Dataset Viewer
Auto-converted to Parquet
patient_id
string
sex
string
ethnicity
string
smoking_status
string
afib_or_flutter
int64
asthma
int64
obesity
int64
cancer
int64
hypertension
int64
peripheral_vascular_disease
int64
copd
int64
pneumonia
int64
psych_note_count
int64
insomnia_billing_code_count
int64
psychiatric_disorder
int64
lipid_metabolism_disorder
int64
joint_disorder_billing_code_count
int64
emr_fact_count
float64
bmi
float64
cerebrovascular_disease
int64
ckd_or_esrd
int64
sleep_disorder_note_count
int64
congestive_heart_failure
int64
diabetes
int64
anxiety_or_depression
int64
osteoporosis
int64
gastrointestinal_disorder
int64
renal_failure
int64
anx_depr_billing_code_count
int64
insomnia_rx_count
int64
age
float64
female
int64
coronary_artery_disease
int64
insomnia_probability
float64
insomnia_class
int64
P000001
Female
Caucasian
Past
1
0
0
0
0
0
0
0
0
0
0
1
0
345
28.789678
0
0
0
0
0
1
0
0
1
0
0
59.250878
0
1
0.091974
0
P000002
Female
Caucasian
Current
0
0
1
0
1
0
0
0
1
0
0
1
1
814
22.790537
0
0
0
1
1
0
1
1
0
0
0
59.410528
0
0
0.152416
0
P000003
Male
Caucasian
Never
0
1
0
0
1
1
0
0
0
0
0
0
1
446
29.327002
1
1
0
0
1
0
0
1
0
0
0
57.974111
0
0
0.176585
0
P000004
Male
null
Never
1
1
0
0
1
0
0
0
0
0
1
1
0
299
32.326028
0
0
0
0
1
1
1
0
0
0
1
72.551637
0
0
0.154122
1
P000005
Male
Caucasian
Never
0
0
0
1
1
0
0
0
0
0
1
1
0
null
25.109522
0
0
0
0
0
1
0
0
0
0
0
47.489276
1
0
null
0
P000006
Female
null
Never
0
0
0
0
0
0
0
0
0
2
1
0
1
null
null
0
0
0
0
1
1
0
1
0
0
0
63.368265
1
1
null
0
P000007
Male
Caucasian
Current
0
0
1
1
0
0
0
1
0
0
0
0
0
809
26.361316
1
0
1
1
0
0
1
0
0
3
0
38.090292
1
1
0.87291
1
P000008
Male
Caucasian
Current
0
0
1
0
1
0
0
0
0
0
0
1
0
373
30.258525
0
0
0
1
0
1
0
1
0
0
0
76.073713
1
0
0.14121
1
P000009
Female
Caucasian
Never
1
0
0
1
1
0
0
0
0
0
1
1
1
379
39.885626
0
0
0
0
0
0
0
1
0
0
0
62.960904
1
1
0.186323
0
P000010
Female
African American
Past
1
0
0
1
1
0
0
0
0
0
1
1
0
608
38.567297
0
0
0
1
0
0
0
0
0
1
1
40.330732
0
1
0.291658
0
P000011
Female
Caucasian
Never
0
0
1
0
1
1
1
0
1
0
1
1
0
504
38.9233
0
0
1
0
0
0
0
1
0
1
0
106.037926
0
0
0.751275
1
P000012
Male
Caucasian
Unknown
0
0
0
0
0
0
0
0
1
0
0
1
0
331
19.435655
0
0
1
0
1
0
1
0
0
1
0
55.593992
1
1
0.724135
1
P000013
Female
Caucasian
null
1
0
0
1
1
0
0
0
0
0
0
0
0
584
26.135693
0
0
0
0
1
0
0
1
0
0
0
63.494761
0
0
0.170713
0
P000014
Male
Caucasian
Unknown
1
0
1
1
1
0
0
0
0
0
0
0
1
435
34.288838
0
0
0
1
1
1
1
1
0
2
0
73.075093
1
0
0.272733
0
P000015
Female
Caucasian
null
1
0
1
0
1
1
