Dataset Viewer (First 5GB)
language
stringclasses 4
values | return_type
stringlengths 1
1.81k
| code
stringlengths 14
59k
| code_with_masked_return_types
stringlengths 14
59k
|
---|---|---|---|
Python | QueryDenomMetadataResponse | def query_bank_denom_metadata(self, denom: str) -> QueryDenomMetadataResponse:
res = self.bank_client.DenomMetadata(QueryDenomMetadataRequest(denom=denom))
return res | def query_bank_denom_metadata(self, denom: str) <MASK>
res = self.bank_client.DenomMetadata(QueryDenomMetadataRequest(denom=denom))
return res |
Python | QueryBalanceResponse | def query_account_balance(self, address: str) -> QueryBalanceResponse:
res = self.bank_client.Balance(
QueryBalanceRequest(address=address, denom=self.network.coin_base_denom)
)
return res | def query_account_balance(self, address: str) <MASK>
res = self.bank_client.Balance(
QueryBalanceRequest(address=address, denom=self.network.coin_base_denom)
)
return res |
Python | int | def edit_distance(s1: str, s2: str) -> int:
if len(s1) < len(s2):
return edit_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1] | def edit_distance(s1: str, s2: str) <MASK>
if len(s1) < len(s2):
return edit_distance(s2, s1)
if len(s2) == 0:
return len(s1)
previous_row = range(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1
deletions = current_row[j] + 1
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1] |
Python | Dict[str, str] | def find_correct_spelling(model: FastText, incorrect_word: str, num_neighbours: int, clean_vocab_counter: Counter,
mixed_vocab_counter: Counter, mixed_vocab_min_freq: int,
max_edit_distance: int) -> Dict[str, str]:
correct_word, message = '', ''
mixed_vocab_set = set()
for word, freq in mixed_vocab_counter.most_common():
if freq >= mixed_vocab_min_freq:
mixed_vocab_set.add(word)
if incorrect_word in clean_vocab_counter or incorrect_word in mixed_vocab_set:
message = f'{incorrect_word} is already correctly spelled'
else:
tups = model.wv.most_similar(incorrect_word, topn=num_neighbours)
candidates = [candidate for candidate, _ in tups]
for candidate in candidates:
if candidate in clean_vocab_counter and edit_distance(incorrect_word, candidate) <= max_edit_distance:
correct_word = candidate
break
if correct_word == '':
for candidate in candidates:
if candidate in mixed_vocab_set and edit_distance(incorrect_word, candidate) <= max_edit_distance:
correct_word = candidate
break
if correct_word == '':
message = 'Correct spelling not found'
return {'incorrect_word': incorrect_word, 'correct_word': correct_word, 'message': message} | def find_correct_spelling(model: FastText, incorrect_word: str, num_neighbours: int, clean_vocab_counter: Counter,
mixed_vocab_counter: Counter, mixed_vocab_min_freq: int,
max_edit_distance: int) <MASK>
correct_word, message = '', ''
mixed_vocab_set = set()
for word, freq in mixed_vocab_counter.most_common():
if freq >= mixed_vocab_min_freq:
mixed_vocab_set.add(word)
if incorrect_word in clean_vocab_counter or incorrect_word in mixed_vocab_set:
message = f'{incorrect_word} is already correctly spelled'
else:
tups = model.wv.most_similar(incorrect_word, topn=num_neighbours)
candidates = [candidate for candidate, _ in tups]
for candidate in candidates:
if candidate in clean_vocab_counter and edit_distance(incorrect_word, candidate) <= max_edit_distance:
correct_word = candidate
break
if correct_word == '':
for candidate in candidates:
if candidate in mixed_vocab_set and edit_distance(incorrect_word, candidate) <= max_edit_distance:
correct_word = candidate
break
if correct_word == '':
message = 'Correct spelling not found'
