise and expand the d-, f-, and g-orbitals of higher shells) have opposite effects, causing even larger difference between relativistic and non-relativistic calculations of the properties of elements with such high atomic numbers. Interest in the chemical properties of ununennium, unhexpentium, and unsepttrium stems from the fact that they are located close to the expected locations of islands of stability, centered at elements 122 (306Ubb) and 164 (482Uhq). Pseudo-alkali metals Many other substances are similar to the alkali metals in their tendency to form monopositive cations. Analogously to the pseudohalogens, they have sometimes been called "pseudo-alkali metals". These substances include some elements and many more polyatomic ions; the polyatomic ions are especially similar to the alkali metals in their large size and weak polarising power. Hydrogen The element hydrogen, with one electron per neutral atom, is usually placed at the top of Group 1 of the periodic table because of its electron configuration. But hydrogen is not normally considered to be an alkali metal;. Metallic hydrogen, which only exists at very high pressures, is known for its electrical and magnetic properties, not its chemical properties. Under typical conditions, pure hydrogen exists as a diatomic gas consisting of two atoms per molecule (H2); however, the alkali metals form diatomic molecules (such as dilithium, Li2) only at high temperatures, when they are in the gaseous state. Hydrogen, like the alkali metals, has one valence electron and reacts easily with the halogens, but the similarities mostly end there because of the small size of a bare proton H+ compared to the alkali metal cations. Its placement above lithium is primarily due to its electron configuration. It is sometimes placed above fluorine due to their similar chemical properties, though the resemblance is likewise not absolute. The first ionisation energy of hydrogen (1312.0 kJ/mol) is much higher than that of the alkali metals. As only one additional electron is |
required to fill in the outermost shell of the hydrogen atom, hydrogen often behaves like a halogen, forming the negative hydride ion, and is very occasionally considered to be a halogen on that basis. (The alkali metals can also form negative ions, known as alkalides, but these are little more than laboratory curiosities, being unstable.) An argument against this placement is that formation of hydride from hydrogen is endothermic, unlike the exothermic formation of halides from halogens. The radius of the H− anion also does not fit the trend of increasing size going down the halogens: indeed, H− is very diffuse because its single proton cannot easily control both electrons. It was expected for some time that liquid hydrogen would show metallic properties; while this has been shown to not be the case, under extremely high pressures, such as those found at the cores of Jupiter and Saturn, hydrogen does become metallic and behaves like an alkali metal; in this phase, it is known as metallic hydrogen. The electrical resistivity of liquid metallic hydrogen at 3000 K is approximately equal to that of liquid rubidium and caesium at 2000 K at the respective pressures when they undergo a nonmetal-to-metal transition. The 1s1 electron configuration of hydrogen, while analogous to that of the alkali metals (ns1), is unique because there is no 1p subshell. Hence it can lose an electron to form the hydron H+, or gain one to form the hydride ion H−. In the former case it resembles superficially the alkali metals; in the latter case, the halogens, but the differences due to the lack of a 1p subshell are important enough that neither group fits the properties of hydrogen well. Group 14 is also a good fit in terms of thermodynamic properties such as ionisation energy and electron affinity, but hydrogen cannot be tetravalent. Thus none of the three placements are entirely satisfactory, although group 1 is the most common placement (if one is chosen) because of the electron configuration and the fact that the hydron is by far the most important of all monatomic hydrogen species, being the foundation of acid-base chemistry. As an example of hydrogen's unorthodox properties stemming from its unusual electron configuration and small size, the hydrogen ion is very small (radius around 150 fm compared to the 50–220 pm size of most other atoms and ions) and so is nonexistent in condensed systems |
other than in association with other atoms or molecules. Indeed, transferring of protons between chemicals is the basis of acid-base chemistry. Also unique is hydrogen's ability to form hydrogen bonds, which are an effect of charge-transfer, electrostatic, and electron correlative contributing phenomena. While analogous lithium bonds are also known, they are mostly electrostatic. Nevertheless, hydrogen can take on the same structural role as the alkali metals in some molecular crystals, and has a close relationship with the lightest alkali metals (especially lithium). Ammonium and derivatives The ammonium ion () has very similar properties to the heavier alkali metals, acting as an alkali metal intermediate between potassium and rubidium, and is often considered a close relative. For example, most alkali metal salts are soluble in water, a property which ammonium salts share. Ammonium is expected to behave stably as a metal ( ions in a sea of delocalised electrons) at very high pressures (though less than the typical pressure where transitions from insulating to metallic behaviour occur around, 100 GPa), and could possibly occur inside the ice giants Uranus and Neptune, which may have significant impacts on their interior magnetic fields. It has been estimated that the transition from a mixture of ammonia and dihydrogen molecules to metallic ammonium may occur at pressures just below 25 GPa. Under standard conditions, ammonium can form a metallic amalgam with mercury. Other "pseudo-alkali metals" include the alkylammonium cations, in which some of the hydrogen atoms in the ammonium cation are replaced by alkyl or aryl groups. In particular, the quaternary ammonium cations () are very useful since they are permanently charged, and they are often used as an alternative to the expensive Cs+ to stabilise very large and very easily polarisable anions such as . Tetraalkylammonium hydroxides, like alkali metal hydroxides, are very strong bases that react with atmospheric carbon dioxide to form carbonates. Furthermore, the nitrogen atom may be replaced by a phosphorus, arsenic, or antimony atom (the heavier nonmetallic pnictogens), creating a phosphonium () or arsonium () cation that can itself be substituted similarly; while stibonium () itself is not known, some of its organic derivatives are characterised. Cobaltocene and derivatives Cobaltocene, Co(C5H5)2, is a metallocene, the cobalt analogue of ferrocene. It is a dark purple solid. Cobaltocene has 19 valence electrons, one more than usually found in organotransition metal complexes, such as its very stable relative, ferrocene, in accordance with the |
18-electron rule. This additional electron occupies an orbital that is antibonding with respect to the Co–C bonds. Consequently, many chemical reactions of Co(C5H5)2 are characterized by its tendency to lose this "extra" electron, yielding a very stable 18-electron cation known as cobaltocenium. Many cobaltocenium salts coprecipitate with caesium salts, and cobaltocenium hydroxide is a strong base that absorbs atmospheric carbon dioxide to form cobaltocenium carbonate. Like the alkali metals, cobaltocene is a strong reducing agent, and decamethylcobaltocene is stronger still due to the combined inductive effect of the ten methyl groups. Cobalt may be substituted by its heavier congener rhodium to give rhodocene, an even stronger reducing agent. Iridocene (involving iridium) would presumably be still more potent, but is not very well-studied due to its instability. Thallium Thallium is the heaviest stable element in group 13 of the periodic table. At the bottom of the periodic table, the inert pair effect is quite strong, because of the relativistic stabilisation of the 6s orbital and the decreasing bond energy as the atoms increase in size so that the amount of energy released in forming two more bonds is not worth the high ionisation energies of the 6s electrons. It displays the +1 oxidation state that all the known alkali metals display, and thallium compounds with thallium in its +1 oxidation state closely resemble the corresponding potassium or silver compounds stoichiometrically due to the similar ionic radii of the Tl+ (164 pm), K+ (152 pm) and Ag+ (129 pm) ions. It was sometimes considered an alkali metal in continental Europe (but not in England) in the years immediately following its discovery, and was placed just after caesium as the sixth alkali metal in Dmitri Mendeleev's 1869 periodic table and Julius Lothar Meyer's 1868 periodic table. (Mendeleev's 1871 periodic table and Meyer's 1870 periodic table put thallium in its current position in the boron group and left the space below caesium blank.) However, thallium also displays the oxidation state +3, which no known alkali metal displays (although ununennium, the undiscovered seventh alkali metal, is predicted to possibly display the +3 oxidation state). The sixth alkali metal is now considered to be francium. While Tl+ is stabilised by the inert pair effect, this inert pair of 6s electrons is still able to participate chemically, so that these electrons are stereochemically active in aqueous solution. Additionally, the thallium halides (except TlF) are quite insoluble in |
water, and TlI has an unusual structure because of the presence of the stereochemically active inert pair in thallium. Copper, silver, and gold The group 11 metals (or coinage metals), copper, silver, and gold, are typically categorised as transition metals given they can form ions with incomplete d-shells. Physically, they have the relatively low melting points and high electronegativity values associated with post-transition metals. "The filled d subshell and free s electron of Cu, Ag, and Au contribute to their high electrical and thermal conductivity. Transition metals to the left of group 11 experience interactions between s electrons and the partially filled d subshell that lower electron mobility." Chemically, the group 11 metals behave like main-group metals in their +1 valence states, and are hence somewhat related to the alkali metals: this is one reason for their previously being labelled as "group IB", paralleling the alkali metals' "group IA". They are occasionally classified as post-transition metals. Their spectra are analogous to those of the alkali metals. Their monopositive ions are paramagnetic and contribute no colour to their salts, like those of the alkali metals. In Mendeleev's 1871 periodic table, copper, silver, and gold are listed twice, once under group VIII (with the iron triad and platinum group metals), and once under group IB. Group IB was nonetheless parenthesised to note that it was tentative. Mendeleev's main criterion for group assignment was the maximum oxidation state of an element: on that basis, the group 11 elements could not be classified in group IB, due to the existence of copper(II) and gold(III) compounds being known at that time. However, eliminating group IB would make group I the only main group (group VIII was labelled a transition group) to lack an A–B bifurcation. Soon afterward, a majority of chemists chose to classify these elements in group IB and remove them from group VIII for the resulting symmetry: this was the predominant classification until the rise of the modern medium-long 18-column periodic table, which separated the alkali metals and group 11 metals. The coinage metals were traditionally regarded as a subdivision of the alkali metal group, due to them sharing the characteristic s1 electron configuration of the alkali metals (group 1: p6s1; group 11: d10s1). However, the similarities are largely confined to the stoichiometries of the +1 compounds of both groups, and not their chemical properties. This stems from the filled d subshell providing |
a much weaker shielding effect on the outermost s electron than the filled p subshell, so that the coinage metals have much higher first ionisation energies and smaller ionic radii than do the corresponding alkali metals. Furthermore, they have higher melting points, hardnesses, and densities, and lower reactivities and solubilities in liquid ammonia, as well as having more covalent character in their compounds. Finally, the alkali metals are at the top of the electrochemical series, whereas the coinage metals are almost at the very bottom. The coinage metals' filled d shell is much more easily disrupted than the alkali metals' filled p shell, so that the second and third ionisation energies are lower, enabling higher oxidation states than +1 and a richer coordination chemistry, thus giving the group 11 metals clear transition metal character. Particularly noteworthy is gold forming ionic compounds with rubidium and caesium, in which it forms the auride ion (Au−) which also occurs in solvated form in liquid ammonia solution: here gold behaves as a pseudohalogen because its 5d106s1 configuration has one electron less than the quasi-closed shell 5d106s2 configuration of mercury. Production and isolation The production of pure alkali metals is somewhat complicated due to their extreme reactivity with commonly used substances, such as water. From their silicate ores, all the stable alkali metals may be obtained the same way: sulfuric acid is first used to dissolve the desired alkali metal ion and aluminium(III) ions from the ore (leaching), whereupon basic precipitation removes aluminium ions from the mixture by precipitating it as the hydroxide. The remaining insoluble alkali metal carbonate is then precipitated selectively; the salt is then dissolved in hydrochloric acid to produce the chloride. The result is then left to evaporate and the alkali metal can then be isolated. Lithium and sodium are typically isolated through electrolysis from their liquid chlorides, with calcium chloride typically added to lower the melting point of the mixture. The heavier alkali metals, however, are more typically isolated in a different way, where a reducing agent (typically sodium for potassium and magnesium or calcium for the heaviest alkali metals) is used to reduce the alkali metal chloride. The liquid or gaseous product (the alkali metal) then undergoes fractional distillation for purification. Most routes to the pure alkali metals require the use of electrolysis due to their high reactivity; one of the few which does not is the pyrolysis of |
the corresponding alkali metal azide, which yields the metal for sodium, potassium, rubidium, and caesium and the nitride for lithium. Lithium salts have to be extracted from the water of mineral springs, brine pools, and brine deposits. The metal is produced electrolytically from a mixture of fused lithium chloride and potassium chloride. Sodium occurs mostly in seawater and dried seabed, but is now produced through electrolysis of sodium chloride by lowering the melting point of the substance to below 700 °C through the use of a Downs cell. Extremely pure sodium can be produced through the thermal decomposition of sodium azide. Potassium occurs in many minerals, such as sylvite (potassium chloride). Previously, potassium was generally made from the electrolysis of potassium chloride or potassium hydroxide, found extensively in places such as Canada, Russia, Belarus, Germany, Israel, United States, and Jordan, in a method similar to how sodium was produced in the late 1800s and early 1900s. It can also be produced from seawater. However, these methods are problematic because the potassium metal tends to dissolve in its molten chloride and vaporises significantly at the operating temperatures, potentially forming the explosive superoxide. As a result, pure potassium metal is now produced by reducing molten potassium chloride with sodium metal at 850 °C. Na (g) + KCl (l) NaCl (l) + K (g) Although sodium is less reactive than potassium, this process works because at such high temperatures potassium is more volatile than sodium and can easily be distilled off, so that the equilibrium shifts towards the right to produce more potassium gas and proceeds almost to completion. Metals like sodium are obtained by electrolysis of molten salts. Rb & Cs obtained mainly as by products of Li processing. To make pure caesium, ores of caesium and rubidium are crushed and heated to 650 °C with sodium metal, generating an alloy that can then be separated via a fractional distillation technique. Because metallic caesium is too reactive to handle, it is normally offered as caesium azide (CsN3). Caesium hydroxide is formed when caesium interacts aggressively with water and ice (CsOH). Rubidium is the 16th most prevalent element in the earth's crust, however it is quite rare. Some minerals found in North America, South Africa, Russia, and Canada contain rubidium. Some potassium minerals (lepidolites, biotites, feldspar, carnallite) contain it, together with caesium. Pollucite, carnallite, leucite, and lepidolite are all minerals that contain rubidium. |
As a by-product of lithium extraction, it is commercially obtained from lepidolite. Rubidium is also found in potassium rocks and brines, which is a commercial supply. The majority of rubidium is now obtained as a byproduct of refining lithium. Rubidium is used in vacuum tubes as a getter, a material that combines with and removes trace gases from vacuum tubes. For several years in the 1950s and 1960s, a by-product of the potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium while the rest was potassium and a small fraction of caesium. Today the largest producers of caesium, for example the Tanco Mine in Manitoba, Canada, produce rubidium as by-product from pollucite. Today, a common method for separating rubidium from potassium and caesium is the fractional crystallisation of a rubidium and caesium alum (Cs, Rb)Al(SO4)2·12H2O, which yields pure rubidium alum after approximately 30 recrystallisations. The limited applications and the lack of a mineral rich in rubidium limit the production of rubidium compounds to 2 to 4 tonnes per year. Caesium, however, is not produced from the above reaction. Instead, the mining of pollucite ore is the main method of obtaining pure caesium, extracted from the ore mainly by three methods: acid digestion, alkaline decomposition, and direct reduction. Both metals are produced as by-products of lithium production: after 1958, when interest in lithium's thermonuclear properties increased sharply, the production of rubidium and caesium also increased correspondingly. Pure rubidium and caesium metals are produced by reducing their chlorides with calcium metal at 750 °C and low pressure. As a result of its extreme rarity in nature, most francium is synthesised in the nuclear reaction 197Au + 18O → 210Fr + 5 n, yielding francium-209, francium-210, and francium-211. The greatest quantity of francium ever assembled to date is about 300,000 neutral atoms, which were synthesised using the nuclear reaction given above. When the only natural isotope francium-223 is specifically required, it is produced as the alpha daughter of actinium-227, itself produced synthetically from the neutron irradiation of natural radium-226, one of the daughters of natural uranium-238. Applications Lithium, sodium, and potassium have many applications, while rubidium and caesium are very useful in academic contexts but do not have many applications yet. Lithium is often used in lithium-ion batteries, and lithium oxide can help process silica. Lithium stearate is a thickener and can be used to make lubricating greases; |
it is produced from lithium hydroxide, which is also used to absorb carbon dioxide in space capsules and submarines. Lithium chloride is used as a brazing alloy for aluminium parts. Metallic lithium is used in alloys with magnesium and aluminium to give very tough and light alloys. Sodium compounds have many applications, the most well-known being sodium chloride as table salt. Sodium salts of fatty acids are used as soap. Pure sodium metal also has many applications, including use in sodium-vapour lamps, which produce very efficient light compared to other types of lighting, and can help smooth the surface of other metals. Being a strong reducing agent, it is often used to reduce many other metals, such as titanium and zirconium, from their chlorides. Furthermore, it is very useful as a heat-exchange liquid in fast breeder nuclear reactors due to its low melting point, viscosity, and cross-section towards neutron absorption. Potassium compounds are often used as fertilisers as potassium is an important element for plant nutrition. Potassium hydroxide is a very strong base, and is used to control the pH of various substances. Potassium nitrate and potassium permanganate are often used as powerful oxidising agents. Potassium superoxide is used in breathing masks, as it reacts with carbon dioxide to give potassium carbonate and oxygen gas. Pure potassium metal is not often used, but its alloys with sodium may substitute for pure sodium in fast breeder nuclear reactors. Rubidium and caesium are often used in atomic clocks. Caesium atomic clocks are extraordinarily accurate; if a clock had been made at the time of the dinosaurs, it would be off by less than four seconds (after 80 million years). For that reason, caesium atoms are used as the definition of the second. Rubidium ions are often used in purple fireworks, and caesium is often used in drilling fluids in the petroleum industry. Francium has no commercial applications, but because of francium's relatively simple atomic structure, among other things, it has been used in spectroscopy experiments, leading to more information regarding energy levels and the coupling constants between subatomic particles. Studies on the light emitted by laser-trapped francium-210 ions have provided accurate data on transitions between atomic energy levels, similar to those predicted by quantum theory. Biological role and precautions Metals Pure alkali metals are dangerously reactive with air and water and must be kept away from heat, fire, oxidising agents, acids, most |
organic compounds, halocarbons, plastics, and moisture. They also react with carbon dioxide and carbon tetrachloride, so that normal fire extinguishers are counterproductive when used on alkali metal fires. Some Class D dry powder extinguishers designed for metal fires are effective, depriving the fire of oxygen and cooling the alkali metal. Experiments are usually conducted using only small quantities of a few grams in a fume hood. Small quantities of lithium may be disposed of by reaction with cool water, but the heavier alkali metals should be dissolved in the less reactive isopropanol. The alkali metals must be stored under mineral oil or an inert atmosphere. The inert atmosphere used may be argon or nitrogen gas, except for lithium, which reacts with nitrogen. Rubidium and caesium must be kept away from air, even under oil, because even a small amount of air diffused into the oil may trigger formation of the dangerously explosive peroxide; for the same reason, potassium should not be stored under oil in an oxygen-containing atmosphere for longer than 6 months. Ions The bioinorganic chemistry of the alkali metal ions has been extensively reviewed. Solid state crystal structures have been determined for many complexes of alkali metal ions in small peptides, nucleic acid constituents, carbohydrates and ionophore complexes. Lithium naturally only occurs in traces in biological systems and has no known biological role, but does have effects on the body when ingested. Lithium carbonate is used as a mood stabiliser in psychiatry to treat bipolar disorder (manic-depression) in daily doses of about 0.5 to 2 grams, although there are side-effects. Excessive ingestion of lithium causes drowsiness, slurred speech and vomiting, among other symptoms, and poisons the central nervous system, which is dangerous as the required dosage of lithium to treat bipolar disorder is only slightly lower than the toxic dosage. Its biochemistry, the way it is handled by the human body and studies using rats and goats suggest that it is an essential trace element, although the natural biological function of lithium in humans has yet to be identified. Sodium and potassium occur in all known biological systems, generally functioning as electrolytes inside and outside cells. Sodium is an essential nutrient that regulates blood volume, blood pressure, osmotic equilibrium and pH; the minimum physiological requirement for sodium is 500 milligrams per day. Sodium chloride (also known as common salt) is the principal source of sodium in the diet, |
and is used as seasoning and preservative, such as for pickling and jerky; most of it comes from processed foods. The Dietary Reference Intake for sodium is 1.5 grams per day, but most people in the United States consume more than 2.3 grams per day, the minimum amount that promotes hypertension; this in turn causes 7.6 million premature deaths worldwide. Potassium is the major cation (positive ion) inside animal cells, while sodium is the major cation outside animal cells. The concentration differences of these charged particles causes a difference in electric potential between the inside and outside of cells, known as the membrane potential. The balance between potassium and sodium is maintained by ion transporter proteins in the cell membrane. The cell membrane potential created by potassium and sodium ions allows the cell to generate an action potential—a "spike" of electrical discharge. The ability of cells to produce electrical discharge is critical for body functions such as neurotransmission, muscle contraction, and heart function. Disruption of this balance may thus be fatal: for example, ingestion of large amounts of potassium compounds can lead to hyperkalemia strongly influencing the cardiovascular system. Potassium chloride is used in the United States for lethal injection executions. Due to their similar atomic radii, rubidium and caesium in the body mimic potassium and are taken up similarly. Rubidium has no known biological role, but may help stimulate metabolism, and, similarly to caesium, replace potassium in the body causing potassium deficiency. Partial substitution is quite possible and rather non-toxic: a 70 kg person contains on average 0.36 g of rubidium, and an increase in this value by 50 to 100 times did not show negative effects in test persons. Rats can survive up to 50% substitution of potassium by rubidium. Rubidium (and to a much lesser extent caesium) can function as temporary cures for hypokalemia; while rubidium can adequately physiologically substitute potassium in some systems, caesium is never able to do so. There is only very limited evidence in the form of deficiency symptoms for rubidium being possibly essential in goats; even if this is true, the trace amounts usually present in food are more than enough. Caesium compounds are rarely encountered by most people, but most caesium compounds are mildly toxic. Like rubidium, caesium tends to substitute potassium in the body, but is significantly larger and is therefore a poorer substitute. Excess caesium can lead to hypokalemia, |