0
0
0
1
0
0
1
0
24.912424
0
0
0
0
0
0
0
0
0
0
0
63.277122
1
0
0.179239
0
P000016
Male
Caucasian
Current
0
0
0
0
1
0
1
1
0
0
0
1
1
772
10.034112
0
0
0
0
0
1
1
0
0
0
0
53.173426
0
0
0.131896
0
P000017
Male
Caucasian
Never
0
1
0
0
1
0
0
0
0
0
0
1
1
262
34.907492
0
1
1
0
1
0
0
0
0
0
1
55.071958
1
1
0.61682
0
P000018
Female
Caucasian
Never
0
0
1
1
1
0
0
1
0
1
0
0
0
288
32.433601
1
0
1
0
0
0
1
0
0
0
0
54.858314
0
1
0.780886
1
P000019
Female
Caucasian
Past
0
0
0
1
1
0
0
0
0
0
0
0
0
223
39.814356
0
0
0
0
1
1
1
0
0
0
0
67.198799
1
1
0.100124
0
P000020
Female
Hispanic
null
0
0
0
0
1
0
0
0
0
0
0
1
0
904
34.67607
1
0
0
1
0
1
0
1
0
0
0
84.011047
1
0
0.18349
0
P000021
Female
null
Unknown
0
0
1
1
1
0
0
1
0
0
0
1
0
823
25.245594
0
0
0
1
0
0
0
0
0
1
0
80.595666
1
0
0.133666
0
P000022
Male
Caucasian
Unknown
1
0
1
0
1
0
0
0
1
0
0
1
1
779
null
0
0
0
0
1
1
0
0
1
0
0
43.178856
0
0
0.158278
0
P000023
Female
Hispanic
Past
0
1
0
1
0
0
0
1
0
0
1
1
0
714
25.01838
0
1
1
1
0
1
0
0
0
1
0
58.69393
0
0
0.719493
1
P000024
Female
Caucasian
Current
0
0
0
0
1
0
0
0
0
0
0
1
0
418
22.168574
1
0
0
0
1
1
1
0
0
1
0
43.382539
1
0
0.163988
0
P000025
Female
Caucasian
null
0
0
0
0
1
0
1
0
0
0
0
1
0
666
25.592214
0
1
1
1
1
0
0
0
1
0
0
29.862107
1
1
0.666769
1
P000026
Female
Caucasian
Never
0
0
1
0
0
0
0
1
0
0
1
0
0
574
31.879567
0
0
1
0
0
0
0
1
0
0
1
60.960176
0
0
0.728241
1
P000027
Female
African American
null
0
1
0
0
1
1
0
1
0
0
1
1
0
null
21.58752
0
0
0
0
1
0
0
1
0
1
1
65.255898
0
1
null
0
P000028
Male
Hispanic
Unknown
0
0
0
0
0
0
0
0
1
0
0
1
0
552
29.521998
0
0
1
0
0
1
0
1
0
1
0
70.457213
1
0
0.830398
1
P000029
Female
Caucasian
Never
1
0
0
0
1
0
1
0
0
0
1
0
0
492
37.703089
0
0
0
0
1
0
0
1
0
0
0
65.827569
1
0
0.126372
0
P000030
Male
null
Never
0
0
0
0
1
1
0
1
0
0
1
1
0
684
27.032828
0
0
1
1
1
1
0
1
0
2
0
44.956099
0
1
0.851869
1
P000031
Female
Caucasian
Past
0
0
0
0
0
0
0
1
0
0
0
1
1
599
34.526249
1
1
1
0
1
0
0
0
0
0
0
82.562225
0
0
0.605026
0
P000032
Male
Caucasian
Current
1
0
0
0
1
0
1
1
0
0
0
1
0
388
null
1
0
0
0
1
0
0
1
1
0
0
58.918698
0
0
0.207175
0
P000033
Male
Hispanic
Current
0
0
1
0
1
0
1
1
0
0
0
1
2
827
39.167946
1
1
0
1
1
0
0
1
0
0
0
63.431364
0
1
0.142142
1
P000034
Male
Caucasian
Past
0
1
0
0
1
0
1
1
0
0
0
0
0
440
23.749858
0
0
0
0
0
0
1
1
0
0
0
53.533404
1
1
0.112539
0
P000035
Male
Caucasian
Past
1
1
1
0
1
0
1
1
0
0
1
0
0
370
36.22583
0
1
0
1
1
0
0
1
0
0
0
61.247272
0
0
0.176241
0
P000036
Male
Hispanic
Never
0
1
0
1
1
0
0
1
0
1
1
1
0
450
40.445269
1
1
0
0
1
1
0
0
0
0
0
37.340128
0
0
