Datasets:
metadata
dataset_info:
- config_name: speech_clean
features:
- name: audio.headset_microphone
dtype: audio
- name: audio.forehead_accelerometer
dtype: audio
- name: audio.soft_in_ear_microphone
dtype: audio
- name: audio.rigid_in_ear_microphone
dtype: audio
- name: audio.temple_vibration_pickup
dtype: audio
- name: audio.throat_microphone
dtype: audio
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: sentence_id
dtype: int64
- name: duration
dtype: float64
- name: raw_text
dtype: string
- name: normalized_text
dtype: string
- name: phonemized_text
dtype: string
splits:
- name: train
num_bytes: 57239647786.572
num_examples: 22109
- name: validation
num_bytes: 6688339232.312
num_examples: 2594
- name: test
num_bytes: 8179829323.712
num_examples: 3148
download_size: 66375643193
dataset_size: 72107816342.59601
- config_name: speech_noisy
features:
- name: audio.headset_microphone
dtype: audio
- name: audio.forehead_accelerometer
dtype: audio
- name: audio.soft_in_ear_microphone
dtype: audio
- name: audio.rigid_in_ear_microphone
dtype: audio
- name: audio.temple_vibration_pickup
dtype: audio
- name: audio.throat_microphone
dtype: audio
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: sentence_id
dtype: int64
- name: duration
dtype: float64
- name: raw_text
dtype: string
- name: normalized_text
dtype: string
- name: phonemized_text
dtype: string
splits:
- name: train
num_bytes: 3260647443.04
num_examples: 1220
- name: validation
num_bytes: 353119911
num_examples: 132
- name: test
num_bytes: 468657110
num_examples: 175
download_size: 3994572339
dataset_size: 4082424464.04
- config_name: speechless_clean
features:
- name: audio.headset_microphone
dtype: audio
- name: audio.forehead_accelerometer
dtype: audio
- name: audio.soft_in_ear_microphone
dtype: audio
- name: audio.rigid_in_ear_microphone
dtype: audio
- name: audio.temple_vibration_pickup
dtype: audio
- name: audio.throat_microphone
dtype: audio
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 4642949710
num_examples: 149
- name: validation
num_bytes: 560888172
num_examples: 18
- name: test
num_bytes: 654396862
num_examples: 21
download_size: 3756127731
dataset_size: 5858234744
- config_name: speechless_noisy
features:
- name: audio.headset_microphone
dtype: audio
- name: audio.forehead_accelerometer
dtype: audio
- name: audio.soft_in_ear_microphone
dtype: audio
- name: audio.rigid_in_ear_microphone
dtype: audio
- name: audio.temple_vibration_pickup
dtype: audio
- name: audio.throat_microphone
dtype: audio
- name: gender
dtype: string
- name: speaker_id
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 12361663282
num_examples: 149
- name: validation
num_bytes: 1493307756
num_examples: 18
- name: test
num_bytes: 1742266618
num_examples: 21
download_size: 14034848650
dataset_size: 15597237656
configs:
- config_name: speech_clean
data_files:
- split: train
path: speech_clean/train-*
- split: validation
path: speech_clean/validation-*
- split: test
path: speech_clean/test-*
- config_name: speech_noisy
data_files:
- split: train
path: speech_noisy/train-*
- split: validation
path: speech_noisy/validation-*
- split: test
path: speech_noisy/test-*
- config_name: speechless_clean
data_files:
- split: train
path: speechless_clean/train-*
- split: validation
path: speechless_clean/validation-*
- split: test
path: speechless_clean/test-*
- config_name: speechless_noisy
data_files:
- split: train
path: speechless_noisy/train-*
- split: validation
path: speechless_noisy/validation-*
- split: test
path: speechless_noisy/test-*
language:
- fr
Dataset Card for non-curated VibraVox
👀 This is the non-curated version of the VibraVox dataset. For a full documentation and dataset usage, please refer to https://huggingface.co/datasets/Cnam-LMSSC/vibravox
DATASET SUMMARY
The VibraVox dataset is a general purpose audio dataset of french speech captured with body-conduction transducers. This dataset can be used for various audio machine learning tasks :
- Automatic Speech Recognition (ASR) (Speech-to-Text , Speech-to-Phoneme)
- Audio Bandwidth Extension (BWE)
- Speaker Verification (SPKV) / identification
- Voice cloning
- etc ...
Citations, links and details
- Homepage: For more information about the project, visit our project page on https://vibravox.cnam.fr
- Github repository: jhauret/vibravox : Source code for ASR, BWE and SPKV tasks using the Vibravox dataset
- Published paper: available (Open Access) on Speech Communication and arXiV
- Point of Contact: Julien Hauret and Éric Bavu
- Curated by: AVA Team of the LMSSC Research Laboratory
- Funded by: Agence Nationale Pour la Recherche / AHEAD Project
- Language: French
- License: Creative Commons Attributions 4.0
If you use the Vibravox dataset (either curated or non-curated versions) for research, cite this paper :
@article{hauret2025vibravox,
title={{Vibravox: A dataset of french speech captured with body-conduction audio sensors}},
author={{Hauret, Julien and Olivier, Malo and Joubaud, Thomas and Langrenne, Christophe and
Poir{\'e}e, Sarah and Zimpfer, V{\'e}ronique and Bavu, {\'E}ric},
journal={Speech Communication},
pages={103238},
year={2025},
publisher={Elsevier}
}
and this repository, which is linked to a DOI :
@misc{cnamlmssc2024vibravoxdataset,
author={Hauret, Julien and Olivier, Malo and Langrenne, Christophe and
Poir{\'e}e, Sarah and Bavu, {\'E}ric},
title = { {Vibravox} (Revision 7990b7d) },
year = 2024,
url = { https://huggingface.co/datasets/Cnam-LMSSC/vibravox },
doi = { 10.57967/hf/2727 },
publisher = { Hugging Face }
}