return {'incorrect_word': incorrect_word, 'correct_word': correct_word, 'message': message} |
Python | Unit | def default_unit(key: str) -> Unit:
units = {
'temp': Unit(Unit.degree_symbol()+"C"),
'deg': Unit(Unit.degree_symbol()),
'speed': Unit('m/sec'),
'presssure': Unit('hPa'),
'humidity': Unit('%'),
}
return units[key] if key in units else None | def default_unit(key: str) <MASK>
units = {
'temp': Unit(Unit.degree_symbol()+"C"),
'deg': Unit(Unit.degree_symbol()),
'speed': Unit('m/sec'),
'presssure': Unit('hPa'),
'humidity': Unit('%'),
}
return units[key] if key in units else None |
Python | rx.Observable | def rx_fetch(self, zip: str) -> rx.Observable:
url = "http://"+self.host+'/data/2.5/weather'
def observable(observer, scheduler):
params = {'zip': zip, 'appid': self.api_key}
rsp = requests.get(url, params=params)
try:
rsp.raise_for_status()
observer.on_next(rsp.json())
observer.on_completed()
except requests.HTTPError as e:
observer.on_error(e)
return lambda: None
return rx.create(observable) | def rx_fetch(self, zip: str) <MASK>
url = "http://"+self.host+'/data/2.5/weather'
def observable(observer, scheduler):
params = {'zip': zip, 'appid': self.api_key}
rsp = requests.get(url, params=params)
try:
rsp.raise_for_status()
observer.on_next(rsp.json())
observer.on_completed()
except requests.HTTPError as e:
observer.on_error(e)
return lambda: None
return rx.create(observable) |
Python | WeatherForecast | def parse_weather(self, json: dict) -> WeatherForecast:
def observable(observer, scheduler):
try:
if len(json) == 0:
raise(Exception('No Weather Data'))
location = Location(id=json['id'])
location.name = json['name']
if 'sys' in json:
sys = json['sys']
location.country = sys['country']
sunrise = SolarTimes.utc_to_localdatetime(sys['sunrise'])
sunset = SolarTimes.utc_to_localdatetime(sys['sunset'])
location.solar = SolarTimes(sunrise, sunset)
else:
raise Exception("Weather data invalid, missing 'sys'")
weather = WeatherForecast(location)
if 'coord' in json:
lat = json['coord']['lat']
lon = json['coord']['lon']
weather.location.geo_location = GeoPoint(lat, lon)
if 'main' not in json:
raise Exception("Weather data invalid, missing 'main'")
main = json['main']
cc = ClimateCondition()
cc.temperature = Measurement(
main['temp'],
default_unit('temp'))
cc.humidity = Measurement(
main['humidity'],
default_unit('humidity'))
if 'wind' in json:
wind = json['wind']
speed = Measurement(wind['speed'], default_unit('speed'))
dir = Measurement(wind['deg'], default_unit('deg'))
cc.wind = Vector(speed, dir)
if 'weather' in json:
ps = json['weather']
params = [Parameter(p['main'], p['description'])
for p in ps]
cc.conditions = params
weather.current = cc
except Exception as e:
observer.on_error(e)
else:
observer.on_next(weather)
finally:
return lambda: None
return rx.create(observable) | def parse_weather(self, json: dict) <MASK>
def observable(observer, scheduler):
try:
if len(json) == 0:
raise(Exception('No Weather Data'))
location = Location(id=json['id'])
location.name = json['name']
if 'sys' in json:
sys = json['sys']
location.country = sys['country']
sunrise = SolarTimes.utc_to_localdatetime(sys['sunrise'])
sunset = SolarTimes.utc_to_localdatetime(sys['sunset'])
location.solar = SolarTimes(sunrise, sunset)
else:
raise Exception("Weather data invalid, missing 'sys'")
weather = WeatherForecast(location)
if 'coord' in json:
lat = json['coord']['lat']
lon = json['coord']['lon']
weather.location.geo_location = GeoPoint(lat, lon)
if 'main' not in json:
raise Exception("Weather data invalid, missing 'main'")
main = json['main']
cc = ClimateCondition()
cc.temperature = Measurement(
main['temp'],
default_unit('temp'))