0.355252
0
P000037
Female
Caucasian
Past
0
0
0
0
0
0
0
1
0
1
1
0
1
null
19.843483
0
0
1
1
0
0
0
1
0
3
0
84.844201
0
0
null
0
P000038
Female
Caucasian
Current
0
1
0
0
1
1
0
0
0
0
0
0
0
346
16.870832
0
0
0
0
1
1
1
1
0
1
0
90.617452
1
0
0.222929
0
P000039
Male
Hispanic
Current
0
0
1
0
1
0
1
0
0
0
1
1
0
null
34.9855
0
0
0
1
0
0
0
0
0
0
0
66.328816
1
0
null
0
P000040
Female
Caucasian
Current
1
0
0
0
1
1
1
0
0
0
0
1
0
784
37.397693
0
0
0
0
1
0
0
1
1
0
0
35.730332
0
0
0.121854
0
P000041
Male
null
Never
0
0
0
0
1
0
0
0
0
0
1
0
0
191
38.690775
0
1
0
1
1
0
1
1
0
0
1
69.930543
0
1
0.134623
0
P000042
Female
Caucasian
Unknown
0
0
0
0
1
0
0
0
0
2
0
0
1
388
29.039591
0
0
0
0
1
1
0
1
0
1
0
48.271423
1
0
0.494126
0
P000043
Female
Caucasian
Current
0
0
1
0
1
0
1
0
0
3
1
1
1
412
40.14567
0
0
1
0
0
1
1
1
0
0
0
47.640722
1
0
0.95506
1
P000044
Male
Caucasian
Unknown
0
0
1
1
1
0
0
1
0
0
0
0
0
758
44.005819
0
0
0
1
1
0
0
1
0
1
0
35.933344
0
0
0.266801
1
P000045
Female
Caucasian
Never
1
0
1
0
1
1
0
1
0
0
0
1
3
132
27.864358
0
0
2
0
1
1
0
0
1
0
0
73.253051
1
0
0.95031
1
P000046
Female
Caucasian
Current
0
0
0
0
1
0
0
0
0
0
0
0
1
null
30.310281
0
0
0
0
0
0
1
0
0
0
0
87.631016
1
0
null
0
P000047
Female
Caucasian
Past
1
1
0
0
0
0
1
1
1
0
1
1
0
404
20.962996
1
0
0
0
1
1
1
0
0
0
0
62.430905
1
0
0.179241
0
P000048
Female
Caucasian
Unknown
0
0
0
0
1
0
1
0
0
0
0
1
0
486
27.93838
0
0
0
0
0
0
0
0
0
0
0
68.024895
0
0
0.150992
0
P000049
Male
Caucasian
Never
0
1
0
0
0
0
0
1
1
0
0
0
0
979
null
1
1
2
1
0
1
0
1
0
1
0
62.810673
1
0
0.975366
1
P000050
Male
Caucasian
Past
0
0
1
0
1
0
0
1
0
2
1
0
0
490
42.647955
1
0
0
0
0
1
0
1
0
0
1
62.048639
0
1
0.501056
0
P000051
Female
Caucasian
Never
0
0
0
0
1
0
1
0
0
0
1
1
0
462
47.540924
0
0
0
0
1
1
0
0
0
1
0
58.930654
1
1
0.126106
0
P000052
Female
Caucasian
Current
0
0
0
0
0
0
0
1
0
0
1
0
0
647
37.217422
0
0
0
1
1
0
0
0
0
0
0
44.582381
0
0
0.150426
0
P000053
Male
African American
Unknown
1
0
1
0
1
0
0
0
0
0
0
0
0
389
13.597868
0
1
0
0
1
1
0
0
0
0
1
41.326255
1
0
0.17807
0
P000054
Female
Caucasian
Unknown
0
0
0
0
0
0
0
1
0
0
0
1
0
559
28.126658
0
0
2
0
1
0
0
1
0
0
0
101.339955
1
0
0.95648
1
P000055
Female
Caucasian
Never
1
0
1
1
0
1
0
0
1
0
1
1
3
536
17.73463
0
0
0
1
1
0
0
1
0
0
2
59.665726
1
0
0.170399
0
P000056
Male
Hispanic
Never
0
0
0
0
1
0
0
0
0
0
1
1
0
690
33.284037
0
0
0
1
0
0
0
1
1
3
0
55.055351
1
0
0.180215
0
P000057
Female
African American
Past
0
0
1
0
1
0
1
0
0
0
0
1
0
383
32.753317
1
0
1
0
0
1
0
0
0
0
1
50.751961
1
0
0.62539
0
P000058
Female
Caucasian