arrythmia, and acute cardiac arrest, but such amounts would not ordinarily be encountered in natural sources. As such, caesium is not a major chemical environmental pollutant. The median lethal dose (LD50) value for caesium chloride in mice is 2.3 g per kilogram, which is comparable to the LD50 values of potassium chloride and sodium chloride. Caesium chloride has been promoted as an alternative cancer therapy, but has been linked to the deaths of over 50 patients, on whom it was used as part of a scientifically unvalidated cancer treatment. Radioisotopes of caesium require special precautions: the improper handling of caesium-137 gamma ray sources can lead to release of this radioisotope and radiation injuries. Perhaps the best-known case is the Goiânia accident of 1987, in which an improperly-disposed-of radiation therapy system from an abandoned clinic in the city of Goiânia, Brazil, was scavenged from a junkyard, and the glowing caesium salt sold to curious, uneducated buyers. This led to four deaths and serious injuries from radiation exposure. Together with caesium-134, iodine-131, and strontium-90, caesium-137 was among the isotopes distributed by the Chernobyl disaster which constitute the greatest risk to health. Radioisotopes of francium would presumably be dangerous as well due to their high decay energy and short half-life, but none have been produced in large enough amounts to pose any serious risk. Notes References A Groups (periodic table) Periodic table Articles containing video clips |
An alphabet is a standardized set of basic written graphemes (called letters) representing phonemes, units of sounds that distinguish words, of certain spoken languages. Not all writing systems represent language in this way; in a syllabary, each character represents a syllable, and logographic systems use characters to represent words, morphemes, or other semantic units. The Egyptians are believed to have created the first alphabet in a technical sense. The short uniliteral signs are used to write pronunciation guides for logograms, or a character that represents a word, or morpheme, and later on, being used to write foreign words. This was used up to the 5th century AD. The first fully phonemic script, the Proto-Sinaitic script, which developed into the Phoenician alphabet, is considered to be the first alphabet and is the ancestor of most modern alphabets, abjads, and abugidas, including Arabic, Cyrillic, Greek, Hebrew, Latin, and possibly Brahmic. It was created by Semitic-speaking workers and slaves in the Sinai Peninsula in modern-day Egypt, by selecting a small number of hieroglyphs commonly seen in their Egyptian surroundings to describe the sounds, as opposed to the semantic values of the Canaanite languages. Peter T. Daniels distinguishes an abugida, a set of graphemes that represent consonantal base letters that diacritics modify to represent vowels, like in Devanagari and other South Asian scripts, an abjad, in which letters predominantly or exclusively represent consonants such as the original Phoenician, Hebrew or Arabic, and an alphabet, a set of graphemes that represent both consonants and vowels. In this narrow sense of the word, the first true alphabet was the Greek alphabet, which was based on the earlier Phoenician abjad. Alphabets are usually associated with a standard ordering of letters. This makes them useful for purposes of collation, which allows words to be sorted in a specific order, commonly known as the alphabetical order. It also means that their letters can be used as an alternative method of "numbering" ordered items, in such contexts as numbered lists and number placements. There are also names for letters in some languages. This is known as acrophony; It is present in some modern scripts, such as Greek, and many Semitic scripts, such as Arabic, Hebrew, and Syriac. It was used in some ancient alphabets, such as in Phoenician. However, this system is not present in all languages, such as the Latin alphabet, which adds a vowel after a character for |
each letter. Some systems also used to have this system but later on abandoned it for a system similar to Latin, such as Cyrillic. Etymology The English word alphabet came into Middle English from the Late Latin word alphabetum, which in turn originated in the Greek, ἀλφάβητος (alphabētos); it was made from the first two letters of the Greek alphabet, alpha (α) and beta (β). The names for the Greek letters, in turn, came from the first two letters of the Phoenician alphabet: aleph, the word for ox, and bet, the word for house. History Ancient Northeast African and Middle Eastern scripts The history of the alphabet started in the Middle East. Egyptian writing had a set of some 24 hieroglyphs that are called uniliterals, which are glyphs that provide one sound. These glyphs were used as pronunciation guides for logograms, to write grammatical inflections, and, later, to transcribe loan words and foreign names. The script was used a fair amount in the 4th century CE. However, after pagan temples were closed down, it was forgotten in the 5th century until the discovery of the Rosetta Stone. There was also the Cuneiform script. The script was used to write several ancient languages. However, it was primarily used to write Sumerian. The last known use of the Cuneiform script was in 75 CE, after which the script fell out of use. In the Middle Bronze Age, an apparently "alphabetic" system known as the Proto-Sinaitic script appeared in Egyptian turquoise mines in the Sinai peninsula dated circa 15th century BCE, apparently left by Canaanite workers. In 1999, John and Deborah Darnell, American Egyptologists, discovered an earlier version of this first alphabet at the Wadi el-Hol valley in Egypt. The script dated to circa 1800 BCE and shows evidence of having been adapted from specific forms of Egyptian hieroglyphs that could be dated to circa 2000 BCE, strongly suggesting that the first alphabet had developed about that time. The script was based on letter appearances and names, believed to be based on Egyptian hieroglyphs. This script had no characters representing vowels. Originally, it probably was a syllabary—a script where syllables are represented with characters—with symbols that were not needed being removed. It was an alphabetic cuneiform script with 30 signs, including three that indicate the following vowel invented in Ugarit before the 15th century BCE. This script was not used after the destruction |
of Ugarit in 1178 BCE.The Proto-Sinaitic script eventually developed into the Phoenician alphabet, conventionally called "Proto-Canaanite" before circa 1050 BCE. The oldest text in Phoenician script is an inscription on the sarcophagus of King Ahiram circa 1000 BCE. This script is the parent script of all western alphabets. By the tenth century BCE, two other forms distinguish themselves, Canaanite and Aramaic. The Aramaic gave rise to the Hebrew script. The South Arabian alphabet, a sister script to the Phoenician alphabet, is the script from which the Ge'ez alphabet, an abugida, a writing system where consonant-vowel sequences are written as units, which was used around the horn of Africa, descended. Vowel-less alphabets are called abjads, currently exemplified in others such as Arabic, Hebrew, and Syriac. The omission of vowels was not always a satisfactory solution due to the need of preserving sacred texts. "Weak" consonants are used to indicate vowels. These letters have a dual function since they can also be used as pure consonants. The Proto-Sinaitic script and the Ugaritic script were the first scripts with a limited number of signs instead of using many different signs for words, in contrast to the other widely used writing systems at the time, Cuneiform, Egyptian hieroglyphs, and Linear B. The Phoenician script was probably the first phonemic script, and it contained only about two dozen distinct letters, making it a script simple enough for traders to learn. Another advantage of the Phoenician alphabet was that it could write different languages since it recorded words phonemically. The Phoenician script was spread across the Mediterranean by the Phoenicians. The Late Mycenaeans added vowels to the alphabet. This new script, Linear B, gave rise to the ancestor of all alphabets in the West. The Greek Alphabet was the first alphabet in which vowels have independent letter forms separate from those of consonants. The Greeks chose letters representing sounds that did not exist in Phoenician to represent vowels. The syllabical Linear B, a script that was used by the Mycenaean Greeks from the 16th century BCE, had 87 symbols, including five vowels. In its early years, there were many variants of the Greek alphabet, causing many different alphabets to evolve from it. European alphabets The Greek alphabet, in Euboean form, was carried over by Greek colonists to the Italian peninsula circa 800-600 BCE giving rise to many different alphabets used to write the Italic languages. Like |
the Etruscan alphabet. One of these became the Latin alphabet, which spread across Europe as the Romans expanded their republic. After the fall of the Western Roman state and later the Eastern Roman state, the alphabet survived in intellectual and religious works. It came to be used for the descendant languages of Latin (the Romance languages) and most of the other languages of western and central Europe. Being the most widely used script in the world. The Etruscan alphabet remained nearly unchanged for several hundred years. Only evolving once the Etruscan language changed itself. The letters used for non-existent phonemes were dropped. Afterwards, however, the alphabet went through many different changes. The final classical form of Etruscan contained 20 letters. Four of them are vowels (a, e, i, and u). Six fewer letters than the earlier forms. The script in its classical form was used until the 1st century CE. The Etruscan language itself was not used in imperial Rome, but the script was used for religious texts. Some adaptations of the Latin alphabet have ligatures, a combination of two letters make one, such as æ in Danish and Icelandic and Ȣ in Algonquian; borrowings from other alphabets, such as the thorn þ in Old English and Icelandic, which came from the Futhark runes; and modified existing letters, such as the eth ð of Old English and Icelandic, which is a modified d. Other alphabets only use a subset of the Latin alphabet, such as Hawaiian and Italian, which uses the letters j, k, x, y, and w only in foreign words. Another notable script is Elder Futhark, believed to have evolved out of one of the Old Italic alphabets. Elder Futhark gave rise to other alphabets known collectively as the Runic alphabets. The Runic alphabets were used for Germanic languages from 100 CE to the late Middle Ages, being engraved on stone and jewelry, although inscriptions found on bone and wood occasionally appear. These alphabets have since been replaced with the Latin alphabet. The exception was for decorative use, where the runes remained in use until the 20th century. The Old Hungarian script was the writing system of the Hungarians. It was in use during the entire history of Hungary, albeit not as an official writing system. From the 19th century, it once again became more and more popular. The Glagolitic alphabet was the initial script of the liturgical |
language Old Church Slavonic and became, together with the Greek uncial script, the basis of the Cyrillic script. Cyrillic is one of the most widely used modern alphabetic scripts and is notable for its use in Slavic languages and also for other languages within the former Soviet Union. Cyrillic alphabets include Serbian, Macedonian, Bulgarian, Russian, Belarusian, and Ukrainian. The Glagolitic alphabet is believed to have been created by Saints Cyril and Methodius, while the Cyrillic alphabet was created by Clement of Ohrid, their disciple. They feature many letters that appear to have been borrowed from or influenced by Greek and Hebrew. Asian alphabets Beyond the logographic Chinese writing, many phonetic scripts exist in Asia. The Arabic alphabet, Hebrew alphabet, Syriac alphabet, and other abjads of the Middle East are developments of the Aramaic alphabet. Most alphabetic scripts of India and Eastern Asia descend from the Brahmi script, believed to be a descendant of Aramaic. Hangul In Korea, Sejong the Great created the Hangul alphabet in 1443 CE. Hangul is a unique alphabet: it is a featural alphabet, where the design of many of the letters comes from a sound's place of articulation, like P looking like the widened mouth and L looking like the tongue pulled in. The creation of Hangul was planned by the government of the day, and it places individual letters in syllable clusters with equal dimensions, in the same way as Chinese characters. This change allows for mixed-script writing, where one syllable always takes up one type space no matter how many letters get stacked into building that one sound-block. Zhuyin Zhuyin, sometimes referred to as Bopomofo, is a semi-syllabary. It transcribes Mandarin phonetically in the Republic of China. After the later establishment of the People's Republic of China and its adoption of Hanyu Pinyin, the use of Zhuyin today is limited. However, it is still widely used in Taiwan, where the Republic of China governs. Zhuyin developed from a form of Chinese shorthand based on Chinese characters in the early 1900s and has elements of both an alphabet and a syllabary. Like an alphabet, the phonemes of syllable initials are represented by individual symbols, but like a syllabary, the phonemes of the syllable finals are not; each possible final (excluding the medial glide) has its own character, an example being luan written as ㄌㄨㄢ (l-u-an). The last symbol ㄢ takes place as the entire final |
-an. While Zhuyin is not a mainstream writing system, it is still often used in ways similar to a romanization system, for aiding pronunciation and as an input method for Chinese characters on computers and cellphones. Romanization European alphabets, especially Latin and Cyrillic, have been adapted for many languages of Asia. Arabic is also widely used, sometimes as an abjad, as with Urdu and Persian, and sometimes as a complete alphabet, as with Kurdish and Uyghur. Types The term "alphabet" is used by linguists and paleographers in both a wide and a narrow sense. In a broader sense, an alphabet is a segmental script at the phoneme level—that is, it has separate glyphs for individual sounds and not for larger units such as syllables or words. In the narrower sense, some scholars distinguish "true" alphabets from two other types of segmental script, abjads, and abugidas. These three differ in how they treat vowels. Abjads have letters for consonants and leave most vowels unexpressed. Abugidas are also consonant-based but indicate vowels with diacritics, a systematic graphic modification of the consonants. The earliest known alphabet using this sense is the Wadi el-Hol script, believed to be an abjad. Its successor, Phoenician, is the ancestor of modern alphabets, including Arabic, Greek, Latin (via the Old Italic alphabet), Cyrillic (via the Greek alphabet), and Hebrew (via Aramaic). Examples of present-day abjads are the Arabic and Hebrew scripts; true alphabets include Latin, Cyrillic, and Korean Hangul; and abugidas, used to write Tigrinya, Amharic, Hindi, and Thai. The Canadian Aboriginal syllabics are also an abugida, rather than a syllabary, as their name would imply, because each glyph stands for a consonant and is modified by rotation to represent the following vowel. In a true syllabary, each consonant-vowel combination gets represented by a separate glyph. All three types may be augmented with syllabic glyphs. Ugaritic, for example, is essentially an abjad but has syllabic letters for These are the only times that vowels are indicated. Coptic has a letter for . Devanagari is typically an abugida augmented with dedicated letters for initial vowels, though some traditions use अ as a zero consonant as the graphic base for such vowels. The boundaries between the three types of segmental scripts are not always clear-cut. For example, Sorani Kurdish is written in the Arabic script, which, when used for other languages, is an abjad. In Kurdish, writing the vowels is |
mandatory, and whole letters are used, so the script is a true alphabet. Other languages may use a Semitic abjad with forced vowel diacritics, effectively making them abugidas. On the other hand, the Phagspa script of the Mongol Empire was based closely on the Tibetan abugida, but vowel marks are written after the preceding consonant rather than as diacritic marks. Although short a is not written, as in the Indic abugidas, The source of the term "abugida," namely the Ge'ez abugida now used for Amharic and Tigrinya, has assimilated into their consonant modifications. It is no longer systematic and must be learned as a syllabary rather than as a segmental script. Even more extreme, the Pahlavi abjad eventually became logographic. Thus the primary categorisation of alphabets reflects how they treat vowels. For tonal languages, further classification can be based on their treatment of tone. Though names do not yet exist to distinguish the various types. Some alphabets disregard tone entirely, especially when it does not carry a heavy functional load, as in Somali and many other languages of Africa and the Americas. Most commonly, tones are indicated by diacritics, which is how vowels are treated in abugidas, which is the case for Vietnamese (a true alphabet) and Thai (an abugida). In Thai, the tone is determined primarily by a consonant, with diacritics for disambiguation. In the Pollard script, an abugida, vowels are indicated by diacritics. The placing of the diacritic relative to the consonant is modified to indicate the tone. More rarely, a script may have separate letters for tones, as is the case for Hmong and Zhuang. For many, regardless of whether letters or diacritics get used, the most common tone is not marked, just as the most common vowel is not marked in Indic abugidas. In Zhuyin, not only is one of the tones unmarked; but there is a diacritic to indicate a lack of tone, like the virama of Indic. Alphabetical order Alphabets often come to be associated with a standard ordering of their letters; this is for collation—namely, for listing words and other items in alphabetical order. Latin Alphabets The basic ordering of the Latin alphabet (A B C D E F G H I J K L M N O P Q R S T U V W X Y Z), which derives from the Northwest Semitic "Abgad" order, is already well established. Although, languages |
using this alphabet have different conventions for their treatment of modified letters (such as the French é, à, and ô) and certain combinations of letters (multigraphs). In French, these are not considered to be additional letters for collation. However, in Icelandic, the accented letters such as á, í, and ö are considered distinct letters representing different vowel sounds from sounds represented by their unaccented counterparts. In Spanish, ñ is considered a separate letter, but accented vowels such as á and é are not. The ll and ch were also formerly considered single letters and sorted separately after l and c, but in 1994, the tenth congress of the Association of Spanish Language Academies changed the collating order so that ll came to be sorted between lk and lm in the dictionary and ch came to be sorted between cg and ci; those digraphs were still formally designated as letters, but in 2010 the Real Academia Española changed it, so they are no longer considered letters at all. In German, words starting with sch- (which spells the German phoneme ) are inserted between words with initial sca- and sci- (all incidentally loanwords) instead of appearing after the initial sz, as though it were a single letter, which contrasts several languages such as Albanian, in which dh-, ë-, gj-, ll-, rr-, th-, xh-, and zh-, which all represent phonemes and considered separate single letters, would follow the letters d, e, g, l, n, r, t, x, and z, respectively, as well as Hungarian and Welsh. Further, German words with an umlaut get collated ignoring the umlaut as—contrary to Turkish, which adopted the graphemes ö and ü, and where a word like tüfek would come after tuz, in the dictionary. An exception is the German telephone directory, where umlauts are sorted like ä=ae since names such as Jäger also appear with the spelling Jaeger and are not distinguished in the spoken language. The Danish and Norwegian alphabets end with æ—ø—å, whereas the Swedish conventionally put å—ä—ö at the end. However, æ phonetically corresponds with ä, as does ø and ö. Early Alphabets It is unknown whether the earliest alphabets had a defined sequence. Some alphabets today, such as the Hanuno'o script, are learned one letter at a time, in no particular order, and are not used for collation where a definite order is required. However, a dozen Ugaritic tablets from the fourteenth century |
BCE preserve the alphabet in two sequences. One, the ABCDE order later used in Phoenician, has continued with minor changes in Hebrew, Greek, Armenian, Gothic, Cyrillic, and Latin; the other, HMĦLQ, was used in southern Arabia and is preserved today in Ethiopic. Both orders have therefore been stable for at least 3000 years. Runic used an unrelated Futhark sequence, which got simplified later on. Arabic uses usually uses its sequence, although Arabic retains the traditional abjadi order, which is used for numbers. The Brahmic family of alphabets used in India uses a unique order based on phonology: The letters are arranged according to how and where the sounds get produced in the mouth. This organization is present in Southeast Asia, Tibet, Korean hangul, and even Japanese kana, which is not an alphabet. Acrophony In Phoenician, each letter got associated with a word that begins with that sound. This is called acrophony and is continuously used to varying degrees in Samaritan, Aramaic, Syriac, Hebrew, Greek, and Arabic. Acrophony got abandoned in Latin. It referred to the letters by adding a vowel (usually "e," sometimes "a," or "u") before or after the consonant. Two exceptions were Y and Z, which were borrowed from the Greek alphabet rather than Etruscan. They were known as Y Graeca "Greek Y" and zeta (from Greek)—this discrepancy was inherited by many European languages, as in the term zed for Z in all forms of English, other than American English. Over time names sometimes shifted or were added, as in double U for W, or "double V" in French, the English name for Y, and the American zee for Z. Comparing them in English and French gives a clear reflection of the Great Vowel Shift: A, B, C, and D are pronounced in today's English, but in contemporary French they are . The French names (from which the English names got derived) preserve the qualities of the English vowels before the Great Vowel Shift. By contrast, the names of F, L, M, N, and S () remain the same in both languages because "short" vowels were largely unaffected by the Shift. In Cyrillic, originally, acrophony was present using Slavic words. The first three words going, azŭ, buky, vědě, with the Cyrillic collation order being, А, Б, В. However, this was later abandoned in favor of a system similar to Latin. Orthography and pronunciation When an alphabet is adopted |
or developed to represent a given language, an orthography generally comes into being, providing rules for spelling words, following the principle on which alphabets get based. These rules will map letters of the alphabet to the phonemes of the spoken language. In a perfectly phonemic orthography, there would be a consistent one-to-one correspondence between the letters and the phonemes so that a writer could predict the spelling of a word given its pronunciation, and a speaker would always know the pronunciation of a word given its spelling, and vice versa. However, this ideal is usually never achieved in practice. Languages can come close to it, such as Spanish and Finnish. others, such as English, deviate from it to a much larger degree. The pronunciation of a language often evolves independently of its writing system. Writing systems have been borrowed for languages the orthography was not initially made to use. The degree to which letters of an alphabet correspond to phonemes of a language varies. Languages may fail to achieve a one-to-one correspondence between letters and sounds in any of several ways: A language may represent a given phoneme by combinations of letters rather than just a single letter. Two-letter combinations are called digraphs, and three-letter groups are called trigraphs. German uses the tetragraphs (four letters) "tsch" for the phoneme and (in a few borrowed words) "dsch" for . Kabardian also uses a tetragraph for one of its phonemes, namely "кхъу." Two letters representing one sound occur in several instances in Hungarian as well (where, for instance, cs stands for [tʃ], sz for [s], zs for [ʒ], dzs for [dʒ]). A language may represent the same phoneme with two or more different letters or combinations of letters. An example is modern Greek which may write the phoneme in six different ways: , , , , , and . A language may spell some words with unpronounced letters that exist for historical or other reasons. For example, the spelling of the Thai word for "beer" [เบียร์] retains a letter for the final consonant "r" present in the English word it borrows, but silences it. Pronunciation of individual words may change according to the presence of surrounding words in a sentence, for example, in Sandhi. Different dialects of a language may use different phonemes for the same word. A language may use different sets of symbols or rules for distinct vocabulary items, typically |
for foreign words, such as in the Japanese katakana syllabary is used for foreign words, and there are rules in English for using loanwords from other languages. National languages sometimes elect to address the problem of dialects by associating the alphabet with the national standard. Some national languages like Finnish, Armenian, Turkish, Russian, Serbo-Croatian (Serbian, Croatian, and Bosnian), and Bulgarian have a very regular spelling system with nearly one-to-one correspondence between letters and phonemes. Similarly, the Italian verb corresponding to 'spell (out),' compitare, is unknown to many Italians because spelling is usually trivial, as Italian spelling is highly phonemic. In standard Spanish, one can tell the pronunciation of a word from its spelling, but not vice versa, as phonemes sometimes can be represented in more than one way, but a given letter is consistently pronounced. French using silent letters, nasal vowels, and elision, may seem to lack much correspondence between the spelling and pronunciation. However, its rules on pronunciation, though complex, are consistent and predictable with a fair degree of accuracy. At the other extreme are languages such as English, where pronunciations mostly have to be memorized as they do not correspond to the spelling consistently. For English, this is because the Great Vowel Shift occurred after the orthography got established and because English has acquired a large number of loanwords at different times, retaining their original spelling at varying levels. However, even English has general, albeit complex, rules that predict pronunciation from spelling. Rules like this are usually successful. However, rules to predict spelling from pronunciation have a higher failure rate. Sometimes, countries have the written language undergo a spelling reform to realign the writing with the contemporary spoken language. These can range from simple spelling changes and word forms to switching the entire writing system. For example, Turkey switched from the Arabic alphabet to a Latin-based Turkish alphabet, and when Kazakh changed from an Arabic script to a Cyrillic script due to the Soviet Union's influence, and in 2021, it made a transition to the Latin alphabet, similar to Turkish. The Cyrillic script used to be official in Uzbekistan and Turkmenistan before they all switched to the Latin alphabet, including Uzbekistan that is having a reform of the alphabet to use diacritics on the letters that are marked by apostrophes and the letters that are digraphs. The standard system of symbols used by linguists to represent sounds in |