cc.humidity = Measurement(
main['humidity'],
default_unit('humidity'))
if 'wind' in json:
wind = json['wind']
speed = Measurement(wind['speed'], default_unit('speed'))
dir = Measurement(wind['deg'], default_unit('deg'))
cc.wind = Vector(speed, dir)
if 'weather' in json:
ps = json['weather']
params = [Parameter(p['main'], p['description'])
for p in ps]
cc.conditions = params
weather.current = cc
except Exception as e:
observer.on_error(e)
else:
observer.on_next(weather)
finally:
return lambda: None
return rx.create(observable) |
Python | List[str] | def split(self, text: str) -> List[str]:
states = OrderedDict()
offsets = [0]
skip = None
for current, current_char in enumerate(text):
if skip and current < skip:
continue
to_remove = set()
reset = False
for start, trie_pointer in states.items():
if "" in trie_pointer:
for lookstart, looktrie_pointer in states.items():
if lookstart > start:
break
elif lookstart < start:
lookahead_index = current + 1
end = current + 1
else:
lookahead_index = current
end = current
next_char = text[lookahead_index] if lookahead_index < len(text) else None
while next_char in looktrie_pointer:
looktrie_pointer = looktrie_pointer[next_char]
lookahead_index += 1
if "" in looktrie_pointer:
start = lookstart
end = lookahead_index
skip = lookahead_index
if lookahead_index == len(text):
break
next_char = text[lookahead_index]
offsets.append(start)
offsets.append(end)
reset = True
break
elif current_char in trie_pointer:
trie_pointer = trie_pointer[current_char]
states[start] = trie_pointer
else:
to_remove.add(start)
if reset:
states = {}
else:
for start in to_remove:
del states[start]
if current_char in self.data:
states[current] = self.data[current_char]
for start, trie_pointer in states.items():
if "" in trie_pointer:
end = len(text)
offsets.append(start)
offsets.append(end)
break
return self.cut_text(text, offsets) | def split(self, text: str) <MASK>
states = OrderedDict()
offsets = [0]
skip = None
for current, current_char in enumerate(text):
if skip and current < skip:
continue
to_remove = set()
reset = False
for start, trie_pointer in states.items():
if "" in trie_pointer:
for lookstart, looktrie_pointer in states.items():
if lookstart > start:
break
elif lookstart < start:
lookahead_index = current + 1
end = current + 1
else:
lookahead_index = current
end = current
next_char = text[lookahead_index] if lookahead_index < len(text) else None
while next_char in looktrie_pointer:
looktrie_pointer = looktrie_pointer[next_char]
lookahead_index += 1
if "" in looktrie_pointer:
start = lookstart
end = lookahead_index
skip = lookahead_index
if lookahead_index == len(text):
break
next_char = text[lookahead_index]
offsets.append(start)
offsets.append(end)
reset = True
break
elif current_char in trie_pointer:
trie_pointer = trie_pointer[current_char]
states[start] = trie_pointer
else:
to_remove.add(start)
if reset:
states = {}
else:
for start in to_remove:
del states[start]
if current_char in self.data:
states[current] = self.data[current_char]
for start, trie_pointer in states.items():
if "" in trie_pointer:
end = len(text)
offsets.append(start)
offsets.append(end)
break
return self.cut_text(text, offsets) |
Python | str | def clean_up_tokenization(out_string: str) -> str:
out_string = (
out_string.replace(" .", ".")
.replace(" ?", "?")
.replace(" !", "!")
.replace(" ,", ",")
.replace(" ' ", "'")
.replace(" n't", "n't")
.replace(" 'm", "'m")
.replace(" 's", "'s")
.replace(" 've", "'ve")
.replace(" 're", "'re")
)
return out_string | def clean_up_tokenization(out_string: str) <MASK>
out_string = (
out_string.replace(" .", ".")
.replace(" ?", "?")
.replace(" !", "!")