Never
0
0
0
1
0
0
0
0
0
0
0
1
0
511
29.104388
0
0
0
0
1
0
0
0
1
1
0
74.675887
0
0
0.122175
0
P000059
Male
Caucasian
Current
0
0
1
0
1
0
0
0
0
0
1
0
1
675
21.408241
0
0
2
0
1
1
0
0
0
0
0
66.485242
0
0
0.954585
1
P000060
Male
Unknown
Past
0
0
0
0
0
0
0
1
0
0
0
0
0
null
34.298557
0
0
0
1
1
1
0
0
0
0
0
58.655009
1
0
null
0
P000061
Female
African American
null
0
0
1
0
1
0
0
0
0
0
1
0
0
268
27.589697
0
0
3
0
1
1
0
1
0
0
2
49.49998
1
0
0.992655
1
P000062
Female
Caucasian
null
0
0
0
0
1
0
0
0
0
0
0
1
0
431
35.130133
0
1
0
0
1
0
0
0
0
1
1
70.542952
0
0
0.10748
0
P000063
Female
Caucasian
Never
0
0
1
1
0
0
0
0
1
0
0
0
0
721
41.49527
0
0
0
0
1
0
0
0
0
0
1
52.222863
1
0
0.180715
0
P000064
Female
Caucasian
Past
0
0
0
0
1
0
0
0
0
0
0
1
1
602
24.511135
0
0
1
0
1
0
1
0
0
3
0
45.548522
0
0
0.809889
1
P000065
Male
Caucasian
Never
0
0
0
1
1
0
0
1
0
0
0
1
0
519
45.862681
1
0
0
0
0
1
0
1
1
2
0
55.752432
1
1
0.152715
1
P000066
Female
Caucasian
Unknown
0
0
0
0
1
0
0
0
0
0
0
0
1
252
32.788781
0
0
1
1
0
0
0
0
0
0
0
60.851717
0
0
0.630159
1
P000067
Female
Caucasian
Never
1
0
0
0
1
0
1
1
0
0
0
0
1
null
38.173085
0
0
1
0
0
0
0
1
0
0
0
105.626999
0
0
null
0
P000068
Male
Caucasian
null
0
0
0
1
1
0
1
0
0
0
0
1
0
341
null
0
0
0
1
1
1
1
0
0
0
0
74.620886
0
0
0.117023
1
P000069
Male
Caucasian
Never
1
1
1
1
1
0
0
0
0
0
0
0
0
676
28.870516
1
1
0
0
0
0
0
0
1
3
0
58.8515
1
0
0.258716
1
P000070
Female
African American
Never
0
0
1
0
1
1
1
0
0
0
0
0
0
null
22.587769
0
1
0
0
0
1
0
0
0
2
0
42.477226
1
0
null
0
P000071
Female
Caucasian
Unknown
0
0
0
0
1
0
1
0
0
0
0
0
0
515
null
0
0
0
0
0
1
0
1
0
0
0
67.691256
0
0
0.152059
0
P000072
Female
Asian
Unknown
0
0
0
0
1
1
0
1
1
0
1
1
0
524
44.795642
1
1
0
0
1
1
0
0
1
1
5
60.293336
0
0
0.343413
0
P000073
Female
Caucasian
Past
0
0
0
0
1
0
0
1
0
0
0
1
1
381
32.718249
0
0
0
1
1
0
0
1
0
0
0
50.318802
1
0
0.195691
0
P000074
Male
Other
Past
0
1
1
1
1
0
0
0
2
0
0
1
0
441
25.893884
0
0
0
0
1
1
0
0
0
2
0
76.297411
0
0
0.328432
0
P000075
Female
Caucasian
Past
0
0
0
0
1
1
0
0
2
0
0
1
0
272
39.159147
0
0
2
1
1
0
0
0
0
1
2
59.512295
0
0
0.976539
1
P000076
Female
Caucasian
Past
0
0
0
1
1
1
0
0
0
0
1
0
0
381
24.512028
0
0
1
0
0
0
1
1
0
0
0
54.235518
1
0
0.668569
0
P000077
Female
Asian
Past
0
0
0
0
1
0
0
1
2
0
0
1
2
761
21.373006
0
0
0
0
0
1
0
1
0
0
0
70.963136
1
1
0.218693
0
P000078
Male
Caucasian
Never
1
0
0
0
1
0
0
1
0
0
1
1
0
457
32.099225
0
0
0
0
1
1
0
1
0
0
0
51.164895
0
0
0.110802
0
P000079
Female
Caucasian
Never
0
0
1
0
0
0
0
0
0
0
0
1
0
267
34.996406
1
0
0
0
1
0
0
0