any language, independently of orthography, is called the International Phonetic Alphabet. See also Abecedarium Acrophony Akshara Alphabet book Alphabet effect Alphabet song Alphabetical order Butterfly Alphabet Character encoding Constructed script Fingerspelling NATO phonetic alphabet Lipogram List of writing systems Pangram Thoth Transliteration Unicode References Bibliography Overview of modern and some ancient writing systems. Chapter 3 traces and summarizes the invention of alphabetic writing. Chapter 4 traces the invention of writing Further reading Josephine Quinn, "Alphabet Politics" (review of Silvia Ferrara, The Greatest Invention: A History of the World in Nine Mysterious Scripts, translated from the Italian by Todd Portnowitz, Farrar, Straus and Giroux, 2022, 289 pp.; and Johanna Drucker, Inventing the Alphabet: The Origins of Letters from Antiquity to the Present, University of Chicago Press, 2022, 380 pp.), The New York Review of Books, vol. LXX, no. 1 (19 January 2023), pp. 6, 8, 10. External links The Origins of abc "Language, Writing and Alphabet: An Interview with Christophe Rico", Damqātum 3 (2007) Michael Everson's Alphabets of Europe Evolution of alphabets, animation by Prof. Robert Fradkin at the University of Maryland How the Alphabet Was Born from Hieroglyphs—Biblical Archaeology Review An Early Hellenic Alphabet Museum of the Alphabet The Alphabet, BBC Radio 4 discussion with Eleanor Robson, Alan Millard and Rosalind Thomas (In Our Time, 18 December 2003) Orthography |
The atomic number or nuclear charge number (symbol Z) of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (np) or the number of protons found in the nucleus of every atom of that element. The atomic number can be used to uniquely identify ordinary chemical elements. In an ordinary uncharged atom, the atomic number is also equal to the number of electrons. For an ordinary atom, the sum of the atomic number Z and the neutron number N gives the atom's atomic mass number A. Since protons and neutrons have approximately the same mass (and the mass of the electrons is negligible for many purposes) and the mass defect of the nucleon binding is always small compared to the nucleon mass, the atomic mass of any atom, when expressed in unified atomic mass units (making a quantity called the "relative isotopic mass"), is within 1% of the whole number A. Atoms with the same atomic number but different neutron numbers, and hence different mass numbers, are known as isotopes. A little more than three-quarters of naturally occurring elements exist as a mixture of isotopes (see monoisotopic elements), and the average isotopic mass of an isotopic mixture for an element (called the relative atomic mass) in a defined environment on Earth, determines the element's standard atomic weight. Historically, it was these atomic weights of elements (in comparison to hydrogen) that were the quantities measurable by chemists in the 19th century. The conventional symbol Z comes from the German word 'number', which, before the modern synthesis of ideas from chemistry and physics, merely denoted an element's numerical place in the periodic table, whose order was then approximately, but not completely, consistent with the order of the elements by atomic weights. Only after 1915, with the suggestion and evidence that this Z number was also the nuclear charge and a physical characteristic of atoms, did the word (and its English equivalent atomic number) come into common use in this context. History The periodic table and a natural number for each element Loosely speaking, the existence or construction of a periodic table of elements creates an ordering of the elements, and so they can be numbered in order. Dmitri Mendeleev claimed that he arranged his first periodic tables (first published on March 6, 1869) in order of atomic weight ("Atomgewicht"). However, |
in consideration of the elements' observed chemical properties, he changed the order slightly and placed tellurium (atomic weight 127.6) ahead of iodine (atomic weight 126.9). This placement is consistent with the modern practice of ordering the elements by proton number, Z, but that number was not known or suspected at the time. A simple numbering based on periodic table position was never entirely satisfactory, however. Besides the case of iodine and tellurium, later several other pairs of elements (such as argon and potassium, cobalt and nickel) were known to have nearly identical or reversed atomic weights, thus requiring their placement in the periodic table to be determined by their chemical properties. However the gradual identification of more and more chemically similar lanthanide elements, whose atomic number was not obvious, led to inconsistency and uncertainty in the periodic numbering of elements at least from lutetium (element 71) onward (hafnium was not known at this time). The Rutherford-Bohr model and van den Broek In 1911, Ernest Rutherford gave a model of the atom in which a central nucleus held most of the atom's mass and a positive charge which, in units of the electron's charge, was to be approximately equal to half of the atom's atomic weight, expressed in numbers of hydrogen atoms. This central charge would thus be approximately half the atomic weight (though it was almost 25% different from the atomic number of gold , ), the single element from which Rutherford made his guess). Nevertheless, in spite of Rutherford's estimation that gold had a central charge of about 100 (but was element on the periodic table), a month after Rutherford's paper appeared, Antonius van den Broek first formally suggested that the central charge and number of electrons in an atom was exactly equal to its place in the periodic table (also known as element number, atomic number, and symbolized Z). This proved eventually to be the case. Moseley's 1913 experiment The experimental position improved dramatically after research by Henry Moseley in 1913. Moseley, after discussions with Bohr who was at the same lab (and who had used Van den Broek's hypothesis in his Bohr model of the atom), decided to test Van den Broek's and Bohr's hypothesis directly, by seeing if spectral lines emitted from excited atoms fitted the Bohr theory's postulation that the frequency of the spectral lines be proportional to the square of Z. To do this, |
Moseley measured the wavelengths of the innermost photon transitions (K and L lines) produced by the elements from aluminum (Z = 13) to gold (Z = 79) used as a series of movable anodic targets inside an x-ray tube. The square root of the frequency of these photons increased from one target to the next in an arithmetic progression. This led to the conclusion (Moseley's law) that the atomic number does closely correspond (with an offset of one unit for K-lines, in Moseley's work) to the calculated electric charge of the nucleus, i.e. the element number Z. Among other things, Moseley demonstrated that the lanthanide series (from lanthanum to lutetium inclusive) must have 15 members—no fewer and no more—which was far from obvious from known chemistry at that time. Missing elements After Moseley's death in 1915, the atomic numbers of all known elements from hydrogen to uranium (Z = 92) were examined by his method. There were seven elements (with Z < 92) which were not found and therefore identified as still undiscovered, corresponding to atomic numbers 43, 61, 72, 75, 85, 87 and 91. From 1918 to 1947, all seven of these missing elements were discovered. By this time, the first four transuranium elements had also been discovered, so that the periodic table was complete with no gaps as far as curium (Z = 96). The proton and the idea of nuclear electrons In 1915, the reason for nuclear charge being quantized in units of Z, which were now recognized to be the same as the element number, was not understood. An old idea called Prout's hypothesis had postulated that the elements were all made of residues (or "protyles") of the lightest element hydrogen, which in the Bohr-Rutherford model had a single electron and a nuclear charge of one. However, as early as 1907, Rutherford and Thomas Royds had shown that alpha particles, which had a charge of +2, were the nuclei of helium atoms, which had a mass four times that of hydrogen, not two times. If Prout's hypothesis were true, something had to be neutralizing some of the charge of the hydrogen nuclei present in the nuclei of heavier atoms. In 1917, Rutherford succeeded in generating hydrogen nuclei from a nuclear reaction between alpha particles and nitrogen gas, and believed he had proven Prout's law. He called the new heavy nuclear particles protons in 1920 (alternate names |
being proutons and protyles). It had been immediately apparent from the work of Moseley that the nuclei of heavy atoms have more than twice as much mass as would be expected from their being made of hydrogen nuclei, and thus there was required a hypothesis for the neutralization of the extra protons presumed present in all heavy nuclei. A helium nucleus was presumed to be composed of four protons plus two "nuclear electrons" (electrons bound inside the nucleus) to cancel two of the charges. At the other end of the periodic table, a nucleus of gold with a mass 197 times that of hydrogen was thought to contain 118 nuclear electrons in the nucleus to give it a residual charge of +79, consistent with its atomic number. The discovery of the neutron makes Z the proton number All consideration of nuclear electrons ended with James Chadwick's discovery of the neutron in 1932. An atom of gold now was seen as containing 118 neutrons rather than 118 nuclear electrons, and its positive nuclear charge now was realized to come entirely from a content of 79 protons. Since Moseley had previously shown that the atomic number Z of an element equals this positive charge, it was now clear that Z is identical to the number of protons of its nuclei. Chemical properties Each element has a specific set of chemical properties as a consequence of the number of electrons present in the neutral atom, which is Z (the atomic number). The configuration of these electrons follows from the principles of quantum mechanics. The number of electrons in each element's electron shells, particularly the outermost valence shell, is the primary factor in determining its chemical bonding behavior. Hence, it is the atomic number alone that determines the chemical properties of an element; and it is for this reason that an element can be defined as consisting of any mixture of atoms with a given atomic number. New elements The quest for new elements is usually described using atomic numbers. As of , all elements with atomic numbers 1 to 118 have been observed. Synthesis of new elements is accomplished by bombarding target atoms of heavy elements with ions, such that the sum of the atomic numbers of the target and ion elements equals the atomic number of the element being created. In general, the half-life of a nuclide becomes shorter as atomic number |
increases, though undiscovered nuclides with certain "magic" numbers of protons and neutrons may have relatively longer half-lives and comprise an island of stability. A hypothetical element composed only of neutrons has also been proposed and would have atomic number 0. See also Atomic theory Chemical element Effective atomic number (disambiguation) Even and odd atomic nuclei Exotic atom History of the periodic table List of elements by atomic number Mass number Neutron number Neutron–proton ratio Prout's hypothesis References Chemical properties Nuclear physics Atoms Dimensionless numbers of chemistry Numbers |
Anatomy () is the branch of biology concerned with the study of the structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times. Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated, both over immediate and long-term timescales. Anatomy and physiology, which study the structure and function of organisms and their parts respectively, make a natural pair of related disciplines, and are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine. The discipline of anatomy is divided into macroscopic and microscopic. Macroscopic anatomy, or gross anatomy, is the examination of an animal's body parts using unaided eyesight. Gross anatomy also includes the branch of superficial anatomy. Microscopic anatomy involves the use of optical instruments in the study of the tissues of various structures, known as histology, and also in the study of cells. The history of anatomy is characterized by a progressive understanding of the functions of the organs and structures of the human body. Methods have also improved dramatically, advancing from the examination of animals by dissection of carcasses and cadavers (corpses) to 20th century medical imaging techniques, including X-ray, ultrasound, and magnetic resonance imaging. Etymology and definition Derived from the Greek anatomē "dissection" (from anatémnō "I cut up, cut open" from ἀνά aná "up," and τέμνω témnō "I cut"), anatomy is the scientific study of the structure of organisms including their systems, organs and tissues. It includes the appearance and position of the various parts, the materials from which they are composed, and their relationships with other parts. Anatomy is quite distinct from physiology and biochemistry, which deal respectively with the functions of those parts and the chemical processes involved. For example, an anatomist is concerned with the shape, size, position, structure, blood supply and innervation of an organ such as the liver; while a physiologist is interested in the production of bile, the role of the liver in nutrition and the regulation of bodily functions. The discipline of anatomy can be subdivided into a number of branches, including gross or macroscopic anatomy and microscopic anatomy. Gross anatomy is the study of structures large enough to be seen with the naked eye, |
and also includes superficial anatomy or surface anatomy, the study by sight of the external body features. Microscopic anatomy is the study of structures on a microscopic scale, along with histology (the study of tissues), and embryology (the study of an organism in its immature condition). Anatomy can be studied using both invasive and non-invasive methods with the goal of obtaining information about the structure and organization of organs and systems. Methods used include dissection, in which a body is opened and its organs studied, and endoscopy, in which a video camera-equipped instrument is inserted through a small incision in the body wall and used to explore the internal organs and other structures. Angiography using X-rays or magnetic resonance angiography are methods to visualize blood vessels. The term "anatomy" is commonly taken to refer to human anatomy. However, substantially similar structures and tissues are found throughout the rest of the animal kingdom, and the term also includes the anatomy of other animals. The term zootomy is also sometimes used to specifically refer to non-human animals. The structure and tissues of plants are of a dissimilar nature and they are studied in plant anatomy. Animal tissues The kingdom Animalia contains multicellular organisms that are heterotrophic and motile (although some have secondarily adopted a sessile lifestyle). Most animals have bodies differentiated into separate tissues and these animals are also known as eumetazoans. They have an internal digestive chamber, with one or two openings; the gametes are produced in multicellular sex organs, and the zygotes include a blastula stage in their embryonic development. Metazoans do not include the sponges, which have undifferentiated cells. Unlike plant cells, animal cells have neither a cell wall nor chloroplasts. Vacuoles, when present, are more in number and much smaller than those in the plant cell. The body tissues are composed of numerous types of cell, including those found in muscles, nerves and skin. Each typically has a cell membrane formed of phospholipids, cytoplasm and a nucleus. All of the different cells of an animal are derived from the embryonic germ layers. Those simpler invertebrates which are formed from two germ layers of ectoderm and endoderm are called diploblastic and the more developed animals whose structures and organs are formed from three germ layers are called triploblastic. All of a triploblastic animal's tissues and organs are derived from the three germ layers of the embryo, the ectoderm, mesoderm |
and endoderm. Animal tissues can be grouped into four basic types: connective, epithelial, muscle and nervous tissue. Connective tissue Connective tissues are fibrous and made up of cells scattered among inorganic material called the extracellular matrix. Connective tissue gives shape to organs and holds them in place. The main types are loose connective tissue, adipose tissue, fibrous connective tissue, cartilage and bone. The extracellular matrix contains proteins, the chief and most abundant of which is collagen. Collagen plays a major part in organizing and maintaining tissues. The matrix can be modified to form a skeleton to support or protect the body. An exoskeleton is a thickened, rigid cuticle which is stiffened by mineralization, as in crustaceans or by the cross-linking of its proteins as in insects. An endoskeleton is internal and present in all developed animals, as well as in many of those less developed. Epithelium Epithelial tissue is composed of closely packed cells, bound to each other by cell adhesion molecules, with little intercellular space. Epithelial cells can be squamous (flat), cuboidal or columnar and rest on a basal lamina, the upper layer of the basement membrane, the lower layer is the reticular lamina lying next to the connective tissue in the extracellular matrix secreted by the epithelial cells. There are many different types of epithelium, modified to suit a particular function. In the respiratory tract there is a type of ciliated epithelial lining; in the small intestine there are microvilli on the epithelial lining and in the large intestine there are intestinal villi. Skin consists of an outer layer of keratinized stratified squamous epithelium that covers the exterior of the vertebrate body. Keratinocytes make up to 95% of the cells in the skin. The epithelial cells on the external surface of the body typically secrete an extracellular matrix in the form of a cuticle. In simple animals this may just be a coat of glycoproteins. In more advanced animals, many glands are formed of epithelial cells. Muscle tissue Muscle cells (myocytes) form the active contractile tissue of the body. Muscle tissue functions to produce force and cause motion, either locomotion or movement within internal organs. Muscle is formed of contractile filaments and is separated into three main types; smooth muscle, skeletal muscle and cardiac muscle. Smooth muscle has no striations when examined microscopically. It contracts slowly but maintains contractibility over a wide range of stretch lengths. It is |
found in such organs as sea anemone tentacles and the body wall of sea cucumbers. Skeletal muscle contracts rapidly but has a limited range of extension. It is found in the movement of appendages and jaws. Obliquely striated muscle is intermediate between the other two. The filaments are staggered and this is the type of muscle found in earthworms that can extend slowly or make rapid contractions. In higher animals striated muscles occur in bundles attached to bone to provide movement and are often arranged in antagonistic sets. Smooth muscle is found in the walls of the uterus, bladder, intestines, stomach, oesophagus, respiratory airways, and blood vessels. Cardiac muscle is found only in the heart, allowing it to contract and pump blood round the body. Nervous tissue Nervous tissue is composed of many nerve cells known as neurons which transmit information. In some slow-moving radially symmetrical marine animals such as ctenophores and cnidarians (including sea anemones and jellyfish), the nerves form a nerve net, but in most animals they are organized longitudinally into bundles. In simple animals, receptor neurons in the body wall cause a local reaction to a stimulus. In more complex animals, specialized receptor cells such as chemoreceptors and photoreceptors are found in groups and send messages along neural networks to other parts of the organism. Neurons can be connected together in ganglia. In higher animals, specialized receptors are the basis of sense organs and there is a central nervous system (brain and spinal cord) and a peripheral nervous system. The latter consists of sensory nerves that transmit information from sense organs and motor nerves that influence target organs. The peripheral nervous system is divided into the somatic nervous system which conveys sensation and controls voluntary muscle, and the autonomic nervous system which involuntarily controls smooth muscle, certain glands and internal organs, including the stomach. Vertebrate anatomy All vertebrates have a similar basic body plan and at some point in their lives, mostly in the embryonic stage, share the major chordate characteristics: a stiffening rod, the notochord; a dorsal hollow tube of nervous material, the neural tube; pharyngeal arches; and a tail posterior to the anus. The spinal cord is protected by the vertebral column and is above the notochord, and the gastrointestinal tract is below it. Nervous tissue is derived from the ectoderm, connective tissues are derived from mesoderm, and gut is derived from the endoderm. At |
the posterior end is a tail which continues the spinal cord and vertebrae but not the gut. The mouth is found at the anterior end of the animal, and the anus at the base of the tail. The defining characteristic of a vertebrate is the vertebral column, formed in the development of the segmented series of vertebrae. In most vertebrates the notochord becomes the nucleus pulposus of the intervertebral discs. However, a few vertebrates, such as the sturgeon and the coelacanth, retain the notochord into adulthood. Jawed vertebrates are typified by paired appendages, fins or legs, which may be secondarily lost. The limbs of vertebrates are considered to be homologous because the same underlying skeletal structure was inherited from their last common ancestor. This is one of the arguments put forward by Charles Darwin to support his theory of evolution. Fish anatomy The body of a fish is divided into a head, trunk and tail, although the divisions between the three are not always externally visible. The skeleton, which forms the support structure inside the fish, is either made of cartilage, in cartilaginous fish, or bone in bony fish. The main skeletal element is the vertebral column, composed of articulating vertebrae which are lightweight yet strong. The ribs attach to the spine and there are no limbs or limb girdles. The main external features of the fish, the fins, are composed of either bony or soft spines called rays, which with the exception of the caudal fins, have no direct connection with the spine. They are supported by the muscles which compose the main part of the trunk. The heart has two chambers and pumps the blood through the respiratory surfaces of the gills and on round the body in a single circulatory loop. The eyes are adapted for seeing underwater and have only local vision. There is an inner ear but no external or middle ear. Low frequency vibrations are detected by the lateral line system of sense organs that run along the length of the sides of fish, and these respond to nearby movements and to changes in water pressure. Sharks and rays are basal fish with numerous primitive anatomical features similar to those of ancient fish, including skeletons composed of cartilage. Their bodies tend to be dorso-ventrally flattened, they usually have five pairs of gill slits and a large mouth set on the underside of the head. |
The dermis is covered with separate dermal placoid scales. They have a cloaca into which the urinary and genital passages open, but not a swim bladder. Cartilaginous fish produce a small number of large, yolky eggs. Some species are ovoviviparous and the young develop internally but others are oviparous and the larvae develop externally in egg cases. The bony fish lineage shows more derived anatomical traits, often with major evolutionary changes from the features of ancient fish. They have a bony skeleton, are generally laterally flattened, have five pairs of gills protected by an operculum, and a mouth at or near the tip of the snout. The dermis is covered with overlapping scales. Bony fish have a swim bladder which helps them maintain a constant depth in the water column, but not a cloaca. They mostly spawn a large number of small eggs with little yolk which they broadcast into the water column. Amphibian anatomy Amphibians are a class of animals comprising frogs, salamanders and caecilians. They are tetrapods, but the caecilians and a few species of salamander have either no limbs or their limbs are much reduced in size. Their main bones are hollow and lightweight and are fully ossified and the vertebrae interlock with each other and have articular processes. Their ribs are usually short and may be fused to the vertebrae. Their skulls are mostly broad and short, and are often incompletely ossified. Their skin contains little keratin and lacks scales, but contains many mucous glands and in some species, poison glands. The hearts of amphibians have three chambers, two atria and one ventricle. They have a urinary bladder and nitrogenous waste products are excreted primarily as urea. Amphibians breathe by means of buccal pumping, a pump action in which air is first drawn into the buccopharyngeal region through the nostrils. These are then closed and the air is forced into the lungs by contraction of the throat. They supplement this with gas exchange through the skin which needs to be kept moist. In frogs the pelvic girdle is robust and the hind legs are much longer and stronger than the forelimbs. The feet have four or five digits and the toes are often webbed for swimming or have suction pads for climbing. Frogs have large eyes and no tail. Salamanders resemble lizards in appearance; their short legs project sideways, the belly is close to or in |
