The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 6 new columns ({'sender', 'timestamp', 'pattern', 'value', 'tx_id', 'receiver'}) and 6 missing columns ({'first_seen', 'account_id', 'entity_type', 'last_seen', 'n_addresses', 'current_balance'}). This happened while the csv dataset builder was generating data using hf://datasets/DBbun/500K_Crypto_v1.0/edges.csv (at revision fc9a51a424c0be024d56214e72554b3395000a8c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1831, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 644, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2272, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2218, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast tx_id: string timestamp: string sender: string receiver: string value: int64 pattern: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 940 to {'account_id': Value('string'), 'entity_type': Value('string'), 'first_seen': Value('string'), 'last_seen': Value('string'), 'current_balance': Value('int64'), 'n_addresses': Value('int64')} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1456, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1055, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 894, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 970, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1702, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1833, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 6 new columns ({'sender', 'timestamp', 'pattern', 'value', 'tx_id', 'receiver'}) and 6 missing columns ({'first_seen', 'account_id', 'entity_type', 'last_seen', 'n_addresses', 'current_balance'}). This happened while the csv dataset builder was generating data using hf://datasets/DBbun/500K_Crypto_v1.0/edges.csv (at revision fc9a51a424c0be024d56214e72554b3395000a8c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
account_id
string | entity_type
string | first_seen
string | last_seen
string | current_balance
int64 | n_addresses
int64 |
---|---|---|---|---|---|
WBU00000
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 1,011,580 | 242 |
WBU00001
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 962,713 | 224 |
WBU00002
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 1,978,819 | 224 |
WBU00003
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 986,519 | 204 |
WBU00004
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 4,190,027 | 210 |
WBU00005
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 25,801,029 | 244 |
WBU00006
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 908,322 | 217 |
WBU00007
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 3,094,783 | 198 |
WBU00008
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:56:45.920931
| 2,224,287 | 205 |
WBU00009
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 2,846,815 | 192 |
WBU00010
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:51.430799
| 577,380 | 248 |
WBU00011
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 972,547 | 230 |
WBU00012
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.355148
| 2,173,409 | 227 |
WBU00013
|
business
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:55:49.363231
| 489,733 | 206 |
WBU00014
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 1,078,271 | 224 |
WBU00015
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 3,491,877 | 207 |
WBU00016
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 1,859,084 | 204 |
WBU00017
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 1,738,630 | 222 |
WBU00018
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 783,374 | 241 |
WBU00019
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 1,124,705 | 218 |
WBU00020
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 2,558,664 | 201 |
WBU00021
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 7,674,983 | 200 |
WBU00022
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 1,904,873 | 206 |
WBU00023
|
business
|
2025-10-09 14:55:49.363231
|
2025-10-09 14:55:49.363231
| 1,818,968 | 207 |
WEX00000
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 05:25:19.892689
| 526,401 | 2,428 |
WEX00001
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 08:32:41.425276
| 510,759 | 2,474 |
WEX00002
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 11:25:37.912998
| 471,423 | 2,427 |
WEX00003
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 14:23:04.359679
| 461,332 | 2,449 |
WEX00004
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 10:10:22.171774
| 461,864 | 2,494 |
WEX00005
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 11:11:55.780177
| 423,768 | 2,497 |
WEX00006
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 12:10:03.427769
| 420,467 | 2,362 |
WEX00007
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 06:32:33.435363
| 381,094 | 2,498 |
WEX00008
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 12:03:47.429173
| 492,203 | 2,508 |
WEX00009
|
exchange
|
2025-10-09 14:55:49.355148
|
2025-10-09 12:53:10.763557
| 399,097 | 2,462 |
WLI00000
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 567,997 | 241 |
WLI00001
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:51.102344
| 624,747 | 256 |
WLI00002
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 13:46:43.329093
| 4,538,810 | 237 |
WLI00003
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 594,452 | 258 |
WLI00004
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 515,824 | 258 |
WLI00005
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 612,606 | 274 |
WLI00006
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 720,741 | 255 |
WLI00007
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 503,590 | 237 |
WLI00008
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 614,669 | 243 |
WLI00009
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 488,108 | 237 |
WLI00010
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 539,827 | 280 |
WLI00011
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 2,034,009 | 268 |
WLI00012
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 667,980 | 256 |
WLI00013
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 504,863 | 270 |
WLI00014
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 460,895 | 231 |
WLI00015
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-08 07:44:00.165524
| 974,049 | 240 |
WLI00016
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.363231
| 1,828,882 | 252 |
WLI00017
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,053,612 | 248 |
WLI00018
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 562,102 | 255 |
WLI00019
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 860,192 | 256 |
WLI00020
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 546,829 | 261 |
WLI00021
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 2,535,547 | 228 |
WLI00022
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,377,426 | 245 |
WLI00023
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 479,248 | 238 |
WLI00024
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 797,594 | 254 |
WLI00025
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-07 13:39:32.047741
| 684,160 | 254 |
WLI00026
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 656,871 | 259 |
WLI00027
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 546,882 | 249 |
WLI00028
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 572,403 | 243 |
WLI00029
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 517,890 | 257 |
WLI00030
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 629,056 | 250 |
WLI00031
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:50.057689
| 561,664 | 287 |
WLI00032
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:54.164656
| 3,668,828 | 254 |
WLI00033
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 760,438 | 269 |
WLI00034
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 540,362 | 276 |
WLI00035
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:53.657000
| 679,628 | 257 |
WLI00036
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 942,509 | 255 |
WLI00037
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 600,332 | 260 |
WLI00038
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 665,029 | 281 |
WLI00039
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 743,740 | 263 |
WLI00040
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 645,353 | 256 |
WLI00041
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 654,844 | 269 |
WLI00042
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,963,427 | 256 |
WLI00043
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,335,141 | 255 |
WLI00044
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 441,519 | 243 |
WLI00045
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 665,918 | 253 |
WLI00046
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 3,197,252 | 257 |
WLI00047
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 541,161 | 260 |
WLI00048
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 596,173 | 249 |
WLI00049
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 533,000 | 280 |
WLI00050
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,598,976 | 262 |
WLI00051
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,797,221 | 297 |
WLI00052
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 602,391 | 287 |
WLI00053
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.363231
| 2,375,277 | 263 |
WLI00054
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,185,911 | 271 |
WLI00055
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 636,760 | 237 |
WLI00056
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 1,644,465 | 261 |
WLI00057
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-08 00:51:09.998631
| 692,639 | 271 |
WLI00058
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 573,581 | 290 |
WLI00059
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 487,932 | 240 |
WLI00060
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 397,682 | 241 |
WLI00061
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:50.232479
| 3,845,637 | 264 |
WLI00062
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 594,476 | 257 |
WLI00063
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 589,684 | 223 |
WLI00064
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-09 14:55:49.331678
| 382,589 | 275 |
WLI00065
|
licit
|
2025-10-09 14:55:49.331678
|
2025-10-04 08:37:15.925532
| 838,959 | 227 |
DBbun Crypto Synthetic Dataset
DBbun Crypto Synthetic is a large-scale, privacy-safe simulation of blockchain-style transactions.
