MMCricBench / README.md
abhiram4572's picture
Improve dataset card: Add paper link and task category (#2)
ffbe164 verified
---
language:
- en
- hi
license: cc-by-nc-sa-4.0
size_categories:
- 1K<n<10K
task_categories:
- table-question-answering
- visual-question-answering
- image-text-to-text
tags:
- cricket
configs:
- config_name: default
data_files:
- split: test_single
path: data/test_single-*
- split: test_multi
path: data/test_multi-*
dataset_info:
features:
- name: id
dtype: string
- name: images
sequence: image
- name: question
dtype: string
- name: answer
dtype: string
- name: category
dtype: string
- name: subset
dtype: string
splits:
- name: test_single
num_bytes: 976385438.0
num_examples: 2000
- name: test_multi
num_bytes: 904538778.0
num_examples: 997
download_size: 1573738795
dataset_size: 1880924216.0
---
# MMCricBench 🏏
**Multimodal Cricket Scorecard Benchmark for VQA**
This repository contains the dataset for the paper [Mind the (Language) Gap: Towards Probing Numerical and Cross-Lingual Limits of LVLMs](https://huggingface.co/papers/2508.17334).
MMCricBench evaluates **Large Vision-Language Models (LVLMs)** on **numerical reasoning**, **cross-lingual understanding**, and **multi-image reasoning** over semi-structured cricket scorecard images. It includes English and Hindi scorecards; all questions/answers are in English.
---
## Overview
- **Images:** 1,463 synthetic scorecards (PNG)
- 822 single-image scorecards
- 641 multi-image scorecards
- **QA pairs:** 1,500 (English)
- **Reasoning categories:**
- **C1** – Direct retrieval & simple inference
- **C2** – Basic arithmetic & conditional logic
- **C3** – Multi-step quantitative reasoning (often across images)
---
## Files / Splits
We provide two evaluation splits:
- `test_single` — single-image questions
- `test_multi` — multi-image questions
> If you keep a single JSONL (e.g., `test_all.jsonl`), use a **list** for `images` in every row. Single-image rows should have a one-element list. On the Hub, we expose two test splits.
---
## Data Schema
Each row is a JSON object:
| Field | Type | Description |
|------------|---------------------|----------------------------------------------|
| `id` | `string` | Unique identifier |
| `images` | `list[string]` | Paths to one or more scorecard images |
| `question` | `string` | Question text (English) |
| `answer` | `string` | Ground-truth answer (canonicalized) |
| `category` | `string` (`C1/C2/C3`)| Reasoning category |
| `subset`* | `string` (`single/multi`) | Optional convenience field |
**Example (single-image):**
```json
{"id":"english-single-9","images":["English-apr/single_image/1198246_2innings_with_color1.png"],"question":"Which bowler has conceded the most extras?","answer":"Wahab Riaz","category":"C2","subset":"single"}
```
## Loading & Preview
### Load from the Hub (two-split layout)
```python
from datasets import load_dataset
# Loads: DatasetDict({'test_single': ..., 'test_multi': ...})
ds = load_dataset("DIALab/MMCricBench")
print(ds)
# Peek a single-image example
ex = ds["test_single"][0]
print(ex["id"])
print(ex["question"], "->", ex["answer"])
# Preview images (each example stores a list of PIL images)
from IPython.display import display
for img in ex["images"]:
display(img)
```
## Baseline Results (from the paper)
Accuracy (%) on MMCricBench by split and language.
| Model | #Params | Single-EN (Avg) | Single-HI (Avg) | Multi-EN (Avg) | Multi-HI (Avg) |
|-------------------|:------:|:---------------:|:---------------:|:--------------:|:--------------:|
| SmolVLM | 500M | 19.2 | 19.0 | 11.8 | 11.6 |
| Qwen2.5VL | 3B | 40.2 | 33.3 | 31.2 | 22.0 |
| LLaVA-NeXT | 7B | 28.3 | 26.6 | 16.2 | 14.8 |
| mPLUG-DocOwl2 | 8B | 20.7 | 19.9 | 15.2 | 14.4 |
| Qwen2.5VL | 7B | 49.1 | 42.6 | 37.0 | 32.2 |
| InternVL-2 | 8B | 29.4 | 23.4 | 18.6 | 18.2 |
| Llama-3.2-V | 11B | 27.3 | 24.8 | 26.2 | 20.4 |
| **GPT-4o** | — | **57.3** | **45.1** | **50.6** | **43.6** |
*Numbers are exact-match accuracy (higher is better). For C1/C2/C3 breakdowns, see Table 3 (single-image) and Table 5 (multi-image) in the paper.*
## Contact
For questions or issues, please open a discussion on the dataset page or email **Abhirama Subramanyam** at [email protected]