.replace(" ,", ",")
.replace(" ' ", "'")
.replace(" n't", "n't")
.replace(" 'm", "'m")
.replace(" 's", "'s")
.replace(" 've", "'ve")
.replace(" 're", "'re")
)
return out_string |
Python | int | def find_pivot(matrix, col: int) -> int:
col_terms = (matrix[line][col] for line in range(col, len(matrix)))
col_terms_abs = list(map(abs, col_terms))
max_abs = max(col_terms_abs)
return col_terms_abs.index(max_abs) + col | def find_pivot(matrix, col: int) <MASK>
col_terms = (matrix[line][col] for line in range(col, len(matrix)))
col_terms_abs = list(map(abs, col_terms))
max_abs = max(col_terms_abs)
return col_terms_abs.index(max_abs) + col |
Python | Iterator[ArchiveEntry] | def iter_extractall(self, outdir:str, **kwargs) -> Iterator[ArchiveEntry]:
with self.open() as arcfile:
for i, entry in enumerate(self.entries):
yield entry
with open(os.path.join(outdir, entry.fullname or str(i))) as dstfile:
self._extract(entry, dstfile, arcfile, **kwargs) | def iter_extractall(self, outdir:str, **kwargs) <MASK>
with self.open() as arcfile:
for i, entry in enumerate(self.entries):
yield entry
with open(os.path.join(outdir, entry.fullname or str(i))) as dstfile:
self._extract(entry, dstfile, arcfile, **kwargs) |
Python | List[globalentry] | def globalkey_read(vcode1seed:int, file) -> List[globalentry]:
import hashlib
if isinstance(file, str):
with open(file, 'rb') as f:
return globalkey_read(vcode1seed, f)
if isinstance(vcode1seed, (str,bytes,bytearray)):
vcode1 = vcode1seed
vcode1seed = vcode_seed(vcode1)
elif not isinstance(vcode1seed, int):
raise TypeError('globalkey_read() first argument must be an int, str, or bytes-like object, not {0.__class__.__name__}'.format(vcode1seed))
bf = Blowfish(struct.pack('<I', vcode1seed))
file.seek(0, 2)
length = file.tell()
file.seek(0, 0)
globalkeys = []
for i in range(length // 0x30):
name, key = struct.unpack('<32s 16s', file.read(0x30))
name = name.rstrip(b'\x00').decode('cp932')
md5hash = bf.decrypt(key)
globalkeys.append(globalentry(name, md5hash))
return globalkeys | def globalkey_read(vcode1seed:int, file) <MASK>
import hashlib
if isinstance(file, str):
with open(file, 'rb') as f:
return globalkey_read(vcode1seed, f)
if isinstance(vcode1seed, (str,bytes,bytearray)):
vcode1 = vcode1seed
vcode1seed = vcode_seed(vcode1)
elif not isinstance(vcode1seed, int):
raise TypeError('globalkey_read() first argument must be an int, str, or bytes-like object, not {0.__class__.__name__}'.format(vcode1seed))
bf = Blowfish(struct.pack('<I', vcode1seed))
file.seek(0, 2)
length = file.tell()
file.seek(0, 0)
globalkeys = []
for i in range(length // 0x30):
name, key = struct.unpack('<32s 16s', file.read(0x30))
name = name.rstrip(b'\x00').decode('cp932')
md5hash = bf.decrypt(key)
globalkeys.append(globalentry(name, md5hash))
return globalkeys |
Python | NoReturn | def seed(self, seed:int) -> NoReturn:
if not isinstance(seed, int):
raise TypeError('{0.__class__.__name__} seed() argument \'seed\' must be an integer, not {1.__class__.__name__}'.format(self, seed))
elif not (0 <= seed <= 0xffffffff):
raise ValueError('{0.__class__.__name__} seed() argument \'seed\' must be an 32-bit unsigned integer, not {1!r}'.format(self, seed))
state, N, F = self._state, self._N, self._F
self._index = N+1
for i in range(N):
state[i] = (seed & 0xffff0000)
seed = (F * seed + 1) & 0xffffffff
state[i] |= (seed & 0xffff0000) >> 16
seed = (F * seed + 1) & 0xffffffff
self._index = N | def seed(self, seed:int) <MASK>
if not isinstance(seed, int):
raise TypeError('{0.__class__.__name__} seed() argument \'seed\' must be an integer, not {1.__class__.__name__}'.format(self, seed))
elif not (0 <= seed <= 0xffffffff):
