Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 6 new columns ({'sender', 'timestamp', 'pattern', 'value', 'tx_id', 'receiver'}) and 6 missing columns ({'first_seen', 'account_id', 'entity_type', 'last_seen', 'n_addresses', 'current_balance'}).

This happened while the csv dataset builder was generating data using

hf://datasets/DBbun/500K_Crypto_v1.0/edges.csv (at revision fc9a51a424c0be024d56214e72554b3395000a8c)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              tx_id: string
              timestamp: string
              sender: string
              receiver: string
              value: int64
              pattern: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 940
              to
              {'account_id': Value('string'), 'entity_type': Value('string'), 'first_seen': Value('string'), 'last_seen': Value('string'), 'current_balance': Value('int64'), 'n_addresses': Value('int64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 6 new columns ({'sender', 'timestamp', 'pattern', 'value', 'tx_id', 'receiver'}) and 6 missing columns ({'first_seen', 'account_id', 'entity_type', 'last_seen', 'n_addresses', 'current_balance'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/DBbun/500K_Crypto_v1.0/edges.csv (at revision fc9a51a424c0be024d56214e72554b3395000a8c)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

account_id
string
entity_type
string
first_seen
string
last_seen
string
current_balance
int64
n_addresses
int64
WBU00000
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
1,011,580
242
WBU00001
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
962,713
224
WBU00002
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
1,978,819
224
WBU00003
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
986,519
204
WBU00004
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
4,190,027
210
WBU00005
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
25,801,029
244
WBU00006
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
908,322
217
WBU00007
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
3,094,783
198
WBU00008
business
2025-10-09 14:55:49.355148
2025-10-09 14:56:45.920931
2,224,287
205
WBU00009
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
2,846,815
192
WBU00010
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:51.430799
577,380
248
WBU00011
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
972,547
230
WBU00012
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.355148
2,173,409
227
WBU00013
business
2025-10-09 14:55:49.355148
2025-10-09 14:55:49.363231
489,733
206
WBU00014
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
1,078,271
224
WBU00015
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
3,491,877
207
WBU00016
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
1,859,084
204
WBU00017
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
1,738,630
222
WBU00018
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
783,374
241
WBU00019
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
1,124,705
218
WBU00020
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
2,558,664
201
WBU00021
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
7,674,983
200
WBU00022
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
1,904,873
206
WBU00023
business
2025-10-09 14:55:49.363231
2025-10-09 14:55:49.363231
1,818,968
207
WEX00000
exchange
2025-10-09 14:55:49.355148
2025-10-09 05:25:19.892689
526,401
2,428
WEX00001
exchange
2025-10-09 14:55:49.355148
2025-10-09 08:32:41.425276
510,759
2,474
WEX00002
exchange
2025-10-09 14:55:49.355148
2025-10-09 11:25:37.912998
471,423
2,427
WEX00003
exchange
2025-10-09 14:55:49.355148
2025-10-09 14:23:04.359679
461,332
2,449
WEX00004
exchange
2025-10-09 14:55:49.355148
2025-10-09 10:10:22.171774
461,864
2,494
WEX00005
exchange
2025-10-09 14:55:49.355148
2025-10-09 11:11:55.780177
423,768
2,497
WEX00006
exchange
2025-10-09 14:55:49.355148
2025-10-09 12:10:03.427769
420,467
2,362
WEX00007
exchange
2025-10-09 14:55:49.355148
2025-10-09 06:32:33.435363
381,094
2,498
WEX00008
exchange
2025-10-09 14:55:49.355148
2025-10-09 12:03:47.429173
492,203
2,508
WEX00009
exchange
2025-10-09 14:55:49.355148
2025-10-09 12:53:10.763557
399,097
2,462
WLI00000
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
567,997
241
WLI00001
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:51.102344
624,747
256
WLI00002
licit
2025-10-09 14:55:49.331678
2025-10-09 13:46:43.329093
4,538,810
237
WLI00003
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
594,452
258
WLI00004
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
515,824
258
WLI00005
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
612,606
274
WLI00006
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
720,741
255
WLI00007
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
503,590
237
WLI00008
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
614,669
243
WLI00009
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
488,108
237
WLI00010
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
539,827
280
WLI00011
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
2,034,009
268
WLI00012
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
667,980
256
WLI00013
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
504,863
270
WLI00014
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
460,895
231
WLI00015
licit
2025-10-09 14:55:49.331678
2025-10-08 07:44:00.165524
974,049
240
WLI00016
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.363231
1,828,882
252
WLI00017
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,053,612
248
WLI00018
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
562,102
255
WLI00019
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
860,192
256
WLI00020
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
546,829
261
WLI00021
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
2,535,547
228
WLI00022
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,377,426
245
WLI00023
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
479,248
238
WLI00024
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
797,594
254
WLI00025
licit
2025-10-09 14:55:49.331678
2025-10-07 13:39:32.047741
684,160
254
WLI00026
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
656,871
259
WLI00027
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
546,882
249
WLI00028
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
572,403
243
WLI00029
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
517,890
257
WLI00030
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
629,056
250
WLI00031
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:50.057689
561,664
287
WLI00032
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:54.164656
3,668,828
254
WLI00033
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
760,438
269
WLI00034
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
540,362
276
WLI00035
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:53.657000
679,628
257
WLI00036
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
942,509
255
WLI00037
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
600,332
260
WLI00038
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
665,029
281
WLI00039
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
743,740
263
WLI00040
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
645,353
256
WLI00041
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
654,844
269
WLI00042
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,963,427
256
WLI00043
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,335,141
255
WLI00044
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
441,519
243
WLI00045
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
665,918
253
WLI00046
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
3,197,252
257
WLI00047
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
541,161
260
WLI00048
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
596,173
249
WLI00049
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
533,000
280
WLI00050
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,598,976
262
WLI00051
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,797,221
297
WLI00052
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
602,391
287
WLI00053
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.363231
2,375,277
263
WLI00054
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,185,911
271
WLI00055
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
636,760
237
WLI00056
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
1,644,465
261
WLI00057
licit
2025-10-09 14:55:49.331678
2025-10-08 00:51:09.998631
692,639
271
WLI00058
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
573,581
290
WLI00059
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
487,932
240
WLI00060
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
397,682
241
WLI00061
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:50.232479
3,845,637
264
WLI00062
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
594,476
257
WLI00063
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
589,684
223
WLI00064
licit
2025-10-09 14:55:49.331678
2025-10-09 14:55:49.331678
382,589
275
WLI00065
licit
2025-10-09 14:55:49.331678
2025-10-04 08:37:15.925532
838,959
227
End of preview.