0
1
0
85.88425
0
0
0.161492
1
P000080
Female
Caucasian
Current
0
0
1
1
1
0
1
1
0
0
0
1
3
null
21.105558
1
0
0
0
0
0
0
1
0
2
0
81.586989
0
0
null
0
P000081
Female
Caucasian
Never
0
1
1
0
0
0
1
0
1
0
1
1
0
466
29.532629
0
0
0
0
1
1
0
1
0
0
0
61.658341
0
1
0.13005
0
P000082
Female
Hispanic
Never
0
0
0
0
1
1
1
0
0
0
0
1
0
568
31.705201
0
1
0
1
0
0
0
1
0
1
0
102.267434
1
0
0.211049
0
P000083
Female
null
Never
0
0
0
0
0
0
1
1
1
1
0
0
0
569
null
0
0
0
1
0
0
0
1
0
0
0
68.004899
1
0
0.252865
0
P000084
Female
Caucasian
Never
1
1
1
0
1
1
0
0
1
0
0
1
0
227
36.856932
1
0
1
0
1
1
0
1
0
0
0
55.455581
1
0
0.642649
1
P000085
Male
Caucasian
Never
1
1
0
1
1
0
1
1
0
0
0
1
1
463
35.102503
0
0
0
0
1
1
0
0
0
0
0
88.563845
1
0
0.161779
0
P000086
Female
Caucasian
Current
0
0
0
0
0
1
1
0
0
0
1
0
0
425
23.470419
1
0
1
0
1
0
0
1
0
0
0
67.718843
1
0
0.733166
1
P000087
Female
Caucasian
Past
0
0
0
1
1
0
0
0
0
1
0
1
1
271
36.25139
0
0
0
1
0
1
1
1
1
0
0
90.996905
1
1
0.224397
0
P000088
Female
Caucasian
Never
0
1
0
0
0
1
0
0
0
1
1
0
1
634
39.805256
1
0
0
0
1
1
0
1
0
2
0
63.984845
1
1
0.409896
0
P000089
Female
null
Never
1
1
0
0
1
0
0
1
0
0
0
1
0
955
41.479761
1
0
0
1
1
0
0
1
0
1
0
65.953594
1
0
0.123889
0
P000090
Female
Caucasian
Past
0
1
1
0
1
0
0
1
2
1
0
0
0
48
46.531094
0
0
1
0
1
0
0
1
0
2
0
74.618574
0
0
0.831011
1
P000091
Female
Caucasian
Never
0
0
0
0
1
0
0
0
0
0
0
0
0
201
27.151793
0
0
0
1
1
1
0
0
1
1
1
49.342285
1
0
0.140083
0
P000092
Female
Caucasian
Never
1
0
1
0
1
0
1
0
0
0
0
0
1
526
null
1
0
0
0
0
0
0
0
0
0
0
60.635516
1
0
0.118663
0
P000093
Male
Caucasian
Never
0
0
0
0
1
1
0
0
1
0
1
1
0
372
22.00129
0
1
1
0
0
0
0
1
0
2
0
32.822532
1
0
0.753349
1
P000094
Female
Caucasian
Never
1
0
0
0
1
0
0
1
0
0
0
0
0
547
56.936651
0
0
0
0
1
0
0
0
0
1
0
52.432044
0
0
0.129931
0
P000095
Female
Caucasian
Never
0
0
1
0
1
1
0
0
0
0
0
1
0
529
24.22022
0
0
0
0
1
0
0
0
0
0
0
74.29048
1
0
0.182324
1
P000096
Male
Caucasian
Current
0
0
0
1
1
0
0
0
0
0
0
0
0
311
21.44178
0
0
0
1
1
1
0
0
0
0
0
47.652827
1
0
0.117582
0
P000097
Male
Caucasian
Current
1
1
0
0
1
1
1
0
2
0
1
1
0
null
27.117275
1
0
0
0
1
0
0
0
0
0
0
75.661362
1
0
null
0
P000098
Male
Hispanic
Past
0
0
0
1
1
0
1
1
0
1
1
0
1
462
41.192952
0
0
1
0
0
0
0
1
0
1
0
55.018415
1
0
0.753711
1
P000099
Male
Caucasian
Past
0
0
0
1
1
0
0
1
0
0
0
1
1
273
39.847152
0
0
4
0
0
0
0
0
0
1
0
44.032491
1
0
0.99971
1
P000100
Female
Caucasian
null
1
0
0
0
1
0
0
0
0
1
1
0
0
0
24.722619
1
0
0
0
1
1
0
1
1
0
0
67.299262
1
0
0.153207
0
End of preview. Expand in Data Studio