raise ValueError('{0.__class__.__name__} seed() argument \'seed\' must be an 32-bit unsigned integer, not {1!r}'.format(self, seed))
state, N, F = self._state, self._N, self._F
self._index = N+1
for i in range(N):
state[i] = (seed & 0xffff0000)
seed = (F * seed + 1) & 0xffffffff
state[i] |= (seed & 0xffff0000) >> 16
seed = (F * seed + 1) & 0xffffffff
self._index = N |
Python | NoReturn | def twist(self) -> NoReturn:
if self._index >= self._N+1:
self.seed(self.INITIAL_SEED)
state, N, M = self._state, self._N, self._M
mag01 = (0, self._MATRIX_A)
y = 0
for kk in range( 0, N-M):
y = (state[kk] & 0x80000000) | (state[kk+1] & 0x7fffffff)
state[kk] = state[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]
for kk in range(N-M, N-1):
y = (state[kk] & 0x80000000) | (state[kk+1] & 0x7fffffff)
state[kk] = state[kk-(N-M)] ^ (y >> 1) ^ mag01[y & 0x1]
y = (state[N-1] & 0x80000000) | (state[0] & 0x7fffffff)
state[N-1] ^= state[M-1] ^ (y >> 1) ^ mag01[y & 0x1]
self._index = 0 | def twist(self) <MASK>
if self._index >= self._N+1:
self.seed(self.INITIAL_SEED)
state, N, M = self._state, self._N, self._M
mag01 = (0, self._MATRIX_A)
y = 0
for kk in range( 0, N-M):
y = (state[kk] & 0x80000000) | (state[kk+1] & 0x7fffffff)
state[kk] = state[kk+M] ^ (y >> 1) ^ mag01[y & 0x1]
for kk in range(N-M, N-1):
y = (state[kk] & 0x80000000) | (state[kk+1] & 0x7fffffff)
state[kk] = state[kk-(N-M)] ^ (y >> 1) ^ mag01[y & 0x1]
y = (state[N-1] & 0x80000000) | (state[0] & 0x7fffffff)
state[N-1] ^= state[M-1] ^ (y >> 1) ^ mag01[y & 0x1]
self._index = 0 |
Python | int | def genrand(self) -> int:
if self._index >= self._N:
self.twist()
y = self._state[self._index]
self._index += 1
return self.temper(y) | def genrand(self) <MASK>
if self._index >= self._N:
self.twist()
y = self._state[self._index]
self._index += 1
return self.temper(y) |
Python | float | def genrand_real1(self) -> float:
y = self.genrand()
return (y * 2.3283064370807974e-10) | def genrand_real1(self) <MASK>
y = self.genrand()
return (y * 2.3283064370807974e-10) |
Python | float | def genrand_real2(self) -> float:
y = self.genrand()
return (y * 2.3283064365386963e-10) | def genrand_real2(self) <MASK>
y = self.genrand()
return (y * 2.3283064365386963e-10) |
Python | float | def genrand_real3(self) -> float:
y = self.genrand()
return ((y + 1.0) * 2.3283064359965952e-10) | def genrand_real3(self) <MASK>
y = self.genrand()
return ((y + 1.0) * 2.3283064359965952e-10) |
Python | int | def temper(cls, y:int) -> int:
y ^= (y >> cls._SHIFT_U)
y ^= (y << cls._SHIFT_S) & cls._MASK_B
y ^= (y << cls._SHIFT_T) & cls._MASK_C
y ^= (y >> cls._SHIFT_L)
return y & 0xffffffff | def temper(cls, y:int) <MASK>
y ^= (y >> cls._SHIFT_U)
y ^= (y << cls._SHIFT_S) & cls._MASK_B
y ^= (y << cls._SHIFT_T) & cls._MASK_C
y ^= (y >> cls._SHIFT_L)
return y & 0xffffffff |
Python | int | def untemper(cls, y:int) -> int:
y ^= (y >> cls._SHIFT_L)
y ^= (y << cls._SHIFT_T) & cls._MASK_C
for _ in range(7):
y ^= (y << cls._SHIFT_S) & cls._MASK_B
for _ in range(3):
y ^= (y >> cls._SHIFT_U)
return y & 0xffffffff | def untemper(cls, y:int) <MASK>
y ^= (y >> cls._SHIFT_L)
y ^= (y << cls._SHIFT_T) & cls._MASK_C
for _ in range(7):
y ^= (y << cls._SHIFT_S) & cls._MASK_B
for _ in range(3):
y ^= (y >> cls._SHIFT_U)
return y & 0xffffffff |
Python | int | def mt_genrand(seed:int) -> int:
if not isinstance(seed, int):
raise TypeError('mt_genrand() argument \'seed\' must be an integer, not {0.__class__.__name__}'.format(seed))
elif not (0 <= seed <= 0xffffffff):
raise ValueError('mt_genrand() argument \'seed\' must be a 32-bit unsigned integer, not {0!r}'.format(seed))
cls = MersenneTwister
M, F = cls._M, cls._F
mag01 = (0, cls._MATRIX_A)