DBbun Crypto Synthetic Dataset

DBbun Crypto Synthetic is a large-scale, privacy-safe simulation of blockchain-style transactions.

The dataset was inspired by the paper: “Beyond Static Datasets: A Behavior-Driven Entity-Specific Simulation to Overcome Data Scarcity and Train Effective Crypto Anti-Money Laundering Models.”

No data were copied or extracted from that study. Instead, DBbun recreated its behavioral logic and structural principles to generate fully artificial yet statistically realistic records.


Summary of the Generated Dataset

Table Approx. Rows Description
transactions.csv ~500,000 One synthetic transaction per row
edges.csv ~10–15 million Sender → receiver edges forming the transaction graph
accounts.csv ~100,000 Unique wallets and entities
labels_entities.csv ~100,000 Entity-level labels (licit / illicit + K-hop proximity)
labels_transactions.csv ~500,000 Transaction-level labels (benign / suspicious + heuristics)
stats.json Summary counts and distributions

Files Included

File Description Rows (approx.)
transactions.csv One row per synthetic transaction with timestamp, pattern, and fee. 500K
edges.csv Directed sender → receiver edges forming the transaction graph. 10–15M
accounts.csv Wallet-level entities with balances, lifetimes, and address counts. 100K
labels_entities.csv Entity labels (licit / illicit) + graph proximity (K-hop). 100K
labels_transactions.csv Transaction labels (benign / suspicious) + heuristic flags. 500K
stats.json Summary statistics and distributions.

Each table is self-contained and can be joined using common keys such as tx_id (for transaction-level joins) and account_id (for entity-level joins).


Schema Overview

Transactions

Each row represents a synthetic transaction in a blockchain-style ledger.

Column Description
tx_id Unique transaction identifier
timestamp UTC datetime
pattern Transaction behavior type (regular, mixer, coinjoin, exchange_withdraw, fan_out, peel_chain, single_use)
num_inputs Number of input addresses
num_outputs Number of output addresses
total_in Total input amount
total_out Total output amount
fee Transaction fee
tx_hash SHA-256 hash (deterministic and reproducible)

Edges

Directed sender → receiver relationships that form the transaction graph.

Column Description
tx_id Transaction identifier
timestamp UTC datetime
sender Sending wallet or address
receiver Receiving wallet or address
value Amount transferred
pattern Transaction behavior pattern

Accounts

Wallet-level entity table representing participants in the system.

Column Description
account_id Unique wallet identifier
entity_type Category (e.g., exchange, mixer, mule, business, service, licit, nested)
first_seen Earliest activity timestamp
last_seen Most recent activity timestamp
current_balance Remaining balance
n_addresses Number of associated addresses

Labels — Entities

Entity-level labels describing risk, type, and graph proximity.

Column Description
account_id Wallet identifier
entity_type Same as in accounts
entity_label licit or illicit
k_hop_dist Integer distance from an illicit entity
k_hop_label Categorical proximity flag (within_2hop, far)

Labels — Transactions

Labels and heuristics associated with each transaction.

Column Description
tx_id Transaction identifier
pattern Behavioral pattern
tx_label benign or suspicious
is_fan_in True if many inputs converge
is_fan_out True if one input splits into many
is_roundish True if rounded amounts observed
is_bursty_hour True if occurs during a local burst hour
is_bursty_day True if part of a burst day

Use Cases

  • Graph Analytics — explore transaction flows, community detection, and centrality.
  • Machine Learning — train models for illicit-activity or suspicious-transaction detection.
  • Education — teach blockchain analytics and anti-money-laundering frameworks.
  • Benchmarking — stress-test ETL, graph databases, and networ
Downloads last month
29