Patient Cohort — 1,000,000 Rows inspired by the published Harvard-Merck study: Kartoun U, Aggarwal R, Beam AL, Pai JK, Chatterjee AK, Fitzgerald TP, Kohane IS, Shaw SY. Development of an Algorithm to Identify Patients with Physician-Documented Insomnia. Sci Rep. 2018 May 18;8(1):7862. doi: 10.1038/s41598-018-25312-z. PMID: 29777125; PMCID: PMC5959894.

Created by DBbun LLC. © DBbun LLC. Commercial use requires a license.
For licensing inquiries, contact DBbun LLC.


Overview

This package contains a large, practice-ready patient table with 1,000,000 rows designed for education, demonstrations, and method development in machine learning and analytics.

  • Grain: one row = one patient.
  • Target column: insomnia_class (0/1) for training and evaluation in binary classification tasks.
  • Scope: demographics, utilization-style counts, comorbidity indicators, and outcome label.
  • Important: This dataset is not for clinical use.

This document focuses on how to use the dataset effectively. It does not describe its provenance or internal construction.


Files

  • patients.csv — the main table with 1,000,000 patients.

You may also produce your own analysis outputs (e.g., metrics CSVs, plots) alongside the data.


Table schema

Each row is one patient. Columns cover demographics, counts, comorbidities, and the label.

Column Type Description Typical Values / Range Missing?
patient_id string Unique ID P000001 No
age float Age in years ≥ 18 Rare
sex category Administrative sex Female, Male No
bmi float Body mass index ~10–70 Yes
ethnicity category Race/ethnicity bucket Caucasian, African American, Hispanic, Asian, Other, Unknown Yes
smoking_status category Tobacco status Current, Past, Never, Unknown Yes
emr_fact_count int Total EMR facts (activity proxy) 0–several thousand Yes
sleep_disorder_note_count int Sleep-related note count 0+ No
insomnia_billing_code_count int Insomnia diagnosis code count 0+ No
anx_depr_billing_code_count int Anxiety/depression code count 0+ No
psych_note_count int Psychiatry-related note count 0+ No
insomnia_rx_count int Insomnia-related prescription count 0+ No
joint_disorder_billing_code_count int Musculoskeletal/joint code count 0+ No
Comorbidity flags int (0/1) Indicator variables (see list below) {0,1} No
insomnia_probability float Scoring column in (0,1) useful for ranking [0,1] No
insomnia_class int (0/1) Label for supervised learning {0,1} No

Comorbidity flag columns (0/1):
hypertension, lipid_metabolism_disorder, diabetes, gastrointestinal_disorder, anxiety_or_depression, psychiatric_disorder, pneumonia, obesity, congestive_heart_failure, coronary_artery_disease, asthma, copd, cerebrovascular_disease, afib_or_flutter, cancer, peripheral_vascular_disease, osteoporosis, ckd_or_esrd, renal_failure.