contact with the ground and they have a long tail. Caecilians superficially resemble earthworms and are limbless. They burrow by means of zones of muscle contractions which move along the body and they swim by undulating their body from side to side. Reptile anatomy Reptiles are a class of animals comprising turtles, tuataras, lizards, snakes and crocodiles. They are tetrapods, but the snakes and a few species of lizard either have no limbs or their limbs are much reduced in size. Their bones are better ossified and their skeletons stronger than those of amphibians. The teeth are conical and mostly uniform in size. The surface cells of the epidermis are modified into horny scales which create a waterproof layer. Reptiles are unable to use their skin for respiration as do amphibians and have a more efficient respiratory system drawing air into their lungs by expanding their chest walls. The heart resembles that of the amphibian but there is a septum which more completely separates the oxygenated and deoxygenated bloodstreams. The reproductive system has evolved for internal fertilization, with a copulatory organ present in most species. The eggs are surrounded by amniotic membranes which prevents them from drying out and are laid on land, or develop internally in some species. The bladder is small as nitrogenous waste is excreted as uric acid. Turtles are notable for their protective shells. They have an inflexible trunk encased in a horny carapace above and a plastron below. These are formed from bony plates embedded in the dermis which are overlain by horny ones and are partially fused with the ribs and spine. The neck is long and flexible and the head and the legs can be drawn back inside the shell. Turtles are vegetarians and the typical reptile teeth have been replaced by sharp, horny plates. In aquatic species, the front legs are modified into flippers. Tuataras superficially resemble lizards but the lineages diverged in the Triassic period. There is one living species, Sphenodon punctatus. The skull has two openings (fenestrae) on either side and the jaw is rigidly attached to the skull. There is one row of teeth in the lower jaw and this fits between the two rows in the upper jaw when the animal chews. The teeth are merely projections of bony material from the jaw and eventually wear down. The brain and heart are more primitive than those of other |
reptiles, and the lungs have a single chamber and lack bronchi. The tuatara has a well-developed parietal eye on its forehead. Lizards have skulls with only one fenestra on each side, the lower bar of bone below the second fenestra having been lost. This results in the jaws being less rigidly attached which allows the mouth to open wider. Lizards are mostly quadrupeds, with the trunk held off the ground by short, sideways-facing legs, but a few species have no limbs and resemble snakes. Lizards have moveable eyelids, eardrums are present and some species have a central parietal eye. Snakes are closely related to lizards, having branched off from a common ancestral lineage during the Cretaceous period, and they share many of the same features. The skeleton consists of a skull, a hyoid bone, spine and ribs though a few species retain a vestige of the pelvis and rear limbs in the form of pelvic spurs. The bar under the second fenestra has also been lost and the jaws have extreme flexibility allowing the snake to swallow its prey whole. Snakes lack moveable eyelids, the eyes being covered by transparent "spectacle" scales. They do not have eardrums but can detect ground vibrations through the bones of their skull. Their forked tongues are used as organs of taste and smell and some species have sensory pits on their heads enabling them to locate warm-blooded prey. Crocodilians are large, low-slung aquatic reptiles with long snouts and large numbers of teeth. The head and trunk are dorso-ventrally flattened and the tail is laterally compressed. It undulates from side to side to force the animal through the water when swimming. The tough keratinized scales provide body armour and some are fused to the skull. The nostrils, eyes and ears are elevated above the top of the flat head enabling them to remain above the surface of the water when the animal is floating. Valves seal the nostrils and ears when it is submerged. Unlike other reptiles, crocodilians have hearts with four chambers allowing complete separation of oxygenated and deoxygenated blood. Bird anatomy Birds are tetrapods but though their hind limbs are used for walking or hopping, their front limbs are wings covered with feathers and adapted for flight. Birds are endothermic, have a high metabolic rate, a light skeletal system and powerful muscles. The long bones are thin, hollow and very light. Air sac |
extensions from the lungs occupy the centre of some bones. The sternum is wide and usually has a keel and the caudal vertebrae are fused. There are no teeth and the narrow jaws are adapted into a horn-covered beak. The eyes are relatively large, particularly in nocturnal species such as owls. They face forwards in predators and sideways in ducks. The feathers are outgrowths of the epidermis and are found in localized bands from where they fan out over the skin. Large flight feathers are found on the wings and tail, contour feathers cover the bird's surface and fine down occurs on young birds and under the contour feathers of water birds. The only cutaneous gland is the single uropygial gland near the base of the tail. This produces an oily secretion that waterproofs the feathers when the bird preens. There are scales on the legs, feet and claws on the tips of the toes. Mammal anatomy Mammals are a diverse class of animals, mostly terrestrial but some are aquatic and others have evolved flapping or gliding flight. They mostly have four limbs, but some aquatic mammals have no limbs or limbs modified into fins, and the forelimbs of bats are modified into wings. The legs of most mammals are situated below the trunk, which is held well clear of the ground. The bones of mammals are well ossified and their teeth, which are usually differentiated, are coated in a layer of prismatic enamel. The teeth are shed once (milk teeth) during the animal's lifetime or not at all, as is the case in cetaceans. Mammals have three bones in the middle ear and a cochlea in the inner ear. They are clothed in hair and their skin contains glands which secrete sweat. Some of these glands are specialized as mammary glands, producing milk to feed the young. Mammals breathe with lungs and have a muscular diaphragm separating the thorax from the abdomen which helps them draw air into the lungs. The mammalian heart has four chambers, and oxygenated and deoxygenated blood are kept entirely separate. Nitrogenous waste is excreted primarily as urea. Mammals are amniotes, and most are viviparous, giving birth to live young. Exceptions to this are the egg-laying monotremes, the platypus and the echidnas of Australia. Most other mammals have a placenta through which the developing foetus obtains nourishment, but in marsupials, the foetal stage is very |
short and the immature young is born and finds its way to its mother's pouch where it latches on to a nipple and completes its development. Human anatomy Humans have the overall body plan of a mammal. Humans have a head, neck, trunk (which includes the thorax and abdomen), two arms and hands, and two legs and feet. Generally, students of certain biological sciences, paramedics, prosthetists and orthotists, physiotherapists, occupational therapists, nurses, podiatrists, and medical students learn gross anatomy and microscopic anatomy from anatomical models, skeletons, textbooks, diagrams, photographs, lectures and tutorials and in addition, medical students generally also learn gross anatomy through practical experience of dissection and inspection of cadavers. The study of microscopic anatomy (or histology) can be aided by practical experience examining histological preparations (or slides) under a microscope. Human anatomy, physiology and biochemistry are complementary basic medical sciences, which are generally taught to medical students in their first year at medical school. Human anatomy can be taught regionally or systemically; that is, respectively, studying anatomy by bodily regions such as the head and chest, or studying by specific systems, such as the nervous or respiratory systems. The major anatomy textbook, Gray's Anatomy, has been reorganized from a systems format to a regional format, in line with modern teaching methods. A thorough working knowledge of anatomy is required by physicians, especially surgeons and doctors working in some diagnostic specialties, such as histopathology and radiology. Academic anatomists are usually employed by universities, medical schools or teaching hospitals. They are often involved in teaching anatomy, and research into certain systems, organs, tissues or cells. Invertebrate anatomy Invertebrates constitute a vast array of living organisms ranging from the simplest unicellular eukaryotes such as Paramecium to such complex multicellular animals as the octopus, lobster and dragonfly. They constitute about 95% of the animal species. By definition, none of these creatures has a backbone. The cells of single-cell protozoans have the same basic structure as those of multicellular animals but some parts are specialized into the equivalent of tissues and organs. Locomotion is often provided by cilia or flagella or may proceed via the advance of pseudopodia, food may be gathered by phagocytosis, energy needs may be supplied by photosynthesis and the cell may be supported by an endoskeleton or an exoskeleton. Some protozoans can form multicellular colonies. Metazoans are a multicellular organism, with different groups of cells serving different functions. The |
most basic types of metazoan tissues are epithelium and connective tissue, both of which are present in nearly all invertebrates. The outer surface of the epidermis is normally formed of epithelial cells and secretes an extracellular matrix which provides support to the organism. An endoskeleton derived from the mesoderm is present in echinoderms, sponges and some cephalopods. Exoskeletons are derived from the epidermis and is composed of chitin in arthropods (insects, spiders, ticks, shrimps, crabs, lobsters). Calcium carbonate constitutes the shells of molluscs, brachiopods and some tube-building polychaete worms and silica forms the exoskeleton of the microscopic diatoms and radiolaria. Other invertebrates may have no rigid structures but the epidermis may secrete a variety of surface coatings such as the pinacoderm of sponges, the gelatinous cuticle of cnidarians (polyps, sea anemones, jellyfish) and the collagenous cuticle of annelids. The outer epithelial layer may include cells of several types including sensory cells, gland cells and stinging cells. There may also be protrusions such as microvilli, cilia, bristles, spines and tubercles. Marcello Malpighi, the father of microscopical anatomy, discovered that plants had tubules similar to those he saw in insects like the silk worm. He observed that when a ring-like portion of bark was removed on a trunk a swelling occurred in the tissues above the ring, and he unmistakably interpreted this as growth stimulated by food coming down from the leaves, and being captured above the ring. Arthropod anatomy Arthropods comprise the largest phylum in the animal kingdom with over a million known invertebrate species. Insects possess segmented bodies supported by a hard-jointed outer covering, the exoskeleton, made mostly of chitin. The segments of the body are organized into three distinct parts, a head, a thorax and an abdomen. The head typically bears a pair of sensory antennae, a pair of compound eyes, one to three simple eyes (ocelli) and three sets of modified appendages that form the mouthparts. The thorax has three pairs of segmented legs, one pair each for the three segments that compose the thorax and one or two pairs of wings. The abdomen is composed of eleven segments, some of which may be fused and houses the digestive, respiratory, excretory and reproductive systems. There is considerable variation between species and many adaptations to the body parts, especially wings, legs, antennae and mouthparts. Spiders a class of arachnids have four pairs of legs; a body of two segments—a |
cephalothorax and an abdomen. Spiders have no wings and no antennae. They have mouthparts called chelicerae which are often connected to venom glands as most spiders are venomous. They have a second pair of appendages called pedipalps attached to the cephalothorax. These have similar segmentation to the legs and function as taste and smell organs. At the end of each male pedipalp is a spoon-shaped cymbium that acts to support the copulatory organ. Other branches of anatomy Superficial or surface anatomy is important as the study of anatomical landmarks that can be readily seen from the exterior contours of the body. It enables physicians or veterinary surgeons to gauge the position and anatomy of the associated deeper structures. Superficial is a directional term that indicates that structures are located relatively close to the surface of the body. Comparative anatomy relates to the comparison of anatomical structures (both gross and microscopic) in different animals. Artistic anatomy relates to anatomic studies for artistic reasons. History Ancient In 1600 BCE, the Edwin Smith Papyrus, an Ancient Egyptian medical text, described the heart, its vessels, liver, spleen, kidneys, hypothalamus, uterus and bladder, and showed the blood vessels diverging from the heart. The Ebers Papyrus () features a "treatise on the heart", with vessels carrying all the body's fluids to or from every member of the body. Ancient Greek anatomy and physiology underwent great changes and advances throughout the early medieval world. Over time, this medical practice expanded by a continually developing understanding of the functions of organs and structures in the body. Phenomenal anatomical observations of the human body were made, which have contributed towards the understanding of the brain, eye, liver, reproductive organs and the nervous system. The Hellenistic Egyptian city of Alexandria was the stepping-stone for Greek anatomy and physiology. Alexandria not only housed the biggest library for medical records and books of the liberal arts in the world during the time of the Greeks, but was also home to many medical practitioners and philosophers. Great patronage of the arts and sciences from the Ptolemy rulers helped raise Alexandria up, further rivalling the cultural and scientific achievements of other Greek states. Some of the most striking advances in early anatomy and physiology took place in Hellenistic Alexandria. Two of the most famous anatomists and physiologists of the third century were Herophilus and Erasistratus. These two physicians helped pioneer human dissection for medical |
research, using the cadavers of condemned criminals, which was considered taboo until the Renaissance—Herophilus was recognized as the first person to perform systematic dissections. Herophilus became known for his anatomical works making impressing contributions to many branches of anatomy and many other aspects of medicine. Some of the works included classifying the system of the pulse, the discovery that human arteries had thicker walls than veins, and that the atria were parts of the heart. Herophilus's knowledge of the human body has provided vital input towards understanding the brain, eye, liver, reproductive organs and nervous system, and characterizing the course of disease. Erasistratus accurately described the structure of the brain, including the cavities and membranes, and made a distinction between its cerebrum and cerebellum During his study in Alexandria, Erasistratus was particularly concerned with studies of the circulatory and nervous systems. He was able to distinguish the sensory and the motor nerves in the human body and believed that air entered the lungs and heart, which was then carried throughout the body. His distinction between the arteries and veins—the arteries carrying the air through the body, while the veins carried the blood from the heart was a great anatomical discovery. Erasistratus was also responsible for naming and describing the function of the epiglottis and the valves of the heart, including the tricuspid. During the third century, Greek physicians were able to differentiate nerves from blood vessels and tendons and to realize that the nerves convey neural impulses. It was Herophilus who made the point that damage to motor nerves induced paralysis. Herophilus named the meninges and ventricles in the brain, appreciated the division between cerebellum and cerebrum and recognized that the brain was the "seat of intellect" and not a "cooling chamber" as propounded by Aristotle Herophilus is also credited with describing the optic, oculomotor, motor division of the trigeminal, facial, vestibulocochlear and hypoglossal nerves. Great feats were made during the third century BCE in both the digestive and reproductive systems. Herophilus was able to discover and describe not only the salivary glands, but the small intestine and liver. He showed that the uterus is a hollow organ and described the ovaries and uterine tubes. He recognized that spermatozoa were produced by the testes and was the first to identify the prostate gland. The anatomy of the muscles and skeleton is described in the Hippocratic Corpus, an Ancient Greek medical |
work written by unknown authors. Aristotle described vertebrate anatomy based on animal dissection. Praxagoras identified the difference between arteries and veins. Also in the 4th century BCE, Herophilos and Erasistratus produced more accurate anatomical descriptions based on vivisection of criminals in Alexandria during the Ptolemaic dynasty. In the 2nd century, Galen of Pergamum, an anatomist, clinician, writer and philosopher, wrote the final and highly influential anatomy treatise of ancient times. He compiled existing knowledge and studied anatomy through dissection of animals. He was one of the first experimental physiologists through his vivisection experiments on animals. Galen's drawings, based mostly on dog anatomy, became effectively the only anatomical textbook for the next thousand years. His work was known to Renaissance doctors only through Islamic Golden Age medicine until it was translated from the Greek some time in the 15th century. Medieval to early modern Anatomy developed little from classical times until the sixteenth century; as the historian Marie Boas writes, "Progress in anatomy before the sixteenth century is as mysteriously slow as its development after 1500 is startlingly rapid". Between 1275 and 1326, the anatomists Mondino de Luzzi, Alessandro Achillini and Antonio Benivieni at Bologna carried out the first systematic human dissections since ancient times. Mondino's Anatomy of 1316 was the first textbook in the medieval rediscovery of human anatomy. It describes the body in the order followed in Mondino's dissections, starting with the abdomen, then the thorax, then the head and limbs. It was the standard anatomy textbook for the next century. Leonardo da Vinci (1452–1519) was trained in anatomy by Andrea del Verrocchio. He made use of his anatomical knowledge in his artwork, making many sketches of skeletal structures, muscles and organs of humans and other vertebrates that he dissected. Andreas Vesalius (1514–1564), professor of anatomy at the University of Padua, is considered the founder of modern human anatomy. Originally from Brabant, Vesalius published the influential book De humani corporis fabrica ("the structure of the human body"), a large format book in seven volumes, in 1543. The accurate and intricately detailed illustrations, often in allegorical poses against Italianate landscapes, are thought to have been made by the artist Jan van Calcar, a pupil of Titian. In England, anatomy was the subject of the first public lectures given in any science; these were given by the Company of Barbers and Surgeons in the 16th century, joined in 1583 by the |
Lumleian lectures in surgery at the Royal College of Physicians. Late modern In the United States, medical schools began to be set up towards the end of the 18th century. Classes in anatomy needed a continual stream of cadavers for dissection and these were difficult to obtain. Philadelphia, Baltimore and New York were all renowned for body snatching activity as criminals raided graveyards at night, removing newly buried corpses from their coffins. A similar problem existed in Britain where demand for bodies became so great that grave-raiding and even anatomy murder were practised to obtain cadavers. Some graveyards were in consequence protected with watchtowers. The practice was halted in Britain by the Anatomy Act of 1832, while in the United States, similar legislation was enacted after the physician William S. Forbes of Jefferson Medical College was found guilty in 1882 of "complicity with resurrectionists in the despoliation of graves in Lebanon Cemetery". The teaching of anatomy in Britain was transformed by Sir John Struthers, Regius Professor of Anatomy at the University of Aberdeen from 1863 to 1889. He was responsible for setting up the system of three years of "pre-clinical" academic teaching in the sciences underlying medicine, including especially anatomy. This system lasted until the reform of medical training in 1993 and 2003. As well as teaching, he collected many vertebrate skeletons for his museum of comparative anatomy, published over 70 research papers, and became famous for his public dissection of the Tay Whale. From 1822 the Royal College of Surgeons regulated the teaching of anatomy in medical schools. Medical museums provided examples in comparative anatomy, and were often used in teaching. Ignaz Semmelweis investigated puerperal fever and he discovered how it was caused. He noticed that the frequently fatal fever occurred more often in mothers examined by medical students than by midwives. The students went from the dissecting room to the hospital ward and examined women in childbirth. Semmelweis showed that when the trainees washed their hands in chlorinated lime before each clinical examination, the incidence of puerperal fever among the mothers could be reduced dramatically. Before the modern medical era, the main means for studying the internal structures of the body were dissection of the dead and inspection, palpation and auscultation of the living. It was the advent of microscopy that opened up an understanding of the building blocks that constituted living tissues. Technical advances in the development |
of achromatic lenses increased the resolving power of the microscope and around 1839, Matthias Jakob Schleiden and Theodor Schwann identified that cells were the fundamental unit of organization of all living things. Study of small structures involved passing light through them and the microtome was invented to provide sufficiently thin slices of tissue to examine. Staining techniques using artificial dyes were established to help distinguish between different types of tissue. Advances in the fields of histology and cytology began in the late 19th century along with advances in surgical techniques allowing for the painless and safe removal of biopsy specimens. The invention of the electron microscope brought a great advance in resolution power and allowed research into the ultrastructure of cells and the organelles and other structures within them. About the same time, in the 1950s, the use of X-ray diffraction for studying the crystal structures of proteins, nucleic acids and other biological molecules gave rise to a new field of molecular anatomy. Equally important advances have occurred in non-invasive techniques for examining the interior structures of the body. X-rays can be passed through the body and used in medical radiography and fluoroscopy to differentiate interior structures that have varying degrees of opaqueness. Magnetic resonance imaging, computed tomography, and ultrasound imaging have all enabled examination of internal structures in unprecedented detail to a degree far beyond the imagination of earlier generations. See also Anatomical model Outline of human anatomy Plastination Notes Bibliography "Anatomy of the Human Body". 20th edition. 1918. Henry Gray External links Anatomy, In Our Time. BBC Radio 4. Melvyn Bragg with guests Ruth Richardson, Andrew Cunningham and Harold Ellis. Anatomia Collection: anatomical plates 1522 to 1867 (digitized books and images) Lyman, Henry Munson. The Book of Health (1898). Science History Institute Digital Collections . Gunther von Hagens True Anatomy for New Ways of Teaching. Branches of biology Morphology (biology) |
Affirming the consequent, sometimes called converse error, fallacy of the converse, or confusion of necessity and sufficiency, is a formal fallacy of taking a true conditional statement (e.g., "If the lamp were broken, then the room would be dark"), and invalidly inferring its converse ("The room is dark, so the lamp is broken"), even though that statement may not be true. This arises when a consequent ("the room would be dark") has other possible antecedents (for example, "the lamp is in working order, but is switched off" or "there is no lamp in the room"). Converse errors are common in everyday thinking and communication and can result from, among other causes, communication issues, misconceptions about logic, and failure to consider other causes. The opposite statement, denying the consequent, is a valid form of argument (modus tollens). Formal description Affirming the consequent is the action of taking a true statement and invalidly concluding its converse . The name affirming the consequent derives from using the consequent, Q, of , to conclude the antecedent P. This fallacy can be summarized formally as or, alternatively, . The root cause of such a logical error is sometimes failure to realize that just because P is a possible condition for Q, P may not be the only condition for Q, i.e. Q may follow from another condition as well. Affirming the consequent can also result from overgeneralizing the experience of many statements having true converses. If P and Q are "equivalent" statements, i.e. , it is possible to infer P under the condition Q. For example, the statements "It is August 13, so it is my birthday" and "It is my birthday, so it is August 13" are equivalent and both true consequences of the statement "August 13 is my birthday" (an abbreviated form of ). Of the possible forms of "mixed hypothetical syllogisms," two are valid and two are invalid. Affirming the antecedent (modus ponens) and denying the consequent (modus tollens) are valid. Affirming the consequent and denying the antecedent are invalid(see table). Additional examples Example 1 One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion. For example: If someone lives in San Diego, then they live in California. Joe lives in California. Therefore, Joe lives in San Diego. There are many ways to live in California without living in San |
Diego, as long as they live in a Californian place other than San Diego. However, one can affirm with certainty that "if someone does not live in California" (non-Q), then "this person does not live in San Diego" (non-P). This is the contrapositive of the first statement, and it must be true if and only if the original statement is true. Example 2 Here is another useful, obviously fallacious example. If an animal is a dog, then it has four legs. My cat has four legs. Therefore, my cat is a dog. Here, it is immediately intuitive that any number of other antecedents ("If an animal is a deer...", "If an animal is an elephant...", "If an animal is a moose...", etc.) can give rise to the consequent ("then it has four legs"), and that it is preposterous to suppose that having four legs must imply that the animal is a dog and nothing else. This is useful as a teaching example since most people can immediately recognize that the conclusion reached must be wrong (intuitively, a cat cannot be a dog), and that the method by which it was reached must therefore be fallacious. Example 3 Arguments of the same form can sometimes seem superficially convincing, as in the following example: If Brian had been thrown off the top of the Eiffel Tower, then he would be dead. Brian is dead. Therefore, Brian was thrown off the top of the Eiffel Tower. Being thrown off the top of the Eiffel Tower is not the only cause of death, since there exist numerous different causes of death. Example 4 In Catch-22, the chaplain is interrogated for supposedly being "Washington Irving"/"Irving Washington", who has been blocking out large portions of soldiers' letters home. The colonel has found such a letter, but with the Chaplain's name signed. "You can read, though, can't you?" the colonel persevered sarcastically. "The author signed his name." "That's my name there." "Then you wrote it. Q.E.D." P in this case is 'The chaplain signs his own name', and Q 'The chaplain's name is written'. The chaplain's name may be written, but he did not necessarily write it, as the colonel falsely concludes.Example 5 When teaching the scientific method, the following example is used to illustrate why, via the fallacy of affirming the consequent, no scientific theory is ever proven true but rather simply failed to be falsified. |