The dataset was inspired by the paper: “Beyond Static Datasets: A Behavior-Driven Entity-Specific Simulation to Overcome Data Scarcity and Train Effective Crypto Anti-Money Laundering Models.”
No data were copied or extracted from that study. Instead, DBbun recreated its behavioral logic and structural principles to generate fully artificial yet statistically realistic records.
Summary of the Generated Dataset
Table | Approx. Rows | Description |
---|---|---|
transactions.csv | ~500,000 | One synthetic transaction per row |
edges.csv | ~10–15 million | Sender → receiver edges forming the transaction graph |
accounts.csv | ~100,000 | Unique wallets and entities |
labels_entities.csv | ~100,000 | Entity-level labels (licit / illicit + K-hop proximity) |
labels_transactions.csv | ~500,000 | Transaction-level labels (benign / suspicious + heuristics) |
stats.json | — | Summary counts and distributions |
Files Included
File | Description | Rows (approx.) |
---|---|---|
transactions.csv |
One row per synthetic transaction with timestamp, pattern, and fee. | 500K |
edges.csv |
Directed sender → receiver edges forming the transaction graph. | 10–15M |
accounts.csv |
Wallet-level entities with balances, lifetimes, and address counts. | 100K |
labels_entities.csv |
Entity labels (licit / illicit ) + graph proximity (K-hop). |
100K |
labels_transactions.csv |
Transaction labels (benign / suspicious ) + heuristic flags. |
500K |
stats.json |
Summary statistics and distributions. | — |
Each table is self-contained and can be joined using common keys such as tx_id
(for transaction-level joins) and account_id
(for entity-level joins).
Schema Overview
Transactions
Each row represents a synthetic transaction in a blockchain-style ledger.
Column | Description |
---|---|
tx_id |
Unique transaction identifier |
timestamp |
UTC datetime |
pattern |
Transaction behavior type (regular , mixer , coinjoin , exchange_withdraw , fan_out , peel_chain , single_use ) |
num_inputs |
Number of input addresses |
num_outputs |
Number of output addresses |
total_in |
Total input amount |
total_out |
Total output amount |
fee |
Transaction fee |
tx_hash |
SHA-256 hash (deterministic and reproducible) |
Edges
Directed sender → receiver relationships that form the transaction graph.
Column | Description |
---|---|
tx_id |
Transaction identifier |
timestamp |
UTC datetime |
sender |
Sending wallet or address |
receiver |
Receiving wallet or address |
value |
Amount transferred |
pattern |
Transaction behavior pattern |
Accounts
Wallet-level entity table representing participants in the system.
Column | Description |
---|---|
account_id |
Unique wallet identifier |
entity_type |
Category (e.g., exchange , mixer , mule , business , service , licit , nested ) |
first_seen |
Earliest activity timestamp |
last_seen |
Most recent activity timestamp |
current_balance |
Remaining balance |
n_addresses |
Number of associated addresses |
Labels — Entities
Entity-level labels describing risk, type, and graph proximity.
Column | Description |
---|---|
account_id |
Wallet identifier |
entity_type |
Same as in accounts |
entity_label |
licit or illicit |
k_hop_dist |
Integer distance from an illicit entity |
k_hop_label |
Categorical proximity flag (within_2hop , far ) |
Labels — Transactions
Labels and heuristics associated with each transaction.
Column | Description |
---|---|
tx_id |
Transaction identifier |
pattern |
Behavioral pattern |
tx_label |
benign or suspicious |
is_fan_in |
True if many inputs converge |
is_fan_out |
True if one input splits into many |
is_roundish |
True if rounded amounts observed |
is_bursty_hour |
True if occurs during a local burst hour |
is_bursty_day |
True if part of a burst day |
Use Cases
- Graph Analytics — explore transaction flows, community detection, and centrality.
- Machine Learning — train models for illicit-activity or suspicious-transaction detection.
- Education — teach blockchain analytics and anti-money-laundering frameworks.
- Benchmarking — stress-test ETL, graph databases, and networ
- Downloads last month
- 29