Some columns intentionally include missing values to mirror common data challenges.


Loading at scale (Python / pandas)

import pandas as pd

dtypes = {
    "patient_id": "string",
    "age": "float32",
    "bmi": "float32",
    "emr_fact_count": "int32",
    "sleep_disorder_note_count": "int16",
    "insomnia_billing_code_count": "int16",
    "anx_depr_billing_code_count": "int16",
    "psych_note_count": "int16",
    "insomnia_rx_count": "int16",
    "joint_disorder_billing_code_count": "int16",
    # binary flags as compact integers
    "hypertension": "uint8", "lipid_metabolism_disorder": "uint8", "diabetes": "uint8",
    "gastrointestinal_disorder": "uint8", "anxiety_or_depression": "uint8",
    "psychiatric_disorder": "uint8", "pneumonia": "uint8", "obesity": "uint8",
    "congestive_heart_failure": "uint8", "coronary_artery_disease": "uint8",
    "asthma": "uint8", "copd": "uint8", "cerebrovascular_disease": "uint8",
    "afib_or_flutter": "uint8", "cancer": "uint8", "peripheral_vascular_disease": "uint8",
    "osteoporosis": "uint8", "ckd_or_esrd": "uint8", "renal_failure": "uint8",
    "insomnia_probability": "float32",
    "insomnia_class": "uint8"
}

cat_cols = ["sex", "ethnicity", "smoking_status"]

# Option A: read all at once
df = pd.read_csv("patients.csv", dtype=dtypes)
for c in cat_cols:
    df[c] = df[c].astype("category")

# Option B: chunked reading to limit peak memory
chunks = pd.read_csv("patients.csv", dtype=dtypes, chunksize=100_000)
df = pd.concat((chunk.assign(**{c: chunk[c].astype("category") for c in cat_cols}) for chunk in chunks), ignore_index=True)

Quick EDA (Exploratory Data Analysis)

print(df.shape)
print("Label prevalence:", df["insomnia_class"].mean())

# Missingness overview
missing = df.isna().mean().sort_values(ascending=False).head(20)
print(missing)

# Example correlation matrix for numeric counts
key = ["sleep_disorder_note_count","insomnia_billing_code_count","anx_depr_billing_code_count",
       "psych_note_count","insomnia_rx_count","joint_disorder_billing_code_count","emr_fact_count"]
print(df[key].corr(method="spearman"))

Recommended preprocessing (for ML)

  • Imputation: median (numeric), most-frequent (categorical).
  • Encoding: one-hot for sex, ethnicity, smoking_status.
  • Scaling: standardize numeric features for linear models (trees are scale-agnostic).
  • Outliers: consider clipping or robust scalers for skewed counts.
  • Splitting: stratify by insomnia_class for train/test.

Example (scikit-learn pipeline):

from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score

y = df["insomnia_class"].astype(int)
X = df.drop(columns=["insomnia_class"])

cat_cols = X.select_dtypes(include=["category","object"]).columns.tolist()
num_cols = X.select_dtypes(include=[np.number]).columns.tolist()

preprocess = ColumnTransformer([
    ("num", Pipeline([("imp", SimpleImputer(strategy="median")),
                      ("scaler", StandardScaler())]), num_cols),
    ("cat", Pipeline([("imp", SimpleImputer(strategy="most_frequent")),
                      ("ohe", OneHotEncoder(handle_unknown="ignore"))]), cat_cols),
])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, stratify=y, random_state=7)

clf = Pipeline([("prep", preprocess), ("lr", LogisticRegression(max_iter=500))]).fit(X_train, y_train)
print("ROC-AUC:", roc_auc_score(y_test, clf.predict_proba(X_test)[:,1]))

Slices & reporting

When reporting results, consider per-group summaries for fairness diagnostics:

for col in ["sex","ethnicity"]:
    print("\nSlice:", col)
    print(df.groupby(col)["insomnia_class"].mean())

Caveats

  • This dataset is designed for education and reproducible demonstrations.
  • It must not be used for clinical decision-making or any activity involving real individuals.
  • Demographic proportions and feature distributions are provided as-is and should not be interpreted as representing any specific population or institution.

Attribution & License

© DBbun LLC. All rights reserved.
Any commercial use requires a license from DBbun LLC.

Downloads last month
39