y = (seed & 0x80000000) , 0xffff0000 & UPPER_MASK
seed = (F * seed + 1) & 0xffffffff
seed = (F * seed + 1) & 0xffffffff
y |= (seed & 0x7fff0000) , 0xffff0000 & LOWER_MASK
seed = (F * seed + 1) & 0xffffffff
y |= (seed & 0xffff0000) >> 16
seed = (F * seed + 1) & 0xffffffff
y = (y >> 1) ^ mag01[y & 0x1]
for i in range(2, M):
seed = (F * seed + 1) & 0xffffffff
seed = (F * seed + 1) & 0xffffffff
y ^= (seed & 0xffff0000)
seed = (F * seed + 1)
y ^= (seed & 0xffff0000) >> 16
return cls.temper(y) | def mt_genrand(seed:int) <MASK>
if not isinstance(seed, int):
raise TypeError('mt_genrand() argument \'seed\' must be an integer, not {0.__class__.__name__}'.format(seed))
elif not (0 <= seed <= 0xffffffff):
raise ValueError('mt_genrand() argument \'seed\' must be a 32-bit unsigned integer, not {0!r}'.format(seed))
cls = MersenneTwister
M, F = cls._M, cls._F
mag01 = (0, cls._MATRIX_A)
y = (seed & 0x80000000) , 0xffff0000 & UPPER_MASK
seed = (F * seed + 1) & 0xffffffff
seed = (F * seed + 1) & 0xffffffff
y |= (seed & 0x7fff0000) , 0xffff0000 & LOWER_MASK
seed = (F * seed + 1) & 0xffffffff
y |= (seed & 0xffff0000) >> 16
seed = (F * seed + 1) & 0xffffffff
y = (y >> 1) ^ mag01[y & 0x1]
for i in range(2, M):
seed = (F * seed + 1) & 0xffffffff
seed = (F * seed + 1) & 0xffffffff
y ^= (seed & 0xffff0000)
seed = (F * seed + 1)
y ^= (seed & 0xffff0000) >> 16
return cls.temper(y) |
Python | Union[int,str,None] | def cast_entry(entry:Union[pefile.ResourceDataEntryData,pefile.UnicodeStringWrapperPostProcessor,None]) -> Union[int,str,None]:
if entry is None:
return None
elif isinstance(entry, pefile.ResourceDirEntryData):
return entry.name.decode() if entry.name is not None else entry.id
elif isinstance(entry, pefile.UnicodeStringWrapperPostProcessor):
return entry.decode()
else:
raise TypeError('ResourceName read_name() expected ResourceDirEntryData, UnicodeStringWrapperPostProcessor or None, not {0}'.format(type(entry).__name__)) | def cast_entry(entry:Union[pefile.ResourceDataEntryData,pefile.UnicodeStringWrapperPostProcessor,None]) <MASK>
if entry is None:
return None
elif isinstance(entry, pefile.ResourceDirEntryData):
return entry.name.decode() if entry.name is not None else entry.id
elif isinstance(entry, pefile.UnicodeStringWrapperPostProcessor):
return entry.decode()
else:
raise TypeError('ResourceName read_name() expected ResourceDirEntryData, UnicodeStringWrapperPostProcessor or None, not {0}'.format(type(entry).__name__)) |
Python | 'ResourceName' | def from_entry(entry:Union[pefile.ResourceDataEntryData,pefile.UnicodeStringWrapperPostProcessor,None]) -> 'ResourceName':
if entry is None:
return ResourceName(None)
elif isinstance(entry, pefile.ResourceDirEntryData):
return ResourceName(entry.name.decode() if entry.name is not None else entry.id)
elif isinstance(entry, pefile.UnicodeStringWrapperPostProcessor):
return ResourceName(entry.decode())
else:
raise TypeError('ResourceName from_entry() expected ResourceDirEntryData, UnicodeStringWrapperPostProcessor or None, not {0}'.format(type(entry).__name__)) | def from_entry(entry:Union[pefile.ResourceDataEntryData,pefile.UnicodeStringWrapperPostProcessor,None]) <MASK>
if entry is None:
return ResourceName(None)
elif isinstance(entry, pefile.ResourceDirEntryData):
return ResourceName(entry.name.decode() if entry.name is not None else entry.id)
elif isinstance(entry, pefile.UnicodeStringWrapperPostProcessor):
return ResourceName(entry.decode())
else:
raise TypeError('ResourceName from_entry() expected ResourceDirEntryData, UnicodeStringWrapperPostProcessor or None, not {0}'.format(type(entry).__name__)) |
Python | bool | def _validate_order(order: "Order") -> bool:
if not order.lines.exists():