If this theory is correct, we will observe X. We observe X. Therefore, this theory is correct. Concluding or assuming that a theory is true because of a prediction it makes being observed is invalid. This is one of the challenges of applying the scientific method though rarely is it brought up in academic contexts as it is unlikely to be of consequence to the results of the study. Much more common is questioning the validity of the theory, the validity of expected the theory to have predicted the observation, and/or the validity of the observation itself. See also Abductive reasoning Appeal to consequences Confusion of the inverse Denying the antecedent Fallacy of the single cause Fallacy of the undistributed middle Modus ponens'' Necessity and sufficiency References Propositional fallacies Fallacies Logic articles needing expert attention |
Andrei Arsenyevich Tarkovsky (; 4 April 1932 – 29 December 1986) was a Russian filmmaker. Widely considered one of the greatest and most influential directors in cinema history, his films explore spiritual and metaphysical themes, and are noted for their slow pacing and long takes, dreamlike visual imagery, and preoccupation with nature and memory. Tarkovsky studied film at Moscow's VGIK under filmmaker Mikhail Romm, and subsequently directed his first five features in the Soviet Union: Ivan's Childhood (1962), Andrei Rublev (1966), Solaris (1972), Mirror (1975), and Stalker (1979). A number of his films from this period are ranked among the best films ever made. After years of creative conflict with state film authorities, Tarkovsky left the country in 1979 and made his final two films abroad; Nostalghia (1983) and The Sacrifice (1986) were produced in Italy and Sweden respectively. In 1986, he also published a book about cinema and art entitled Sculpting in Time. He died later that year of cancer, a condition possibly caused by the toxic locations used in the filming of Stalker. Tarkovsky was the recipient of several awards at the Cannes Film Festival throughout his career (including the FIPRESCI prize, the Prize of the Ecumenical Jury, and the Grand Prix Spécial du Jury and winner of the Golden Lion award at the Venice Film Festival for his debut film Ivan's Childhood. In 1990, he was posthumously awarded the Soviet Union's prestigious Lenin Prize. Three of his films—Andrei Rublev, Mirror, and Stalker—featured in Sight & Sound 2012 poll of the 100 greatest films of all time. Life and career Childhood and early life Andrei Tarkovsky was born in the village of Zavrazhye in the Yuryevetsky District of the Ivanovo Industrial Oblast (modern-day Kadyysky District of the Kostroma Oblast, Russia) to the poet and translator Arseny Aleksandrovich Tarkovsky, a native of Yelysavethrad (now Kropyvnytskyi, Ukraine), and Maria Ivanova Vishnyakova, a graduate of the Maxim Gorky Literature Institute who later worked as a proofreader; she was born in Moscow in the Dubasov family estate. Andrei's paternal grandfather Aleksandr Karlovich Tarkovsky (in ) was a Polish nobleman who worked as a bank clerk. His wife Maria Danilovna Rachkovskaya was a Romanian language teacher who arrived from Iași. Andrei's maternal grandmother Vera Nikolayevna Vishnyakova (née Dubasova) belonged to an old Dubasov family of Russian nobility that traces its history back to the 17th century; among her relatives was Admiral Fyodor Dubasov, |
a fact she had to conceal during the Soviet days. She was married to Ivan Ivanovich Vishnyakov, a native of the Kaluga Governorate who studied law at the Moscow State University and served as a judge in Kozelsk. According to the family legend, Tarkovsky's ancestors on his father's side were princes from the Shamkhalate of Tarki, Dagestan, although his sister Marina Tarkovskaya who did a detailed research on their genealogy called it "a myth, even a prank of sorts," stressing that none of the documents confirms this version. Tarkovsky spent his childhood in Yuryevets. He was described by childhood friends as active and popular, having many friends and being typically in the center of action. His father left the family in 1937, subsequently volunteering for the army in 1941. He returned home in 1943, having been awarded a Red Star after being shot in one of his legs (which he would eventually need to amputate due to gangrene). Tarkovsky stayed with his mother, moving with her and his sister Marina to Moscow, where she worked as a proofreader at a printing press. In 1939, Tarkovsky enrolled at the Moscow School No. 554. During the war, the three evacuated to Yuryevets, living with his maternal grandmother. In 1943, the family returned to Moscow. Tarkovsky continued his studies at his old school, where the poet Andrei Voznesensky was one of his classmates. He studied piano at a music school and attended classes at an art school. The family lived on Shchipok Street in the Zamoskvorechye District in Moscow. From November 1947 to spring 1948 he was in the hospital with tuberculosis. Many themes of his childhood—the evacuation, his mother and her two children, the withdrawn father, the time in the hospital—feature prominently in his film Mirror. In his school years, Tarkovsky was a troublemaker and a poor student. He still managed to graduate, and from 1951 to 1952 studied Arabic at the Oriental Institute in Moscow, a branch of the Academy of Sciences of the Soviet Union. Although he already spoke some Arabic and was a successful student in his first semesters, he did not finish his studies and dropped out to work as a prospector for the Academy of Science Institute for Non-Ferrous Metals and Gold. He participated in a year-long research expedition to the river Kureyka near Turukhansk in the Krasnoyarsk Province. During this time in the taiga, Tarkovsky decided |
to study film. Film school student Upon returning from the research expedition in 1954, Tarkovsky applied at the State Institute of Cinematography (VGIK) and was admitted to the film-directing program. He was in the same class as Irma Raush (Irina) whom he married in April 1957. The early Khrushchev era offered good opportunities for young film directors. Before 1953, annual film production was low and most films were directed by veteran directors. After 1953, more films were produced, many of them by young directors. The Khrushchev Thaw relaxed Soviet social restrictions a bit and permitted a limited influx of European and North American literature, films and music. This allowed Tarkovsky to see films of the Italian neorealists, French New Wave, and of directors such as Kurosawa, Buñuel, Bergman, Bresson, Wajda (whose film Ashes and Diamonds influenced Tarkovsky) and Mizoguchi. Tarkovsky's teacher and mentor was Mikhail Romm, who taught many film students who would later become influential film directors. In 1956, Tarkovsky directed his first student short film, The Killers, from a short story of Ernest Hemingway. The longer television film There Will Be No Leave Today followed in 1959. Both films were a collaboration between the VGIK students. Classmate Aleksandr Gordon, who married Tarkovsky's sister, in particular directed, wrote, edited, and acted in the two films with Tarkovsky. An important influence on Tarkovsky was the film director Grigory Chukhray, who was teaching at the VGIK. Impressed by the talent of his student, Chukhray offered Tarkovsky a position as assistant director for his film Clear Skies. Tarkovsky initially showed interest but then decided to concentrate on his studies and his own projects. During his third year at the VGIK, Tarkovsky met Andrei Konchalovsky. They found much in common as they liked the same film directors and shared ideas on cinema and films. In 1959, they wrote the script Antarctica – Distant Country, which was later published in the Moskovsky Komsomolets. Tarkovsky submitted the script to Lenfilm, but it was rejected. They were more successful with the script The Steamroller and the Violin, which they sold to Mosfilm. This became Tarkovsky's graduation project, earning him his diploma in 1960 and winning First Prize at the New York Student Film Festival in 1961. Film career in the Soviet Union Tarkovsky's first feature film was Ivan's Childhood in 1962. He had inherited the film from director Eduard Abalov, who had to abort the project. |
The film earned Tarkovsky international acclaim and won the Golden Lion award at the Venice Film Festival in the year 1962. In the same year, on 30 September, his first son Arseny (called Senka in Tarkovsky's diaries) Tarkovsky was born. In 1965, he directed the film Andrei Rublev about the life of Andrei Rublev, the fifteenth-century Russian icon painter. Andrei Rublev was not, except for a single screening in Moscow in 1966, immediately released after completion due to problems with Soviet authorities. Tarkovsky had to cut the film several times, resulting in several different versions of varying lengths. The film was widely released in the Soviet Union in a cut version in 1971. Nevertheless, the film had a budget of more than 1 million rubles – a significant sum for that period. A version of the film was presented at the Cannes Film Festival in 1969 and won the FIPRESCI prize. He divorced his wife, Irina, in June 1970. In the same year, he married Larisa Kizilova (née Egorkina), who had been a production assistant for the film Andrei Rublev (they had been living together since 1965). Their son, Andrei Andreyevich Tarkovsky, (nicknamed Andriosha, meaning "little Andre" or "Andre Junior") was born in the same year on 7 August. In 1972, he completed Solaris, an adaptation of the novel Solaris by Stanisław Lem. He had worked on this together with screenwriter Friedrich Gorenstein as early as 1968. The film was presented at the Cannes Film Festival, won the Grand Prix Spécial du Jury, and was nominated for the Palme d'Or. From 1973 to 1974, he shot the film Mirror, a highly autobiographical and unconventionally structured film drawing on his childhood and incorporating some of his father's poems. In this film Tarkovsky portrayed the plight of childhood affected by war. Tarkovsky had worked on the screenplay for this film since 1967, under the consecutive titles Confession, White day and A white, white day. From the beginning the film was not well received by Soviet authorities due to its content and its perceived elitist nature. Soviet authorities placed the film in the "third category", a severely limited distribution, and only allowed it to be shown in third-class cinemas and workers' clubs. Few prints were made and the film-makers received no returns. Third category films also placed the film-makers in danger of being accused of wasting public funds, which could have serious effects |
on their future productivity. These difficulties are presumed to have made Tarkovsky play with the idea of going abroad and producing a film outside the Soviet film industry. During 1975, Tarkovsky also worked on the screenplay Hoffmanniana, about the German writer and poet E. T. A. Hoffmann. In December 1976, he directed Hamlet, his only stage play, at the Lenkom Theatre in Moscow. The main role was played by Anatoly Solonitsyn, who also acted in several of Tarkovsky's films. At the end of 1978, he also wrote the screenplay Sardor together with the writer Aleksandr Misharin. The last film Tarkovsky completed in the Soviet Union was Stalker, inspired by the novel Roadside Picnic by the brothers Arkady and Boris Strugatsky. Tarkovsky had met the brothers first in 1971 and was in contact with them until his death in 1986. Initially he wanted to shoot a film based on their novel Dead Mountaineer's Hotel and he developed a raw script. Influenced by a discussion with Arkady Strugatsky he changed his plan and began to work on the script based on Roadside Picnic. Work on this film began in 1976. The production was mired in troubles; improper development of the negatives had ruined all the exterior shots. Tarkovsky's relationship with cinematographer Georgy Rerberg deteriorated to the point where he hired Alexander Knyazhinsky as a new first cinematographer. Furthermore, Tarkovsky had a heart attack in April 1978, resulting in further delay. The film was completed in 1979 and won the Prize of the Ecumenical Jury at the Cannes Film Festival. In a question and answer session at the Edinburgh Filmhouse on 11 February 1981, Tarkovsky trenchantly rejected suggestions that the film was either impenetrably mysterious or a political allegory. In 1979, Tarkovsky began production of the film The First Day (Russian: Первый День Pervyj Dyen), based on a script by his friend and long-term collaborator Andrei Konchalovsky. The film was set in 18th-century Russia during the reign of Peter the Great and starred Natalya Bondarchuk and Anatoli Papanov. To get the project approved by Goskino, Tarkovsky submitted a script that was different from the original script, omitting several scenes that were critical of the official atheism in the Soviet Union. After shooting roughly half of the film the project was stopped by Goskino after it became apparent that the film differed from the script submitted to the censors. Tarkovsky was reportedly infuriated by |
this interruption and destroyed most of the film. Film career outside the Soviet Union During the summer of 1979, Tarkovsky traveled to Italy, where he shot the documentary Voyage in Time together with his long-time friend Tonino Guerra. Tarkovsky returned to Italy in 1980 for an extended trip, during which he and Guerra completed the script for the film Nostalghia. During this period, he took Polaroid photographs depicting his personal life. Tarkovsky returned to Italy in 1982 to start shooting Nostalghia, but Mosfilm then withdrew from the project, so he sought and received financial backing from the Italian RAI. Tarkovsky completed the film in 1983, and it was presented at the Cannes Film Festival where it won the FIPRESCI prize and the Prize of the Ecumenical Jury. Tarkovsky also shared a special prize called Grand Prix du cinéma de creation with Robert Bresson. Soviet authorities lobbied to prevent the film from winning the Palme d'Or, a fact that hardened Tarkovsky's resolve to never work in the Soviet Union again. After Cannes he went to London to stage and choreograph the opera Boris Godunov at the Royal Opera House under the musical direction of Claudio Abbado. At a press conference in Milan on 10 July 1984, he announced that he would never return to the Soviet Union and would remain in Western Europe. He stated, "I am not a Soviet dissident, I have no conflict with the Soviet Government," but if he returned home, he added, "I would be unemployed." At that time, his son Andriosha was still in the Soviet Union and not allowed to leave the country. On 28 August 1985, Tarkovsky was processed as a Soviet Defector at a refugee camp in Latina, Italy, registered with the serial number 13225/379, and officially welcomed to the West. Tarkovsky spent most of 1984 preparing the film The Sacrifice. It was finally shot in 1985 in Sweden, with many of the crew being alumni from Ingmar Bergman's films, including cinematographer Sven Nykvist. Tarkovsky's vision of his film was greatly influenced by Bergman's style. While The Sacrifice is about an apocalypse and impending death, faith, and possible redemption, in the making-of documentary Directed by Andrei Tarkovsky, in a particularly poignant scene, writer/director Michal Leszczylowski follows Tarkovsky on a walk as he expresses his sentiments on death—he claims himself to be immortal and has no fear of dying. Ironically, at the end of |
the year Tarkovsky was diagnosed with terminal lung cancer. In January 1986, he began treatment in Paris and was joined there by his son, Andre Jr, who was finally allowed to leave the Soviet Union. What would be Tarkovsky's final film was dedicated to him. The Sacrifice was presented at the Cannes Film Festival and received the Grand Prix Spécial du Jury, the FIPRESCI prize and the Prize of the Ecumenical Jury. As Tarkovsky was unable to attend due to his illness, the prizes were collected by his son. Death In Tarkovsky's last diary entry (15 December 1986), he wrote: "But now I have no strength left—that is the problem". The diaries are sometimes also known as Martyrology and were published posthumously in 1989 and in English in 1991. Tarkovsky died in Paris on 29 December 1986. His funeral ceremony was held at the Alexander Nevsky Cathedral. He was buried on 3 January 1987 in the Russian Cemetery in Sainte-Geneviève-des-Bois in France. The inscription on his gravestone, which was erected in 1994, was conceived by Tarkovsky's wife, Larisa, reads: To the man who saw the Angel. Larisa died in 1998 and is buried beside her husband. A conspiracy theory emerged in Russia in the early 1990s when it was alleged that Tarkovsky did not die of natural causes, but was assassinated by the KGB. Evidence for this hypothesis includes testimonies by former KGB agents who claim that Viktor Chebrikov gave the order to eradicate Tarkovsky to curtail what the Soviet government and the KGB saw as anti-Soviet propaganda by Tarkovsky. Other evidence includes several memoranda that surfaced after the 1991 coup and the claim by one of Tarkovsky's doctors that his cancer could not have developed from a natural cause. As with Tarkovsky, his wife Larisa and actor Anatoly Solonitsyn all died from the very same type of lung cancer. Vladimir Sharun, sound designer in Stalker, is convinced that they were all poisoned by the chemical plant where they were shooting the film. Influences Tarkovsky became a film director during the mid and late 1950s, a period referred to as the Khrushchev Thaw, during which Soviet society opened to foreign films, literature and music, among other things. This allowed Tarkovsky to see films of European, American and Japanese directors, an experience that influenced his own film making. His teacher and mentor at the film school, Mikhail Romm, allowed his students |
considerable freedom and emphasized the independence of the film director. Tarkovsky was, according to fellow student Shavkat Abdusalmov, fascinated by Japanese films. He was amazed by how every character on the screen is exceptional and how everyday events such as a Samurai cutting bread with his sword are elevated to something special and put into the limelight. Tarkovsky has also expressed interest in the art of Haiku and its ability to create "images in such a way that they mean nothing beyond themselves". Tarkovsky was also a deeply religious Orthodox Christian, who believed great art should have a higher spiritual purpose. He was a perfectionist not given to humor or humility: his signature style was ponderous and literary, having many characters that pondered over religious themes and issues regarding faith. Tarkovsky perceived that the art of cinema has only been truly mastered by very few filmmakers, stating in a 1970 interview with Naum Abramov that "they can be counted on the fingers of one hand". In 1972, Tarkovsky told film historian Leonid Kozlov his ten favorite films. The list includes: Diary of a Country Priest and Mouchette by Robert Bresson; Winter Light, Wild Strawberries, and Persona by Ingmar Bergman; Nazarín by Luis Buñuel; City Lights by Charlie Chaplin; Ugetsu by Kenji Mizoguchi; Seven Samurai by Akira Kurosawa, and Woman in the Dunes by Hiroshi Teshigahara. Among his favorite directors were Buñuel, Mizoguchi, Bergman, Bresson, Kurosawa, Michelangelo Antonioni, Jean Vigo, and Carl Theodor Dreyer. With the exception of City Lights, the list does not contain any films of the early silent era. The reason is that Tarkovsky saw film as an art as only a relatively recent phenomenon, with the early film-making forming only a prelude. The list has also no films or directors from Tarkovsky's native Russia, although he rated Soviet directors such as Boris Barnet, Sergei Parajanov and Alexander Dovzhenko highly. He said of Dovzhenko's Earth: "I have lived a lot among very simple farmers and met extraordinary people. They spread calmness, had such tact, they conveyed a feeling of dignity and displayed wisdom that I have seldom come across on such a scale. Dovzhenko had obviously understood wherein the sense of life resides. [...] This trespassing of the border between nature and mankind is an ideal place for the existence of man. Dovzhenko understood this." Andrei Tarkovsky was not a fan of science fiction, largely dismissing it for |
its "comic book" trappings and vulgar commercialism. However, in a famous exception Tarkovsky praised the blockbuster film The Terminator, saying that its "vision of the future and the relation between man and its destiny is pushing the frontier of cinema as an art". He was critical of the "brutality and low acting skills", but was nevertheless impressed by the film. Cinematic style In a 1962 interview, Tarkovsky argued: "All art, of course, is intellectual, but for me, all the arts, and cinema even more so, must above all be emotional and act upon the heart." His films are characterized by metaphysical themes, extremely long takes, and images often considered by critics to be of exceptional beauty. Recurring motifs are dreams, memory, childhood, running water accompanied by fire, rain indoors, reflections, levitation, and characters re-appearing in the foreground of long panning movements of the camera. He once said: "Juxtaposing a person with an environment that is boundless, collating him with a countless number of people passing by close to him and far away, relating a person to the whole world, that is the meaning of cinema." Tarkovsky incorporated levitation scenes into several of his films, most notably Solaris. To him these scenes possess great power and are used for their photogenic value and magical inexplicability. Water, clouds, and reflections were used by him for their surreal beauty and photogenic value, as well as their symbolism, such as waves or the forms of brooks or running water. Bells and candles are also frequent symbols. These are symbols of film, sight and sound, and Tarkovsky's film frequently has themes of self-reflection. Tarkovsky developed a theory of cinema that he called "sculpting in time". By this he meant that the unique characteristic of cinema as a medium was to take our experience of time and alter it. Unedited movie footage transcribes time in real time. By using long takes and few cuts in his films, he aimed to give the viewers a sense of time passing, time lost, and the relationship of one moment in time to another. Up to, and including, his film Mirror, Tarkovsky focused his cinematic works on exploring this theory. After Mirror, he announced that he would focus his work on exploring the dramatic unities proposed by Aristotle: a concentrated action, happening in one place, within the span of a single day. Several of Tarkovsky's films have color or black-and-white |
sequences. This first occurs in the otherwise monochrome Andrei Rublev, which features a color epilogue of Rublev's authentic religious icon paintings. All of his films afterwards contain monochrome, and in Stalker's case sepia sequences, while otherwise being in color. In 1966, in an interview conducted shortly after finishing Andrei Rublev, Tarkovsky dismissed color film as a "commercial gimmick" and cast doubt on the idea that contemporary films meaningfully use color. He claimed that in everyday life one does not consciously notice colors most of the time, and that color should therefore be used in film mainly to emphasize certain moments, but not all the time, as this distracts the viewer. To him, films in color were like moving paintings or photographs, which are too beautiful to be a realistic depiction of life. Director Ingmar Bergman commented on Tarkovsky: Contrarily, however, Bergman conceded the truth in the claim made by a critic who wrote that "with Autumn Sonata Bergman does Bergman", adding: "Tarkovsky began to make Tarkovsky films, and that Fellini began to make Fellini films [...] Buñuel nearly always made Buñuel films." This pastiche of one's own work has been derogatorily termed as "self-karaoke". Vadim Yusov Tarkovsky worked in close collaboration with cinematographer Vadim Yusov from 1958 to 1972, and much of the visual style of Tarkovsky's films can be attributed to this collaboration. Tarkovsky would spend two days preparing for Yusov to film a single long take, and due to the preparation, usually only a single take was needed. Sven Nykvist In his last film, The Sacrifice, Tarkovsky worked with cinematographer Sven Nykvist, who had worked on many films with director Ingmar Bergman. (Nykvist was not alone: several people involved in the production had previously collaborated with Bergman, notably lead actor Erland Josephson, who had also acted for Tarkovsky in Nostalghia.) Nykvist complained that Tarkovsky would frequently look through the camera and even direct actors through it, but ultimately stated that choosing to work with Tarkovsky was one of the best choices he had ever made. Filmography Tarkovsky is mainly known as a film director. During his career he directed seven feature films, as well as three shorts from his time at VGIK. His features are: Ivan's Childhood (1962) Andrei Rublev (1966) Solaris (1972) Mirror (1975) Stalker (1979) Nostalghia (1983) The Sacrifice (1986) He also wrote several screenplays. Furthermore, he directed the play Hamlet for the stage in Moscow, |
directed the opera Boris Godunov in London, and he directed a radio production of the short story Turnabout by William Faulkner. He also wrote Sculpting in Time, a book on film theory. Tarkovsky's first feature film was Ivan's Childhood in 1962. He then directed Andrei Rublev in 1966, Solaris in 1972, Mirror in 1975 and Stalker in 1979. The documentary Voyage in Time was produced in Italy in 1982, as was Nostalghia in 1983. His last film The Sacrifice was produced in Sweden in 1986. Tarkovsky was personally involved in writing the screenplays for all his films, sometimes with a cowriter. Tarkovsky once said that a director who realizes somebody else's screenplay without being involved in it becomes a mere illustrator, resulting in dead and monotonous films. Published books Sculpting in Time, published in 1986 Time Within Time: The Diaries 1970–1986, published in 1989 A book of 60 photos, Instant Light, Tarkovsky Polaroids, taken by Tarkovsky in Russia and Italy between 1979 and 1984 was published in 2006. The collection was selected by Italian photographer Giovanni Chiaramonte and Tarkovsky's son Andrey A. Tarkovsky. Unproduced screenplays Concentrate Concentrate (, Kontsentrat) is a never-filmed 1958 screenplay by Tarkovsky. The screenplay is based on Tarkovsky's year in the taiga as a member of a research expedition, prior to his enrollment in film school. It's about the leader of a geological expedition, who waits for the boat that brings back the concentrates collected by the expedition. The expedition is surrounded by mystery, and its purpose is a state secret. Although some authors claim that the screenplay was filmed, according to Marina Tarkovskaya, Tarkovsky's sister (and wife of Aleksandr Gordon, a fellow student of Tarkovsky during his film school years) the screenplay was never filmed. Tarkovsky wrote the screenplay during his entrance examination at the State Institute of Cinematography (VGIK) in a single sitting. He earned the highest possible grade, "excellent" () for this work. In 1994, fragments of Concentrate were filmed and used in the documentary Andrei Tarkovsky's Taiga Summer by Marina Tarkovskaya and Aleksandr Gordon. Hoffmanniana Hoffmanniana () is a never-filmed 1974 screenplay by Tarkovsky. The screenplay is based on the life and work of German author E. T. A. Hoffmann. In 1974, an acquaintance from Tallinnfilm approached Tarkovsky to write a screenplay on a German theme. Tarkovsky considered Thomas Mann and E. T. A. Hoffmann, and also thought about Ibsen's Peer Gynt. |
