|
--- |
|
language: |
|
- en |
|
- hi |
|
license: cc-by-nc-sa-4.0 |
|
size_categories: |
|
- 1K<n<10K |
|
task_categories: |
|
- table-question-answering |
|
- visual-question-answering |
|
- image-text-to-text |
|
tags: |
|
- cricket |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test_single |
|
path: data/test_single-* |
|
- split: test_multi |
|
path: data/test_multi-* |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: images |
|
sequence: image |
|
- name: question |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: subset |
|
dtype: string |
|
splits: |
|
- name: test_single |
|
num_bytes: 976385438.0 |
|
num_examples: 2000 |
|
- name: test_multi |
|
num_bytes: 904538778.0 |
|
num_examples: 997 |
|
download_size: 1573738795 |
|
dataset_size: 1880924216.0 |
|
--- |
|
|
|
# MMCricBench 🏏 |
|
**Multimodal Cricket Scorecard Benchmark for VQA** |
|
|
|
This repository contains the dataset for the paper [Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs](https://huggingface.co/papers/2508.17334). |
|
|
|
MMCricBench evaluates **Large Vision-Language Models (LVLMs)** on **numerical reasoning**, **cross-lingual understanding**, and **multi-image reasoning** over semi-structured cricket scorecard images. It includes English and Hindi scorecards; all questions/answers are in English. |
|
|
|
--- |
|
|
|
## Overview |
|
- **Images:** 1,463 synthetic scorecards (PNG) |
|
- 822 single-image scorecards |
|
- 641 multi-image scorecards |
|
- **QA pairs:** 1,500 (English) |
|
- **Reasoning categories:** |
|
- **C1** – Direct retrieval & simple inference |
|
- **C2** – Basic arithmetic & conditional logic |
|
- **C3** – Multi-step quantitative reasoning (often across images) |
|
|
|
--- |
|
|
|
## Files / Splits |
|
We provide two evaluation splits: |
|
- `test_single` — single-image questions |
|
- `test_multi` — multi-image questions |
|
|
|
> If you keep a single JSONL (e.g., `test_all.jsonl`), use a **list** for `images` in every row. Single-image rows should have a one-element list. On the Hub, we expose two test splits. |
|
|
|
--- |
|
|
|
## Data Schema |
|
Each row is a JSON object: |
|
|
|
| Field | Type | Description | |
|
|------------|---------------------|----------------------------------------------| |
|
| `id` | `string` | Unique identifier | |
|
| `images` | `list[string]` | Paths to one or more scorecard images | |
|
| `question` | `string` | Question text (English) | |
|
| `answer` | `string` | Ground-truth answer (canonicalized) | |
|
| `category` | `string` (`C1/C2/C3`)| Reasoning category | |
|
| `subset`* | `string` (`single/multi`) | Optional convenience field | |
|
|
|
**Example (single-image):** |
|
```json |
|
{"id":"english-single-9","images":["English-apr/single_image/1198246_2innings_with_color1.png"],"question":"Which bowler has conceded the most extras?","answer":"Wahab Riaz","category":"C2","subset":"single"} |
|
``` |
|
|
|
## Loading & Preview |
|
|
|
### Load from the Hub (two-split layout) |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Loads: DatasetDict({'test_single': ..., 'test_multi': ...}) |
|
ds = load_dataset("DIALab/MMCricBench") |
|
print(ds) |
|
|
|
# Peek a single-image example |
|
ex = ds["test_single"][0] |
|
print(ex["id"]) |
|
print(ex["question"], "->", ex["answer"]) |
|
|
|
# Preview images (each example stores a list of PIL images) |
|
from IPython.display import display |
|
for img in ex["images"]: |
|
display(img) |
|
``` |
|
|
|
## Baseline Results (from the paper) |
|
|
|
Accuracy (%) on MMCricBench by split and language. |
|
|
|
| Model | #Params | Single-EN (Avg) | Single-HI (Avg) | Multi-EN (Avg) | Multi-HI (Avg) | |
|
|-------------------|:------:|:---------------:|:---------------:|:--------------:|:--------------:| |
|
| SmolVLM | 500M | 19.2 | 19.0 | 11.8 | 11.6 | |
|
| Qwen2.5VL | 3B | 40.2 | 33.3 | 31.2 | 22.0 | |
|
| LLaVA-NeXT | 7B | 28.3 | 26.6 | 16.2 | 14.8 | |
|
| mPLUG-DocOwl2 | 8B | 20.7 | 19.9 | 15.2 | 14.4 | |
|
| Qwen2.5VL | 7B | 49.1 | 42.6 | 37.0 | 32.2 | |
|
| InternVL-2 | 8B | 29.4 | 23.4 | 18.6 | 18.2 | |
|
| Llama-3.2-V | 11B | 27.3 | 24.8 | 26.2 | 20.4 | |
|
| **GPT-4o** | — | **57.3** | **45.1** | **50.6** | **43.6** | |
|
|
|
*Numbers are exact-match accuracy (higher is better). For C1/C2/C3 breakdowns, see Table 3 (single-image) and Table 5 (multi-image) in the paper.* |
|
|
|
## Contact |
|
For questions or issues, please open a discussion on the dataset page or email **Abhirama Subramanyam** at [email protected] |