In the end Tarkovsky signed a contract for a script based on the life and work of Hoffmann. He planned to write the script during the summer of 1974 at his dacha. Writing was not without difficulty, less than a month before the deadline he had not written a single page. He finally finished the project in late 1974 and submitted the final script to Tallinnfilm in October. Although the script was well received by the officials at Tallinnfilm, it was the consensus that no one but Tarkovsky would be able to direct it. The script was sent to Goskino in February 1976, and although approval was granted for proceeding with making the film, the screenplay was never realized. In 1984, during the time of his exile in the West, Tarkovsky revisited the screenplay and made a few changes. He also considered to finally direct a film based on the screenplay but ultimately dropped this idea. Films about Tarkovsky Voyage in Time (1983): documents the travels in Italy of Andrei Tarkovsky in preparation for the making of his film Nostalghia, Tonino Guerra. Tarkovsky: A Poet in the Cinema (1984): directed by Donatella Baglivo. Moscow Elegy (1987), a documentary/homage to Tarkovsky by Aleksandr Sokurov. Auf der Suche nach der verlorenen Zeit (1988): Andrej Tarkowskijs Exil und Tod. Documentary directed by Ebbo Demant. Germany. One Day in the Life of Andrei Arsenevich (1999): French documentary film directed by Chris Marker. "Andrey" (color/b&w, short-fiction, 35 mm, 15 min, 2006) A film by Nariné Mktchyan and Arsen Azatyan. Festivals: Yerevan IFF 2006, Rotterdam IFF 2007, Busan IFF 2007, Sydney Film Festival 2007, Zerkalo FF, Ivanovo (Special Prize) 2008, Kinoshock FF 2014. Tarkovsky: Time Within Time (2015): documentary by P. J. Letofsky. Andrei Tarkovsky: A Cinema Prayer (2019): a poetic documentary by Tarkovsky's son Andrei A. Tarkovsky Awards and commemoration Numerous awards were bestowed on Tarkovsky throughout his lifetime. At the Venice Film Festival, the Golden Lion of the for Ivan's Childhood At the Cannes Film Festival, the FIPRESCI prize three times, the Prize of the Ecumenical Jury three times (more than any other director), the Grand Prix Spécial du Jury twice, and the Best Director award once. He was also nominated for the Palme d'Or three times. In 1987, the BAFTA Award for Best Foreign Language Film of the British Academy of Film and Television Arts for The Sacrifice. Under the influence of Glasnost |
and Perestroika, Tarkovsky was finally recognized in the Soviet Union in the Autumn of 1986, shortly before his death, by a retrospective of his films in Moscow. After his death, an entire issue of the film magazine Iskusstvo Kino was devoted to Tarkovsky. In their obituaries, the film committee of the Council of Ministers of the Soviet Union and the Union of Soviet Film Makers expressed their sorrow that Tarkovsky had to spend the last years of his life in exile. Posthumously, he was awarded the Lenin Prize in 1990, one of the highest state honors in the Soviet Union. In 1989, the Andrei Tarkovsky Memorial Prize was established, with its first recipient being the Russian animator Yuri Norstein. In three consecutive events, the Moscow International Film Festival awarded the Andrei Tarkovsky Award in 1993, 1995, and 1997. In 1996, the Andrei Tarkovsky Museum opened in Yuryevets, his childhood town. A minor planet, 3345 Tarkovskij, discovered by Soviet astronomer Lyudmila Karachkina in 1982, has been named after him. Tarkovsky has been the subject of several documentaries. Most notable is the 1988 documentary Moscow Elegy, by Russian film director Alexander Sokurov. Sokurov's own work has been heavily influenced by Tarkovsky. The film consists mostly of narration over stock footage from Tarkovsky's films. Directed by Andrei Tarkovsky is a 1988 documentary film by Michal Leszczylowski, an editor of the film The Sacrifice. Film director Chris Marker produced the television documentary One Day in the Life of Andrei Arsenevich as an homage to Andrei Tarkovsky in 2000. At the entrance to the Gerasimov Institute of Cinematography in Moscow, there is a monument that includes statues of Tarkovsky, Gennady Shpalikov and Vasily Shukshin. Reception and legacy Andrei Tarkovsky and his works have received praise from many filmmakers, critics and thinkers. The Swedish filmmaker Ingmar Bergman was quoted as saying: "Tarkovsky for me is the greatest [of us all], the one who invented a new language, true to the nature of film, as it captures life as a reflection, life as a dream". The Japanese filmmaker Akira Kurosawa remarked on Tarkovsky's films as saying: "His unusual sensitivity is both overwhelming and astounding. It almost reaches a pathological intensity. Probably there is no equal among film directors alive now." Kurosawa also commented: "I love all of Tarkovsky's films. I love his personality and all his works. Every cut from his films is a marvelous image in |
itself. But the finished image is nothing more than the imperfect accomplishment of his idea. His ideas are only realized in part. And he had to make do with it." The Iranian filmmaker Abbas Kiarostami remarked that: "Tarkovsky's works separate me completely from physical life, and are the most spiritual films I have seen". The Polish filmmaker Krzysztof Kieślowski commented that: "Andrei Tarkovsky was one of the greatest directors of recent years," and regarded Tarkovsky's film, Ivan's Childhood as an influence on his own work. The Turkish filmmaker Nuri Bilge Ceylan when he first discovered the films of Andrei Tarkovsky as a college student unsure of what he wanted to do with his life, he was utterly baffled by the lauded Russian master. He walked out of a screening of Solaris at the halfway point, and stopped a VHS tape of Mirror at a similar juncture. Today, he considers the latter to be the greatest film ever made. "I've seen it maybe 20 times," he says. The Armenian filmmaker Sergei Parajanov remarked that watching Tarkovsky's film, Ivan's Childhood was his main inspiration to become a filmmaker by saying: "I did not know how to do anything and I would not have done anything if there had not been Ivan's Childhood". The Austrian filmmaker Michael Haneke voted for Mirror on his top 10 films in the 2002 Sight & Sound directors' poll and later said that he has seen the picture at least 25 times. The German filmmaker Wim Wenders dedicated his film Wings of Desire to Tarkovsky (along with François Truffaut and Yasujirō Ozu). The French filmmaker Chris Marker directed a documentary film as a homage to Tarkovsky called One Day in the Life of Andrei Arsenevich and used Tarkovsky's concept of "The Zone" (from the film, Stalker) for his 1983 film essay, Sans Soleil. The Greek filmmaker Theo Angelopoulos regarded Tarkovsky's film Stalker as one of the films that influenced him. The Polish filmmaker Andrzej Żuławski remarked that: "If anybody influenced anybody, it’s me being influenced by Tarkovsky, not the reverse." and called Tarkovsky's film Andrei Rublev a "masterpiece". The Greek-Australian filmmaker Alex Proyas was "extremely influenced" by Tarkovsky's work and cited Stalker as one his favorite films. The French philosopher Jean-Paul Sartre highly praised Tarkovsky's film Ivan's Childhood, saying that it was one of the most beautiful films he had ever seen. The Japanese anime filmmaker Mamoru Oshii, |
known for his works such as Ghost in the Shell was influenced by Tarkovsky. The Indian-born British American novelist Salman Rushdie praised Tarkovsky and his work Solaris by calling it a "a sci-fi masterpiece". Film historian Steven Dillon says that much of subsequent film was deeply influenced by the films of Tarkovsky. Mexican filmmaker Alejandro González Iñarritu is a huge fan of Tarkovsky. He once said in an interview: "Andrei Rublev is maybe my favorite film ever", and in another interview, he added: "I remember, the first time I saw a Tarkovsky film, I was shocked by it. I did not know what to do. I was shocked by it. I was fascinated, because suddenly I realized that film could have so many more layers to it than what I had imagined before". There are many direct references and hidden tributes to Tarkovsky's movies in Iñarritu's 2015 Oscar-winning drama The Revenant. Danish film director Lars von Trier is a fervent admirer of Tarkovsky. He dedicated his 2009 film Antichrist to him, and, while discussing it with critic David Jenkins, asked: "Have you seen Mirror? I was hypnotised! I've seen it 20 times. It's the closest thing I've got to a religion – to me he is a god". Film festival Two film festivals have been named in his honor: International Human Rights Film Festival "Stalker", named after the film held annually in Moscow and regional centres since 1995 International Film Festival "Zerkalo" named after Andrei Tarkovsky (meaning "mirror"), "for fans of intellectual cinema"; also known as Tarkovsky Film festival – Zerkalo, Zerkalo International Film Festival, Andrei Tarkovsky Zerkalo International Film Festival, or simply Zerkalo, The festival is organized by a committee headed by Mikhail Men, governor of Ivanovo Oblast. Sister of Andrei Tarkovsky, Marina Tarkovsky was one of the co-founders and organizers. From 2010 the festival was directed by Pavel Lungin. In 2020, the president of the festival was Russian director Sergei Bodrov. Owing to the COVID-19 pandemic in Russia, the 14th edition was held online in 2020, and appears to be the last one held, .The festival awards a number of prizes, including the Special Award for Contribution to Andrei Tarkovsky's Cinema. Held in Ivanovo since 2007, the festival is held in July each year, with the 16th edition scheduled for 22-27 July, to be held in various cities in the Ivanovo region, with special screenings in Moscow. Films |
from France, India, Greece, Serbia, Colombia, Kazakhstan and other countries were entered into the competition, and a gala night was dedicated to Tarkovsky's 90th birthday, on the main square of his hometown of Yuryevets on 22 July. See also European art cinema Slow cinema Moscow International Film Festival References Notes Bibliography Schmidt, Stefan W. (2016). "Somatography and Film: Nostalgia as Haunting Memory Shown in Tarkovsky's Nostalghia." Journal of Aesthetics and Phenomenology, 3 (1): 27–41. Somatography and Film: Nostalgia as Haunting Memory Shown in Tarkovsky's Nostalghia Further reading External links Andrei Tarkovsky at Senses of Cinema Website about Andrei Tarkovsky, Films, Articles, Interviews Andrei Tarkovsky: Biography wrestles with the filmmaker's remarkable life Nostalghia.com - An Andrei Tarkovsky Information Site, at Film Studies Program in the Department of Communication and Culture, University of Calgary 1932 births 1986 deaths 20th-century Russian diarists 20th-century Russian male actors 20th-century Russian male writers 20th-century Russian non-fiction writers 20th-century Russian screenwriters Writers from Kostroma Oblast People from Kostroma Oblast Gerasimov Institute of Cinematography alumni Academic staff of High Courses for Scriptwriters and Film Directors People's Artists of the RSFSR Lenin Prize winners Cannes Film Festival Award for Best Director winners Directors of Golden Lion winners Filmmakers who won the Best Foreign Language Film BAFTA Award Male screenwriters Science fiction film directors Russian people of Polish descent Russian people of Romanian descent Russian diarists Russian documentary filmmakers Russian experimental filmmakers Russian film directors Russian male film actors Russian non-fiction writers Russian opera directors Russian Orthodox Christians from Russia Russian screenwriters Soviet diarists Soviet documentary film directors Soviet emigrants to France Soviet emigrants to Italy Soviet film directors Soviet male film actors Soviet non-fiction writers Soviet opera directors Soviet screenwriters Deaths from lung cancer in France Burials at Sainte-Geneviève-des-Bois Russian Cemetery |
Ambiguity is the type of meaning in which a phrase, statement or resolution is not explicitly defined, making several interpretations plausible. A common aspect of ambiguity is uncertainty. It is thus an attribute of any idea or statement whose intended meaning cannot be definitively resolved, according to a rule or process with a finite number of steps. (The ambi- part of the term reflects an idea of "two," as in "two meanings.") The concept of ambiguity is generally contrasted with vagueness. In ambiguity, specific and distinct interpretations are permitted (although some may not be immediately obvious), whereas with information that is vague, it is difficult to form any interpretation at the desired level of specificity. Linguistic forms Lexical ambiguity is contrasted with semantic ambiguity. The former represents a choice between a finite number of known and meaningful context-dependent interpretations. The latter represents a choice between any number of possible interpretations, none of which may have a standard agreed-upon meaning. This form of ambiguity is closely related to vagueness. Ambiguity in human language is argued to reflect principles of efficient communication. Languages that communicate efficiently will avoid sending information that is redundant with information provided in the context. This can be shown mathematically to result in a system which is ambiguous when context is neglected. In this way, ambiguity is viewed as a generally useful feature of a linguistic system. Linguistic ambiguity can be a problem in law, because the interpretation of written documents and oral agreements is often of paramount importance. Lexical ambiguity The lexical ambiguity of a word or phrase pertains to its having more than one meaning in the language to which the word belongs. "Meaning" here refers to whatever should be captured by a good dictionary. For instance, the word "bank" has several distinct lexical definitions, including "financial institution" and "edge of a river". Or consider "apothecary". One could say "I bought herbs from the apothecary". This could mean one actually spoke to the apothecary (pharmacist) or went to the apothecary (pharmacy). The context in which an ambiguous word is used often makes it evident which of the meanings is intended. If, for instance, someone says "I buried $100 in the bank", most people would not think someone used a shovel to dig in the mud. However, some linguistic contexts do not provide sufficient information to disambiguate a used word. Lexical ambiguity can be addressed by algorithmic |
methods that automatically associate the appropriate meaning with a word in context, a task referred to as word-sense disambiguation. The use of multi-defined words requires the author or speaker to clarify their context, and sometimes elaborate on their specific intended meaning (in which case, a less ambiguous term should have been used). The goal of clear concise communication is that the receiver(s) have no misunderstanding about what was meant to be conveyed. An exception to this could include a politician whose "weasel words" and obfuscation are necessary to gain support from multiple constituents with mutually exclusive conflicting desires from their candidate of choice. Ambiguity is a powerful tool of political science. More problematic are words whose senses express closely related concepts. "Good", for example, can mean "useful" or "functional" (That's a good hammer), "exemplary" (She's a good student), "pleasing" (This is good soup), "moral" (a good person versus the lesson to be learned from a story), "righteous", etc. "I have a good daughter" is not clear about which sense is intended. The various ways to apply prefixes and suffixes can also create ambiguity ("unlockable" can mean "capable of being unlocked" or "impossible to lock"). Semantic and syntactic ambiguity Semantic ambiguity occurs when a word, phrase or sentence, taken out of context, has more than one interpretation. In "We saw her duck" (example due to Richard Nordquist), the words "her duck" can refer either to the person's bird (the noun "duck", modified by the possessive pronoun "her"), or to a motion she made (the verb "duck", the subject of which is the objective pronoun "her", object of the verb "saw"). Syntactic ambiguity arises when a sentence can have two (or more) different meanings because of the structure of the sentence—its syntax. This is often due to a modifying expression, such as a prepositional phrase, the application of which is unclear. "He ate the cookies on the couch", for example, could mean that he ate those cookies that were on the couch (as opposed to those that were on the table), or it could mean that he was sitting on the couch when he ate the cookies. "To get in, you will need an entrance fee of $10 or your voucher and your drivers' license." This could mean that you need EITHER ten dollars OR BOTH your voucher and your license. Or it could mean that you need your license AND you |
need EITHER ten dollars OR a voucher. Only rewriting the sentence, or placing appropriate punctuation can resolve a syntactic ambiguity. For the notion of, and theoretic results about, syntactic ambiguity in artificial, formal languages (such as computer programming languages), see Ambiguous grammar. Usually, semantic and syntactic ambiguity go hand in hand. The sentence "We saw her duck" is also syntactically ambiguous. Conversely, a sentence like "He ate the cookies on the couch" is also semantically ambiguous. Rarely, but occasionally, the different parsings of a syntactically ambiguous phrase result in the same meaning. For example, the command "Cook, cook!" can be parsed as "Cook (noun used as vocative), cook (imperative verb form)!", but also as "Cook (imperative verb form), cook (noun used as vocative)!". It is more common that a syntactically unambiguous phrase has a semantic ambiguity; for example, the lexical ambiguity in "Your boss is a funny man" is purely semantic, leading to the response "Funny ha-ha or funny peculiar?" Spoken language can contain many more types of ambiguities which are called phonological ambiguities, where there is more than one way to compose a set of sounds into words. For example, "ice cream" and "I scream". Such ambiguity is generally resolved according to the context. A mishearing of such, based on incorrectly resolved ambiguity, is called a mondegreen. Philosophy Philosophers (and other users of logic) spend a lot of time and effort searching for and removing (or intentionally adding) ambiguity in arguments because it can lead to incorrect conclusions and can be used to deliberately conceal bad arguments. For example, a politician might say, "I oppose taxes which hinder economic growth", an example of a glittering generality. Some will think they oppose taxes in general because they hinder economic growth. Others may think they oppose only those taxes that they believe will hinder economic growth. In writing, the sentence can be rewritten to reduce possible misinterpretation, either by adding a comma after "taxes" (to convey the first sense) or by changing "which" to "that" (to convey the second sense) or by rewriting it in other ways. The devious politician hopes that each constituent will interpret the statement in the most desirable way, and think the politician supports everyone's opinion. However, the opposite can also be true—an opponent can turn a positive statement into a bad one if the speaker uses ambiguity (intentionally or not). The logical fallacies of amphiboly and |
equivocation rely heavily on the use of ambiguous words and phrases. In continental philosophy (particularly phenomenology and existentialism), there is much greater tolerance of ambiguity, as it is generally seen as an integral part of the human condition. Martin Heidegger argued that the relation between the subject and object is ambiguous, as is the relation of mind and body, and part and whole. In Heidegger's phenomenology, Dasein is always in a meaningful world, but there is always an underlying background for every instance of signification. Thus, although some things may be certain, they have little to do with Dasein's sense of care and existential anxiety, e.g., in the face of death. In calling his work Being and Nothingness an "essay in phenomenological ontology" Jean-Paul Sartre follows Heidegger in defining the human essence as ambiguous, or relating fundamentally to such ambiguity. Simone de Beauvoir tries to base an ethics on Heidegger's and Sartre's writings (The Ethics of Ambiguity), where she highlights the need to grapple with ambiguity: "as long as there have been philosophers and they have thought, most of them have tried to mask it ... And the ethics which they have proposed to their disciples has always pursued the same goal. It has been a matter of eliminating the ambiguity by making oneself pure inwardness or pure externality, by escaping from the sensible world or being engulfed by it, by yielding to eternity or enclosing oneself in the pure moment." Ethics cannot be based on the authoritative certainty given by mathematics and logic, or prescribed directly from the empirical findings of science. She states: "Since we do not succeed in fleeing it, let us, therefore, try to look the truth in the face. Let us try to assume our fundamental ambiguity. It is in the knowledge of the genuine conditions of our life that we must draw our strength to live and our reason for acting". Other continental philosophers suggest that concepts such as life, nature, and sex are ambiguous. Corey Anton has argued that we cannot be certain what is separate from or unified with something else: language, he asserts, divides what is not, in fact, separate. Following Ernest Becker, he argues that the desire to 'authoritatively disambiguate' the world and existence has led to numerous ideologies and historical events such as genocide. On this basis, he argues that ethics must focus on 'dialectically integrating opposites' and balancing |
tension, rather than seeking a priori validation or certainty. Like the existentialists and phenomenologists, he sees the ambiguity of life as the basis of creativity. Literature and rhetoric In literature and rhetoric, ambiguity can be a useful tool. Groucho Marx's classic joke depends on a grammatical ambiguity for its humor, for example: "Last night I shot an elephant in my pajamas. How he got in my pajamas, I'll never know". Songs and poetry often rely on ambiguous words for artistic effect, as in the song title "Don't It Make My Brown Eyes Blue" (where "blue" can refer to the color, or to sadness). In the narrative, ambiguity can be introduced in several ways: motive, plot, character. F. Scott Fitzgerald uses the latter type of ambiguity with notable effect in his novel The Great Gatsby. Mathematical notation Mathematical notation, widely used in physics and other sciences, avoids many ambiguities compared to expression in natural language. However, for various reasons, several lexical, syntactic and semantic ambiguities remain. Names of functions The ambiguity in the style of writing a function should not be confused with a multivalued function, which can (and should) be defined in a deterministic and unambiguous way. Several special functions still do not have established notations. Usually, the conversion to another notation requires to scale the argument or the resulting value; sometimes, the same name of the function is used, causing confusions. Examples of such underestablished functions: Sinc function Elliptic integral of the third kind; translating elliptic integral form MAPLE to Mathematica, one should replace the second argument to its square, see Talk:Elliptic integral#List of notations; dealing with complex values, this may cause problems. Exponential integral Hermite polynomial Expressions Ambiguous expressions often appear in physical and mathematical texts. It is common practice to omit multiplication signs in mathematical expressions. Also, it is common to give the same name to a variable and a function, for example, . Then, if one sees , there is no way to distinguish whether it means multiplied by , or function evaluated at argument equal to . In each case of use of such notations, the reader is supposed to be able to perform the deduction and reveal the true meaning. Creators of algorithmic languages try to avoid ambiguities. Many algorithmic languages (C++ and Fortran) require the character * as symbol of multiplication. The Wolfram Language used in Mathematica allows the user to omit the |
multiplication symbol, but requires square brackets to indicate the argument of a function; square brackets are not allowed for grouping of expressions. Fortran, in addition, does not allow use of the same name (identifier) for different objects, for example, function and variable; in particular, the expression f=f(x) is qualified as an error. The order of operations may depend on the context. In most programming languages, the operations of division and multiplication have equal priority and are executed from left to right. Until the last century, many editorials assumed that multiplication is performed first, for example, is interpreted as ; in this case, the insertion of parentheses is required when translating the formulas to an algorithmic language. In addition, it is common to write an argument of a function without parenthesis, which also may lead to ambiguity. In the scientific journal style, one uses roman letters to denote elementary functions, whereas variables are written using italics. For example, in mathematical journals the expression does not denote the sine function, but the product of the three variables , , , although in the informal notation of a slide presentation it may stand for . Commas in multi-component subscripts and superscripts are sometimes omitted; this is also potentially ambiguous notation. For example, in the notation , the reader can only infer from the context whether it means a single-index object, taken with the subscript equal to product of variables , and , or it is an indication to a trivalent tensor. Examples of potentially confusing ambiguous mathematical expressions An expression such as can be understood to mean either or . Often the author's intention can be understood from the context, in cases where only one of the two makes sense, but an ambiguity like this should be avoided, for example by writing or . The expression means in several texts, though it might be thought to mean , since commonly means . Conversely, might seem to mean , as this exponentiation notation usually denotes function iteration: in general, means . However, for trigonometric and hyperbolic functions, this notation conventionally means exponentiation of the result of function application. The expression can be interpreted as meaning ; however, it is more commonly understood to mean . Notations in quantum optics and quantum mechanics It is common to define the coherent states in quantum optics with and states with fixed number of photons with . Then, |
there is an "unwritten rule": the state is coherent if there are more Greek characters than Latin characters in the argument, and photon state if the Latin characters dominate. The ambiguity becomes even worse, if is used for the states with certain value of the coordinate, and means the state with certain value of the momentum, which may be used in books on quantum mechanics. Such ambiguities easily lead to confusions, especially if some normalized adimensional, dimensionless variables are used. Expression may mean a state with single photon, or the coherent state with mean amplitude equal to 1, or state with momentum equal to unity, and so on. The reader is supposed to guess from the context. Ambiguous terms in physics and mathematics Some physical quantities do not yet have established notations; their value (and sometimes even dimension, as in the case of the Einstein coefficients), depends on the system of notations. Many terms are ambiguous. Each use of an ambiguous term should be preceded by the definition, suitable for a specific case. Just like Ludwig Wittgenstein states in Tractatus Logico-Philosophicus: "... Only in the context of a proposition has a name meaning." A highly confusing term is gain. For example, the sentence "the gain of a system should be doubled", without context, means close to nothing. It may mean that the ratio of the output voltage of an electric circuit to the input voltage should be doubled. It may mean that the ratio of the output power of an electric or optical circuit to the input power should be doubled. It may mean that the gain of the laser medium should be doubled, for example, doubling the population of the upper laser level in a quasi-two level system (assuming negligible absorption of the ground-state). The term intensity is ambiguous when applied to light. The term can refer to any of irradiance, luminous intensity, radiant intensity, or radiance, depending on the background of the person using the term. Also, confusions may be related with the use of atomic percent as measure of concentration of a dopant, or resolution of an imaging system, as measure of the size of the smallest detail which still can be resolved at the background of statistical noise. See also Accuracy and precision and its talk. The Berry paradox arises as a result of systematic ambiguity in the meaning of terms such as "definable" or "nameable". |
Terms of this kind give rise to vicious circle fallacies. Other terms with this type of ambiguity are: satisfiable, true, false, function, property, class, relation, cardinal, and ordinal. Mathematical interpretation of ambiguity In mathematics and logic, ambiguity can be considered to be an instance of the logical concept of underdetermination—for example, leaves open what the value of X is—while its opposite is a self-contradiction, also called inconsistency, paradoxicalness, or oxymoron, or in mathematics an inconsistent system—such as , which has no solution. Logical ambiguity and self-contradiction is analogous to visual ambiguity and impossible objects, such as the Necker cube and impossible cube, or many of the drawings of M. C. Escher. Constructed language Some languages have been created with the intention of avoiding ambiguity, especially lexical ambiguity. Lojban and Loglan are two related languages which have been created for this, focusing chiefly on syntactic ambiguity as well. The languages can be both spoken and written. These languages are intended to provide a greater technical precision over big natural languages, although historically, such attempts at language improvement have been criticized. Languages composed from many diverse sources contain much ambiguity and inconsistency. The many exceptions to syntax and semantic rules are time-consuming and difficult to learn. Biology In structural biology, ambiguity has been recognized as a problem for studying protein conformations. The analysis of a protein three-dimensional structure consists in dividing the macromolecule into subunits called domains. The difficulty of this task arises from the fact that different definitions of what a domain is can be used (e.g. folding autonomy, function, thermodynamic stability, or domain motions), which sometimes results in a single protein having different—yet equally valid—domain assignments. Christianity and Judaism Christianity and Judaism employ the concept of paradox synonymously with "ambiguity". Many Christians and Jews endorse Rudolf Otto's description of the sacred as 'mysterium tremendum et fascinans', the awe-inspiring mystery which fascinates humans. The apocryphal Book of Judith is noted for the "ingenious ambiguity" expressed by its heroine e.g. she says to the villain of the story, Holofernes, "my lord will not fail to achieve his purposes". The orthodox Catholic writer G. K. Chesterton regularly employed paradox to tease out the meanings in common concepts which he found ambiguous or to reveal meaning often overlooked or forgotten in common phrases: the title of one of his most famous books, Orthodoxy (1908), itself employed such a paradox. Music In music, pieces or |
sections which confound expectations and may be or are interpreted simultaneously in different ways are ambiguous, such as some polytonality, polymeter, other ambiguous meters or rhythms, and ambiguous phrasing, or (Stein 2005, p. 79) any aspect of music. The music of Africa is often purposely ambiguous. To quote Sir Donald Francis Tovey (1935, p. 195), "Theorists are apt to vex themselves with vain efforts to remove uncertainty just where it has a high aesthetic value." Visual art In visual art, certain images are visually ambiguous, such as the Necker cube, which can be interpreted in two ways. Perceptions of such objects remain stable for a time, then may flip, a phenomenon called multistable perception. The opposite of such ambiguous images are impossible objects. Pictures or photographs may also be ambiguous at the semantic level: the visual image is unambiguous, but the meaning and narrative may be ambiguous: is a certain facial expression one of excitement or fear, for instance? Social psychology and the bystander effect In social psychology, ambiguity is a factor used in determining peoples' responses to various situations. High levels of ambiguity in an emergency (e.g. an unconscious man lying on a park bench) make witnesses less likely to offer any sort of assistance, due to the fear that they may have misinterpreted the situation and acted unnecessarily. Alternately, non-ambiguous emergencies (e.g. an injured person verbally asking for help) elicit more consistent intervention and assistance. With regard to the bystander effect, studies have shown that emergencies deemed ambiguous trigger the appearance of the classic bystander effect (wherein more witnesses decrease the likelihood of any of them helping) far more than non-ambiguous emergencies. Computer science In computer science, the SI prefixes kilo-, mega- and giga- were historically used in certain contexts to mean either the first three powers of 1024 (1024, 10242 and 10243) contrary to the metric system in which these units unambiguously mean one thousand, one million, and one billion. This usage is particularly prevalent with electronic memory devices (e.g. DRAM) addressed directly by a binary machine register where a decimal interpretation makes no practical sense. Subsequently, the Ki, Mi, and Gi prefixes were introduced so that binary prefixes could be written explicitly, also rendering k, M, and G unambiguous in texts conforming to the new standard—this led to a new ambiguity in engineering documents lacking outward trace of the binary prefixes (necessarily indicating the new style) |
as to whether the usage of k, M, and G remains ambiguous (old style) or not (new style). 1 M (where M is ambiguously 1,000,000 or 1,048,576) is less uncertain than the engineering value 1.0e6 (defined to designate the interval 950,000 to 1,050,000). As non-volatile storage devices begin to exceed 1 GB in capacity (where the ambiguity begins to routinely impact the second significant digit), GB and TB almost always mean 109 and 1012 bytes. See also References External links Collection of Ambiguous or Inconsistent/Incomplete Statements Leaving out ambiguities when writing Semantics Mathematical notation Concepts in epistemology Barriers to critical thinking Formal semantics (natural language) |
Abel is a Biblical figure in the Book of Genesis within Abrahamic religions. He was the younger brother of Cain, and the younger son of Adam and Eve, the first couple in Biblical history. He was a shepherd who offered his firstborn flock up to God as an offering. God accepted his offering but not his brother's. Cain then killed Abel out of jealousy. According to Genesis, this was the first murder in the history of mankind. Interpretations Jewish and Christian interpretations According to the narrative in Genesis, Abel ( Hébel, in pausa Hā́ḇel; Hábel; , Hābēl) is Eve's second son. His name in Hebrew is composed of the same three consonants as a root meaning "breath". Julius Wellhausen has proposed that the name is independent of the root. Eberhard Schrader had previously put forward the Akkadian (Old Assyrian dialect) ablu ("son") as a more likely etymology. In Christianity, comparisons are sometimes made between the death of Abel and that of Jesus, the former thus seen as being the first martyr. In Jesus speaks of Abel as "righteous", and the Epistle to the Hebrews states that "The blood of sprinkling ... [speaks] better things than that of Abel" (). The blood of Jesus is interpreted as bringing mercy; but that of Abel as demanding vengeance (hence the curse and mark). Abel is invoked in the litany for the dying in the Roman Catholic Church, and his sacrifice is mentioned in the Canon of the Mass along with those of Abraham and Melchizedek. The Alexandrian Rite commemorates him with a feast day on December 28. According to the Coptic Book of Adam and Eve (at 2:1–15), and the Syriac Cave of Treasures, Abel's body, after many days of mourning, was placed in the Cave of Treasures, before which Adam and Eve, and descendants, offered their prayers. In addition, the Sethite line of the Generations of Adam swear by Abel's blood to segregate themselves from the unrighteous. In the Book of Enoch (22:7), regarded by most Christian and Jewish traditions as extra-biblical, the soul of Abel is described as having been appointed as the chief of martyrs, crying for vengeance, for the destruction of the seed of Cain. A similar view is later shown in the Testament of Abraham (A:13 / B:11), where Abel has been raised to the position as the judge of the souls. In Bereshit Rabbah (22:2), a discussion |
of Gen. 4:1 ff. has Rabbi Yehoshua ben Korcha mentioning that Cain was born with a twin sister, and Abel with two twin sisters. This is based on the principle that the otherwise superfluous accusative article "et" always conveys some additional teaching (Pesachim 22b). The "et"'s are parsed slightly differently in Yebamot 62a where the two "et"'s in Gen. 4:2 indicate Cain and his sister, and Abel and his (one) sister. Sethian Gnostic interpretation In the Apocryphon of John, a work belonging to Sethian Gnosticism, Abel is the offspring of Yaldaboath and Eve, who is placed over the elements of water and earth as Elohim, but was only given his name as a form of deception. Mandaean interpretation According to Mandaean beliefs and scriptures including the Qolastā, the Book of John and Genzā Rabbā, Abel is cognate with the angelic soteriological figure Hibil Ziwa, (, sometimes translated "Splendid Hibel"), who is spoken of as a son of Hayyi or of Manda d-Hayyi, and as a brother to Anush (Enosh) and to Sheetil (Seth), who is the son of Adam. Elsewhere, Anush is spoken of as the son of Sheetil, and Sheetil as the son of Hibil, where Hibil came to Adam and Eve as a young boy when they were still virgins, but was called their son. Hibil is an important lightworld being (uthra) who conquered the World of Darkness. As Yawar Hibil, he is one of multiple figures known as Yawar (), being so named by and after his father. Islamic interpretation According to Shi'a Muslim belief, Abel ("Habeel") is buried in the Nabi Habeel Mosque, located on the west mountains of Damascus, near the Zabadani Valley, overlooking the villages of the Barada river (Wadi Barada), in Syria. Shi'a are frequent visitors of this mosque for ziyarat. The mosque was built by Ottoman Wali Ahmad Pasha in 1599. In modern media Abel is portrayed by Franco Nero in the film The Bible: In the Beginning... (1966). Paul Rudd played the role of Abel in the 2009 film Year One. Notes References Bereshit (parashah) Biblical murder victims Book of Genesis people Children of Adam and Eve Male murder victims Shepherds Uthras Hebrew Bible people in Mandaeism |
An animal is a multicellular, eukaryotic organism of the kingdom Animalia or Metazoa. Animal, Animals, or The Animal may also refer to: People The Animal (nickname), a list of people nicknamed "The Animal" or "Animal" Animal Hamaguchi, a ring name of Japanese retired professional wrestler Heigo Hamaguchi (born 1947) Road Warrior Animal or Animal, ring names of American professional wrestler Joseph Michael Laurinaitis (1960–2020) Books and publications Animal (book), full title Animal: The Definitive Visual Guide to The World's WildLife Animal, 2012 novel by K'wan Foye Animal (journal), full title: Animal: An International Journal of Animal Bioscience Animals (novel), a 2014 novel by Emma Jane Unsworth Film and television Films Animal (1977 film), a French film (L'Animal) starring Jean-Paul Belmondo and Raquel Welch Animals (1998 film), an American film starring Tim Roth and Rod Steiger Animal (2001 film), an Argentine comedy film by Sergio Bizzio with Carlos Roffé Animal (2005 film), an American direct-to-video action drama film starring Ving Rhames and Terrance Howard Animal (2014 film), an American horror film starring Keke Palmer Animal (2018 film), an Argentine film Animals (2003 film), a stand-up show written and performed by Ricky Gervais Animals (2012 film), a Spanish film Animals (2014 film), a British drama film written by and starring David Dastmalchian Animals (2017 film), a German film Animals (2019 film), an Australian film Animals (2021 film), a psychological thriller film The Animal, a 2001 American comedy film featuring Rob Schneider The Animals (film), a 2012 Filipino coming-of-age film by Gino M. Santos Television Animal (TV series), an American nature documentary series Animals (American TV series), a 2016–2018 animated series Animals (South Korean TV series), a 2015 reality-variety show "Animals" (The Goodies), a 1980 episode "Animals" (Men Behaving Badly), a 1992 episode "Animals" (Off the Air), a 2011 episode "Animals" (The Vicar of Dibley), a 1994 episode "The Animals" (Orange Is the New Black), a 2016 episode Animal (audio drama), a 2011 audio drama based on Doctor Who Characters Animal (Muppet), a character from the television series The Muppet Show Animal, a character in the television series Takeshi's Castle Animal, played by Ken Hudson Campbell, a character on the TV sitcom Herman's Head Dennis "Animal" Price, a character on the TV series Lou Grant Music The Animals, a British rock band A.N.I.M.A.L., an Argentine heavy metal band Animal (Nick Culmer) lead singer of the Anti-Nowhere League Albums Animal (Animosity album), 2007 Animal |
(Bar-Kays album), 1989 Animal (Big Scary album), 2016 Animal (Kesha album), 2010 Animal (Lump album), 2021 Animal (María Becerra album), 2021 Animal (Motor Ace album), 2005 Animals (Pink Floyd album), 1977 Animals (This Town Needs Guns album), 2008 The Animals (American album), by the Animals, 1964 The Animals (British album), by the Animals, 1964 Animal, a 2009 album by AutoKratz Animal, a 2013 album by Berlin Animal, a 2008 album by Far East Movement Animal!, a 2008 album by Margot & the Nuclear So and So's EPs Animals (EP) by Ryan Starx, 2013 Animal, a 2015 EP by Hidden in Plain View A.N.I.M.A.L, a 2019 EP by John Newman Songs "Animal" "Animal" (Álvaro Soler song), 2017 "Animal" (Conor Maynard song), 2013 "Animal" (Def Leppard song), 1987 "Animal" (Jebediah song), 1999 "Animal" (Juvenile song), 2006 "Animal" (María Becerra and Cazzu song), 2022 "Animal" (Miike Snow song), 2009 "Animal" (Neon Trees song), 2010 "Animal" (Pearl Jam song), 1994 "Animal" (R.E.M. song), 2004 "Animal" (R.I.O. song), 2011 "Animal" (Trey Songz song), 2017 "Animal" (Troye Sivan song), 2018 "Animal", by Against Me! from New Wave "Animal", by Ani DiFranco from Educated Guess "Animal", by Anti-Nowhere League from We Are...The League, 1982 "Animal", by Aurora from A Different Kind of Human (Step 2) "Animal", by Black Light Burns from Cruel Melody "Animal", by Ellie Goulding from Lights "Animal", by Karen O and the Kids from Where the Wild Things Are "Animal", by Kat DeLuna from 9 Lives "Animal", by Kesha from Animal "Animal", by the Men from Open Your Heart, 2012 "Animal", by Mindless Self Indulgence from If "Animal", by Mudmen from Overrated "Animal", by Nada Surf from You Know Who You Are, 2016 "Animal", by Subhumans from Demolition War "Animal", by Sunhouse from Crazy On The Weekend "Animal", by The Kinks from To the Bone "Animal", by Toto from Past to Present 1977–1990 "Animal (F**k Like a Beast)", by W.A.S.P., 1984 "Animals" "Animals" (Architects song), 2020 "Animals" (Kevin Ayers song), 1980 "Animals" (Maroon 5 song), 2014 "Animals" (Martin Garrix song), 2013 "Animals" (Muse song), 2012 "Animals" (Nickelback song), 2005 "Animals", by CocoRosie from The Adventures of Ghosthorse and Stillborn "Animals", by Coldplay as one of the B-sides for "Clocks" "Animals", by Dead Poetic from Vices "Animals", by Talking Heads from Fear of Music "Animals", by The End from Elementary "Animals", by Todrick Hall featuring Matt Bloyd from Forbidden "The Animal" "The Animal" (Disturbed song), |
2010 "The Animal", by Steve Vai from Passion and Warfare Other uses ANIMAL (computer worm), an early self-replicating computer program ANIMAL (image processing), an interactive software environment for image processing Operation Animals, a World War II Allied deception operation in Greece Animals (Israeli organization), an animal rights group based in Israel See also Animals, Animals, Animals, an American educational television series (1976–1981) |
The aardvark ( ; Orycteropus afer) is a medium-sized, burrowing, nocturnal mammal native to Africa. It is the only living species of the order Tubulidentata, although other prehistoric species and genera of Tubulidentata are known. Unlike most other insectivores, it has a long snout, similar to that of a pig, which is used to sniff out food. The aardvark is found over much of the southern two-thirds of the African continent, avoiding areas that are mainly rocky. A nocturnal feeder, it subsists on ants and termites, which it will dig out of their hills using its sharp claws and powerful legs. It also digs to create burrows in which to live and rear its young. The animal is listed as "least concern" by the IUCN, although its numbers are decreasing. Aardvarks are afrotheres, a clade which also includes elephants, manatees, and hyraxes. Name and taxonomy Name The aardvark is sometimes colloquially called the "African ant bear", "anteater" (not to be confused with the South American anteater), or the "Cape anteater" after the Cape of Good Hope. The name "aardvark" is Afrikaans (), comes from earlier Afrikaans erdvark and means "earth pig" or "ground pig" (aarde: "earth/ground", vark: "pig"), because of its burrowing habits. The name Orycteropus means "burrowing foot", and the name afer refers to Africa. The name of the aardvark's order, Tubulidentata, comes from the tubule-style teeth. Taxonomy The aardvark is not closely related to the pig; rather, it is the sole extant representative of the obscure mammalian order Tubulidentata, in which it is usually considered to form one variable species of the genus Orycteropus, the sole surviving genus in the family Orycteropodidae. The aardvark is not closely related to the South American anteater, despite sharing some characteristics and a superficial resemblance. The similarities are the outcome of convergent evolution. The closest living relatives of the aardvark are the elephant shrews, tenrecidae, and golden moles. Along with sirenians, hyraxes, elephants, and their extinct relatives, these animals form the superorder Afrotheria. Studies of the brain have shown the similarities with Condylarthra, and given the clade's status as a wastebasket taxon it may mean some species traditionally classified as "condylarths" are actually stem-aardvarks. Evolutionary history Based on fossils, Bryan Patterson has concluded that early relatives of the aardvark appeared in Africa around the end of the Paleocene. The ptolemaiidans, a mysterious clade of mammals with uncertain affinities, may actually be stem-aardvarks, |
either as a sister clade to Tubulidentata or as a grade leading to true tubulidentates. The first unambiguous tubulidentate was probably Myorycteropus africanus from Kenyan Miocene deposits. The earliest example from the genus Orycteropus was Orycteropus mauritanicus, found in Algeria in deposits from the middle Miocene, with an equally old version found in Kenya. Fossils from the aardvark have been dated to 5 million years, and have been located throughout Europe and the Near East. The mysterious Pleistocene Plesiorycteropus from Madagascar was originally thought to be a tubulidentate that was descended from ancestors that entered the island during the Eocene. However, a number of subtle anatomical differences coupled with recent molecular evidence now lead researchers to believe that Plesiorycteropus is a relative of golden moles and tenrecs that achieved an aardvark-like appearance and ecological niche through convergent evolution. Subspecies The aardvark has seventeen poorly defined subspecies listed: Orycteropus afer afer O. a. adametzi Grote, 1921 O. a. aethiopicus Sundevall, 1843 O. a. angolensis Zukowsky & Haltenorth, 1957 O. a. erikssoni Lönnberg, 1906 O. a. faradjius Hatt, 1932 O. a. haussanus Matschie, 1900 O. a. kordofanicus Rothschild, 1927 O. a. lademanni Grote, 1911 O. a. leptodon Hirst, 1906 O. a. matschiei Grote, 1921 O. a. observandus Grote, 1921 O. a. ruvanensis Grote, 1921 O. a. senegalensis Lesson, 1840 O. a. somalicus Lydekker, 1908 O. a. wardi Lydekker, 1908 O. a. wertheri Matschie, 1898 The 1911 Encyclopædia Britannica also mentions O. a. capensis or Cape ant-bear from South Africa. Description The aardvark is vaguely pig-like in appearance. Its body is stout with a prominently arched back and is sparsely covered with coarse hairs. The limbs are of moderate length, with the rear legs being longer than the forelegs. The front feet have lost the pollex (or 'thumb'), resulting in four toes, while the rear feet have all five toes. Each toe bears a large, robust nail which is somewhat flattened and shovel-like, and appears to be intermediate between a claw and a hoof. Whereas the aardvark is considered digitigrade, it appears at times to be plantigrade. This confusion happens because when it squats it stands on its soles. A contributing characteristic to the burrow digging capabilities of aardvarks is an endosteal tissue called compacted coarse cancellous bone (CCCB). The stress and strain resistance provided by CCCB allows aardvarks to create their burrows, ultimately leading to a favorable environment for plants and a |
variety of animals. An aardvark's weight is typically between . An aardvark's length is usually between , and can reach lengths of when its tail (which can be up to ) is taken into account. It is tall at the shoulder, and has a girth of about . It is the largest member of the proposed clade Afroinsectiphilia. The aardvark is pale yellowish-gray in color and often stained reddish-brown by soil. The aardvark's coat is thin, and the animal's primary protection is its tough skin. Its hair is short on its head and tail; however its legs tend to have longer hair. The hair on the majority of its body is grouped in clusters of 3-4 hairs. The hair surrounding its nostrils is dense to help filter particulate matter out as it digs. Its tail is very thick at the base and gradually tapers. Head The greatly elongated head is set on a short, thick neck, and the end of the snout bears a disc, which houses the nostrils. It contains a thin but complete zygomatic arch. The head of the aardvark contains many unique and different features. One of the most distinctive characteristics of the Tubulidentata is their teeth. Instead of having a pulp cavity, each tooth has a cluster of thin, hexagonal, upright, parallel tubes of vasodentin (a modified form of dentine), with individual pulp canals, held together by cementum. The number of columns is dependent on the size of the tooth, with the largest having about 1,500. The teeth have no enamel coating and are worn away and regrow continuously. The aardvark is born with conventional incisors and canines at the front of the jaw, which fall out and are not replaced. Adult aardvarks have only cheek teeth at the back of the jaw, and have a dental formula of: These remaining teeth are peg-like and rootless and are of unique composition. The teeth consist of 14 upper and 12 lower jaw molars. The nasal area of the aardvark is another unique area, as it contains ten nasal conchae, more than any other placental mammal. The sides of the nostrils are thick with hair. The tip of the snout is highly mobile and is moved by modified mimetic muscles. The fleshy dividing tissue between its nostrils probably has sensory functions, but it is uncertain whether they are olfactory or vibratory in nature. Its nose is made up |
of more turbinate bones than any other mammal, with between 9 and 11, compared to dogs with 4 to 5. With a large quantity of turbinate bones, the aardvark has more space for the moist epithelium, which is the location of the olfactory bulb. The nose contains nine olfactory bulbs, more than any other mammal. Its keen sense of smell is not just from the quantity of bulbs in the nose but also in the development of the brain, as its olfactory lobe is very developed. The snout resembles an elongated pig snout. The mouth is small and tubular, typical of species that feed on ants and termites. The aardvark has a long, thin, snakelike, protruding tongue (as much as long) and elaborate structures supporting a keen sense of smell. The ears, which are very effective, are disproportionately long, about long. The eyes are small for its head, and consist only of rods. Digestive system The aardvark's stomach has a muscular pyloric area that acts as a gizzard to grind swallowed food up, thereby rendering chewing unnecessary. Its cecum is large. Both sexes emit a strong smelling secretion from an anal gland. Its salivary glands are highly developed and almost completely ring the neck; their output is what causes the tongue to maintain its tackiness. The female has two pairs of teats in the inguinal region. Genetically speaking, the aardvark is a living fossil, as its chromosomes are highly conserved, reflecting much of the early eutherian arrangement before the divergence of the major modern taxa. Habitat and range Aardvarks are found in sub-Saharan Africa, where suitable habitat (savannas, grasslands, woodlands and bushland) and food (i.e., ants and termites) is available. They spend the daylight hours in dark burrows to avoid the heat of the day. The only major habitat that they are not present in is swamp forest, as the high water table precludes digging to a sufficient depth. They also avoid terrain rocky enough to cause problems with digging. They have been documented as high as in Ethiopia. They are present throughout sub-Saharan Africa all the way to South Africa with few exceptions including the coastal areas of Namibia, Ivory Coast, and Ghana. They are not found in Madagascar. Ecology and behaviour Aardvarks live for up to 23 years in captivity. Its keen hearing warns it of predators: lions, leopards, cheetahs, African wild dogs, hyenas, and pythons. Some humans |
also hunt aardvarks for meat. Aardvarks can dig fast or run in zigzag fashion to elude enemies, but if all else fails, they will strike with their claws, tail and shoulders, sometimes flipping onto their backs lying motionless except to lash out with all four feet. They are capable of causing substantial damage to unprotected areas of an attacker. They will also dig to escape as they can. Sometimes, when pressed, aardvarks can dig extremely quickly. Feeding The aardvark is nocturnal and is a solitary creature that feeds almost exclusively on ants and termites (myrmecophagy); the only fruit eaten by aardvarks is the aardvark cucumber. In fact, the cucumber and the aardvark have a symbiotic relationship as they eat the subterranean fruit, then defecate the seeds near their burrows, which then grow rapidly due to the loose soil and fertile nature of the area. The time spent in the intestine of the aardvark helps the fertility of the seed, and the fruit provides needed moisture for the aardvark. They avoid eating the African driver ant and red ants. Due to their stringent diet requirements, they require a large range to survive. An aardvark emerges from its burrow in the late afternoon or shortly after sunset, and forages over a considerable home range encompassing . While foraging for food, the aardvark will keep its nose to the ground and its ears pointed forward, which indicates that both smell and hearing are involved in the search for food. They zig-zag as they forage and will usually not repeat a route for 5–8 days as they appear to allow time for the termite nests to recover before feeding on it again. During a foraging period, they will stop to dig a "V" shaped trench with their forefeet and then sniff it profusely as a means to explore their location. When a concentration of ants or termites is detected, the aardvark digs into it with its powerful front legs, keeping its long ears upright to listen for predators, and takes up an astonishing number of insects with its long, sticky tongue—as many as 50,000 in one night have been recorded. Its claws enable it to dig through the extremely hard crust of a termite or ant mound quickly. It avoids inhaling the dust by sealing the nostrils. When successful, the aardvark's long (up to ) tongue licks up the insects; the termites' biting, or |
the ants' stinging attacks are rendered futile by the tough skin. After an aardvark visit at a termite mound, other animals will visit to pick up all the leftovers. Termite mounds alone do not provide enough food for the aardvark, so they look for termites that are on the move. When these insects move, they can form columns long and these tend to provide easy pickings with little effort exerted by the aardvark. These columns are more common in areas of livestock or other hoofed animals. The trampled grass and dung attract termites from the Odontotermes, Microtermes, and Pseudacanthotermes genera. On a nightly basis they tend to be more active during the first portion of night (roughly the four hours between 8:00p.m. and 12:00a.m.); however, they don't seem to prefer bright or dark nights over the other. During adverse weather or if disturbed they will retreat to their burrow systems. They cover between per night; however, some studies have shown that they may traverse as far as in a night. Aardvarks shift their circadian rhythms to more diurnal activity patterns in response to a reduced food supply. This survival tactic may signify an increased risk of imminent mortality. Vocalization The aardvark is a rather quiet animal. However, it does make soft grunting sounds as it forages and loud grunts as it makes for its tunnel entrance. It makes a bleating sound if frightened. When it is threatened it will make for one of its burrows. If one is not close it will dig a new one rapidly. This new one will be short and require the aardvark to back out when the coast is clear. Movement The aardvark is known to be a good swimmer and has been witnessed successfully swimming in strong currents. It can dig a yard of tunnel in about five minutes, but otherwise moves fairly slowly. When leaving the burrow at night, they pause at the entrance for about ten minutes, sniffing and listening. After this period of watchfulness, it will bound out and within seconds it will be away. It will then pause, prick its ears, twisting its head to listen, then jump and move off to start foraging. Aside from digging out ants and termites, the aardvark also excavates burrows in which to live, which generally fall into one of three categories: burrows made while foraging, refuge and resting location, and permanent homes. Temporary |
sites are scattered around the home range and are used as refuges, while the main burrow is also used for breeding. Main burrows can be deep and extensive, have several entrances and can be as long as . These burrows can be large enough for a person to enter. The aardvark changes the layout of its home burrow regularly, and periodically moves on and makes a new one. The old burrows are an important part of the African wildlife scene. As they are vacated, then they are inhabited by smaller animals like the African wild dog, ant-eating chat, Nycteris thebaica and warthogs. Other animals that use them are hares, mongooses, hyenas, owls, pythons, and lizards. Without these refuges many animals would die during wildfire season. Only mothers and young share burrows; however, the aardvark is known to live in small family groups or as a solitary creature. If attacked in the tunnel, it will escape by digging out of the tunnel thereby placing the fresh fill between it and its predator, or if it decides to fight it will roll onto its back, and attack with its claws. The aardvark has been known to sleep in a recently excavated ant nest, which also serves as protection from its predators. Reproduction Aardvarks pair only during the breeding season; after a gestation period of seven months, one cub weighing around is born during May–July. When born, the young has flaccid ears and many wrinkles. When nursing, it will nurse off each teat in succession. After two weeks, the folds of skin disappear and after three, the ears can be held upright. After 5–6 weeks, body hair starts growing. It is able to leave the burrow to accompany its mother after only two weeks and eats termites at 9 weeks, and is weaned between three months and 16 weeks. At six months of age, it is able to dig its own burrows, but it will often remain with the mother until the next mating season, and is sexually mature from approximately two years of age. Conservation Aardvarks were thought to have declining numbers, however, this is possibly because they are not readily seen. There are no definitive counts because of their nocturnal and secretive habits; however, their numbers seem to be stable overall. They are not considered common anywhere in Africa, but due to their large range, they maintain sufficient numbers. There may |
be a slight decrease in numbers in eastern, northern, and western Africa. Southern African numbers are not decreasing. It has received an official designation from the IUCN as least concern. However, they are a species in a precarious situation, as they are so dependent on such specific food; therefore if a problem arises with the abundance of termites, the species as a whole would be affected drastically. Recent research suggests that aardvarks may be particularly vulnerable to alterations in temperature caused by climate change. Droughts negatively impact the availability of termites and ants, which comprise the bulk of an aardvark's diet. Nocturnal species faced with resource scarcity may increase their diurnal activity to spare the energy costs of staying warm at night, but this comes at the cost of withstanding high temperatures during the day. A study on aardvarks in the Kalahari Desert saw that five out of six aardvarks being studied perished following a drought. Aardvarks that survive droughts can take long periods of time to regain health and optimal thermoregulatory physiology, reducing the reproductive potential of the species. Aardvarks handle captivity well. The first zoo to have one was London Zoo in 1869, which had an animal from South Africa. Mythology and popular culture In African folklore, the aardvark is much admired because of its diligent quest for food and its fearless response to soldier ants. Hausa magicians make a charm from the heart, skin, forehead, and nails of the aardvark, which they then proceed to pound together with the root of a certain tree. Wrapped in a piece of skin and worn on the chest, the charm is said to give the owner the ability to pass through walls or roofs at night. The charm is said to be used by burglars and those seeking to visit young girls without their parents' permission. Also, some tribes, such as the Margbetu, Ayanda, and Logo, will use aardvark teeth to make bracelets, which are regarded as good luck charms. The meat, which has a resemblance to pork, is eaten in certain cultures. The ancient Egyptian god Set is usually depicted with the head of an unidentified animal, whose similarity to an aardvark has been noted in scholarship. The titular character and his families from Arthur, an animated television series for children based on a book series and produced by WGBH, shown in more than 180 countries, is an aardvark. |
In the first book of the series, Arthur's Nose (1976), he has a long, aardvark-like nose, but in later books, his face becomes more rounded. Otis the Aardvark was a puppet character used on Children's BBC programming. An aardvark features as the antagonist in the cartoon The Ant and the Aardvark as well as in the Canadian animated series The Raccoons. The supersonic fighter-bomber F-111/FB-111 was nicknamed the Aardvark because of its long nose resembling the animal. It also had similarities with its nocturnal missions flown at a very low level employing ordnance that could penetrate deep into the ground. In the US Navy, the squadron VF-114 was nicknamed the Aardvarks, flying F-4s and then F-14s. The squadron mascot was adapted from the animal in the comic strip B.C., which the F-4 was said to resemble. Cerebus the Aardvark is a 300-issue comic book series by Dave Sim. Footnotes References External links IUCN/SSC Afrotheria Specialist Group A YouTube video introducing the Bronx Zoo's aardvarks "The Biology of the Aardvark (Orycteropus afer)" a diploma thesis (without images) "The Biology of the Aardvark" (Orycteropus afer)" the thesis with images Orycteropus Mammals of Africa Xerophiles Myrmecophagous mammals Mammals described in 1766 Extant Zanclean first appearances Taxa named by Peter Simon Pallas |
The aardwolf (Proteles cristata) is an insectivorous species of hyena, native to East and Southern Africa. Its name means "earth-wolf" in Afrikaans and Dutch. It is also called the maanhaar-jackal (Afrikaans for "mane-jackal"), termite-eating hyena and civet hyena, based on its habit of secreting substances from its anal gland, a characteristic shared with the African civet. Unlike many of its relatives in the order Carnivora, the aardwolf does not hunt large animals. It eats insects and their larvae, mainly termites; one aardwolf can lap up as many as 300,000 termites during a single night using its long, sticky tongue. The aardwolf's tongue has adapted to be tough enough to withstand the strong bite of termites. The aardwolf lives in the shrublands of eastern and southern Africa – open lands covered with stunted trees and shrubs. It is nocturnal, resting in burrows during the day and emerging at night to seek food. Taxonomy The aardwolf is generally classified with the hyena family Hyaenidae, though it was formerly placed in its own family Protelidae. Early on, scientists felt that it was merely mimicking the striped hyena, which subsequently led to the creation of Protelidae. Recent studies have suggested that the aardwolf probably diverged from other hyaenids early on; how early is still unclear, as the fossil record and genetic studies disagree by 10 million years. The aardwolf is the only surviving species in the subfamily Protelinae. There is disagreement as to whether the species is monotypic, or can be divided into subspecies P. c. cristatus of Southern Africa and P. c. septentrionalis of East Africa. A 2006 molecular analysis indicates that it is phylogenetically the most basal of the four extant hyaenidae species. Etymology The generic name proteles comes from two words both of Greek origin, protos and teleos which combined means "complete in front" based on the fact that they have five toes on their front feet and four on the rear. The specific name, cristatus, comes from Latin and means "provided with a comb", relating to their mane. Description The aardwolf resembles a very thin striped hyena, but with a more slender muzzle, black vertical stripes on a coat of yellowish fur, and a long, distinct mane down the midline of the neck and back. It also has one or two diagonal stripes down the fore- and hind-quarters, along with several stripes on its legs. The mane is raised during |
confrontations to make the aardwolf appear larger. It is missing the throat spot that others in the family have. Its lower leg (from the knee down) is all black, and its tail is bushy with a black tip. The aardwolf is about long, excluding its bushy tail, which is about long, and stands about tall at the shoulders. An adult aardwolf weighs approximately , sometimes reaching . The aardwolves in the south of the continent tend to be smaller (about ) than the eastern version (around ). This makes the aardwolf, the smallest extant member of the Hyaenidae family. The front feet have five toes each, unlike the four-toed hyena. The teeth and skull are similar in shape to those of other hyenas, though much smaller, and its cheek teeth are specialised for eating insects. It does still have canines, but, unlike other hyenas, these teeth are used primarily for fighting and defense. Its ears, which are large, are very similar to those of the striped hyena. As an aardwolf ages, it will normally lose some of its teeth, though this has little impact on its feeding habits due to the softness of the insects that it eats. Distribution and habitat Aardwolves live in open, dry plains and bushland, avoiding mountainous areas. Due to their specific food requirements, they are only found in regions where termites of the family Hodotermitidae occur. Termites of this family depend on dead and withered grass and are most populous in heavily grazed grasslands and savannahs, including farmland. For most of the year, aardwolves spend time in shared territories consisting of up to a dozen dens, which are occupied for six weeks at a time. There are two distinct populations: one in Southern Africa, and another in East and Northeast Africa. The species does not occur in the intermediary miombo forests. An adult pair, along with their most-recent offspring, occupies a territory of . Behavior and ecology Aardwolves are shy and nocturnal, sleeping in burrows by day. They will, on occasion during the winter, become diurnal feeders. This happens during the coldest periods as they then stay in at night to conserve heat. They have often been mistaken for solitary animals. In fact, they live as monogamous pairs with their young. If their territory is infringed upon, they will chase the intruder up to or to the border. If the intruder is caught, which rarely |
happens, a fight will occur, which is accompanied by soft clucking, hoarse barking, and a type of roar. The majority of incursions occur during mating season, when they can occur once or twice per week. When food is scarce, the stringent territorial system may be abandoned and as many as three pairs may occupy a single territory. The territory is marked by both sexes, as they both have developed anal glands from which they extrude a black substance that is smeared on rocks or grass stalks in -long streaks. Aardwolves also have scent glands on the forefoot and penile pad. They often mark near termite mounds within their territory every 20 minutes or so. If they are patrolling their territorial boundaries, the marking frequency increases drastically, to once every . At this rate, an individual may mark 60 marks per hour, and upwards of 200 per night. An aardwolf pair may have up to 10 dens, and numerous feces middens, within their territory. When they deposit excreta at their middens, they dig a small hole and cover it with sand. Their dens are usually abandoned aardvark, springhare, or porcupine dens, or on occasion they are crevices in rocks. They will also dig their own dens, or enlarge dens started by springhares. They typically will only use one or two dens at a time, rotating through all of their dens every six months. During the summer, they may rest outside their den during the night and sleep underground during the heat of the day. Aardwolves are not fast runners nor are they particularly adept at fighting off predators. Therefore, when threatened, the aardwolf may attempt to mislead its foe by doubling back on its tracks. If confronted, it may raise its mane in an attempt to appear more menacing. It also emits a foul-smelling liquid from its anal glands. Feeding The aardwolf feeds primarily on termites and more specifically on Trinervitermes. This genus of termites has different species throughout the aardwolf's range. In East Africa, they eat Trinervitermes bettonianus, in central Africa, they eat Trinervitermes rhodesiensis, and in southern Africa, they eat T. trinervoides. Their technique consists of licking them off the ground as opposed to the aardvark, which digs into the mound. They locate their food by sound and also from the scent secreted by the soldier termites. An aardwolf may consume up to 250,000 termites per night using its |
long, sticky tongue. They do not destroy the termite mound or consume the entire colony, thus ensuring that the termites can rebuild and provide a continuous supply of food. They often memorize the location of such nests and return to them every few months. During certain seasonal events, such as the onset of the rainy season and the cold of midwinter, the primary termites become scarce, so the need for other foods becomes pronounced. During these times, the southern aardwolf will seek out Hodotermes mossambicus, a type of harvester termite active in the afternoon, which explains some of their diurnal behavior in the winter. The eastern aardwolf, during the rainy season, subsists on termites from the genera Odontotermes and Macrotermes. They are also known to feed on other insects, larvae, eggs, and, some sources say, occasionally small mammals and birds, but these constitute a very small percentage of their total diet. Unlike other hyenas, aardwolves do not scavenge or kill larger animals. Contrary to popular myths, aardwolves do not eat carrion, and if they are seen eating while hunched over a dead carcass, they are actually eating larvae and beetles. Also, contrary to some sources, they do not like meat, unless it is finely ground or cooked for them. The adult aardwolf was formerly assumed to forage in small groups, but more recent research has shown that they are primarily solitary foragers, necessary because of the scarcity of their insect prey. Their primary source, Trinervitermes, forages in small but dense patches of . While foraging, the aardwolf can cover about per hour, which translates to per summer night and per winter night. Breeding The breeding season varies depending on location, but normally takes place during autumn or spring. In South Africa, breeding occurs in early July. During the breeding season, unpaired male aardwolves search their own territory, as well as others, for a female to mate with. Dominant males also mate opportunistically with the females of less dominant neighboring aardwolves, which can result in conflict between rival males. Dominant males even go a step further and as the breeding season approaches, they make increasingly greater and greater incursions onto weaker males' territories. As the female comes into oestrus, they add pasting to their tricks inside of the other territories, sometimes doing so more in rivals' territories than their own. Females will also, when given the opportunity, mate with the dominant |
male, which increases the chances of the dominant male guarding "his" cubs with her. Copulation lasts between 1 and 4.5 hours. Gestation lasts between 89 and 92 days, producing two to five cubs (most often two or three) during the rainy season (November–December), when termites are more active. They are born with their eyes open, but initially are helpless, and weigh around . The first six to eight weeks are spent in the den with their parents. The male may spend up to six hours a night watching over the cubs while the mother is out looking for food. After three months, they begin supervised foraging, and by four months are normally independent, though they often share a den with their mother until the next breeding season. By the time the next set of cubs is born, the older cubs have moved on. Aardwolves generally achieve sexual maturity at one and a half to two years of age. Conservation The aardwolf has not seen decreasing numbers and is relatively widespread throughout eastern Africa. They are not common throughout their range, as they maintain a density of no more than 1 per square kilometer, if food is abundant. Because of these factors, the IUCN has rated the aardwolf as least concern. In some areas, they are persecuted because of the mistaken belief that they prey on livestock; however, they are actually beneficial to the farmers because they eat termites that are detrimental. In other areas, the farmers have recognized this, but they are still killed, on occasion, for their fur. Dogs and insecticides are also common killers of the aardwolf. In captivity Frankfurt Zoo in Germany was home to the oldest recorded aardwolf in captivity at 18 years and 11 months. Notes References References Further reading External links Animal Diversity Web IUCN Hyaenidae Specialist Group Aardwolf pages on hyaenidae.org Cam footage from the Namib desert https://m.youtube.com/watch?v=lRevqS6Pxgg Mammals described in 1783 Carnivorans of Africa Hyenas Mammals of Southern Africa Fauna of East Africa Myrmecophagous mammals Taxa named by Anders Sparrman |
Adobe ( ; ) is a building material made from earth and organic materials. is Spanish for mudbrick. In some English-speaking regions of Spanish heritage, such as the Southwestern United States, the term is used to refer to any kind of earthen construction, or various architectural styles like Pueblo Revival or Territorial Revival. Most adobe buildings are similar in appearance to cob and rammed earth buildings. Adobe is among the earliest building materials, and is used throughout the world. Adobe architecture has been dated to before 5,100 B.C. Description Adobe bricks are rectangular prisms small enough that they can quickly air dry individually without cracking. They can be subsequently assembled, with the application of adobe mud to bond the individual bricks into a structure. There is no standard size, with substantial variations over the years and in different regions. In some areas a popular size measured weighing about ; in other contexts the size is weighing about . The maximum sizes can reach up to ; above this weight it becomes difficult to move the pieces, and it is preferred to ram the mud in situ, resulting in a different typology known as rammed earth. Strength In dry climates, adobe structures are extremely durable, and account for some of the oldest existing buildings in the world. Adobe buildings offer significant advantages due to their greater thermal mass, but they are known to be particularly susceptible to earthquake damage if they are not reinforced. Cases where adobe structures were widely damaged during earthquakes include the 1976 Guatemala earthquake, the 2003 Bam earthquake, and the 2010 Chile earthquake. Distribution Buildings made of sun-dried earth are common throughout the world (Middle East, Western Asia, North Africa, West Africa, South America, southwestern North America, Southwestern and Eastern Europe.) Adobe had been in use by indigenous peoples of the Americas in the Southwestern United States, Mesoamerica, and the Andes for several thousand years. Puebloan peoples built their adobe structures with handsful or basketsful of adobe, until the Spanish introduced them to making bricks. Adobe bricks were used in Spain from the Late Bronze and Iron Ages (eighth century BCE onwards). Its wide use can be attributed to its simplicity of design and manufacture, and economics. Etymology The word adobe has existed for around 4000 years with relatively little change in either pronunciation or meaning. The word can be traced from the Middle Egyptian (c. 2000 |
BC) word ḏbt "mud brick" (with vowels unwritten). Middle Egyptian evolved into Late Egyptian and finally to Coptic (c. 600 BC), where it appeared as ⲧⲱⲃⲉ tōbə. This was adopted into Arabic as aṭ-ṭawbu or aṭ-ṭūbu, with the definite article al- attached to the root tuba. This was assimilated into the Old Spanish language as adobe , probably via Mozarabic. English borrowed the word from Spanish in the early 18th century, still referring to mudbrick construction. In more modern English usage, the term adobe has come to include a style of architecture popular in the desert climates of North America, especially in New Mexico, regardless of the construction method. Composition An adobe brick is a composite material made of earth mixed with water and an organic material such as straw or dung. The soil composition typically contains sand, silt and clay. Straw is useful in binding the brick together and allowing the brick to dry evenly, thereby preventing cracking due to uneven shrinkage rates through the brick. Dung offers the same advantage. The most desirable soil texture for producing the mud of adobe is 15% clay, 10–30% silt, and 55–75% fine sand. Another source quotes 15–25% clay and the remainder sand and coarser particles up to cobbles , with no deleterious effect. Modern adobe is stabilized with either emulsified asphalt or Portland cement up to 10% by weight. No more than half the clay content should be expansive clays, with the remainder non-expansive illite or kaolinite. Too much expansive clay results in uneven drying through the brick, resulting in cracking, while too much kaolinite will make a weak brick. Typically the soils of the Southwest United States, where such construction has been widely used, are an adequate composition. Material properties Adobe walls are load bearing, i.e. they carry their own weight into the foundation rather than by another structure, hence the adobe must have sufficient compressive strength. In the United States, most building codes call for a minimum compressive strength of 300 lbf/in2 (2.07 newton/mm2) for the adobe block. Adobe construction should be designed so as to avoid lateral structural loads that would cause bending loads. The building codes require the building sustain a 1 g lateral acceleration earthquake load. Such an acceleration will cause lateral loads on the walls, resulting in shear and bending and inducing tensile stresses. To withstand such loads, the codes typically call for a tensile |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.