return False
shipping_address = order.shipping_address
is_shipping_required = order.is_shipping_required()
address = shipping_address or order.billing_address
return _validate_adddress_details(
shipping_address, is_shipping_required, address, order.shipping_method
) | def _validate_order(order: "Order") <MASK>
if not order.lines.exists():
return False
shipping_address = order.shipping_address
is_shipping_required = order.is_shipping_required()
address = shipping_address or order.billing_address
return _validate_adddress_details(
shipping_address, is_shipping_required, address, order.shipping_method
) |
Python | bool | def _validate_checkout(checkout: "Checkout") -> bool:
if not checkout.lines.exists():
logger.debug("Checkout Lines do NOT exist")
return False
shipping_address = checkout.shipping_address
is_shipping_required = checkout.is_shipping_required
address = shipping_address or checkout.billing_address
return _validate_adddress_details(
shipping_address, is_shipping_required, address, checkout.shipping_method
) | def _validate_checkout(checkout: "Checkout") <MASK>
if not checkout.lines.exists():
logger.debug("Checkout Lines do NOT exist")
return False
shipping_address = checkout.shipping_address
is_shipping_required = checkout.is_shipping_required
address = shipping_address or checkout.billing_address
return _validate_adddress_details(
shipping_address, is_shipping_required, address, checkout.shipping_method
) |
Python | render_template | def show_transaction_page(data: DecodedTransaction) -> render_template:
return (
render_template(
"transaction.html",
eth_price=deps.get_eth_price(),
transaction=data.metadata,
events=data.events,
call=data.calls,
transfers=data.transfers,
balances=data.balances,
),
200,
) | def show_transaction_page(data: DecodedTransaction) <MASK>
return (
render_template(
"transaction.html",
eth_price=deps.get_eth_price(),
transaction=data.metadata,
events=data.events,
call=data.calls,
transfers=data.transfers,
balances=data.balances,
),
200,
) |
Python | Optional[str] | def conv_zertifikat_string(input_str: Optional[str]) -> Optional[str]:
if input_str is None:
return None
else:
conv_str = str(input_str).strip().lower().replace("-", " ")
if conv_str in ("?", "", "x"):
return None
return ZERTIFIKAT_MAPPING[conv_str] | def conv_zertifikat_string(input_str: Optional[str]) <MASK>
if input_str is None:
return None
else:
conv_str = str(input_str).strip().lower().replace("-", " ")
if conv_str in ("?", "", "x"):
return None
return ZERTIFIKAT_MAPPING[conv_str] |
Python | Optional[float] | def conv_ee_anteil(input_value: Optional[Union[str, float, int]]) -> Optional[float]:
if input_value is None:
return None
if isinstance(input_value, int) or isinstance(input_value, float):
number = float(input_value)
else:
try:
number = float(str(input_value.replace("%", "")))
if "%" in input_value:
number = number / 100
except ValueError:
return None
if number < 0:
return 0
elif number > 1:
return 100
else:
return number * 100 | def conv_ee_anteil(input_value: Optional[Union[str, float, int]]) <MASK>
if input_value is None:
return None
if isinstance(input_value, int) or isinstance(input_value, float):
number = float(input_value)
else:
try:
number = float(str(input_value.replace("%", "")))
if "%" in input_value:
number = number / 100
except ValueError:
return None
if number < 0:
return 0
elif number > 1:
return 100
else:
return number * 100 |
Python | bool | def conv_bool(input_value: Optional[Union[str, int, bool]]) -> bool:
if input_value is None:
return False
elif input_value is False or str(input_value).lower() in ("false", "", "no"):
return False
elif input_value == 0:
return False
else:
return True | def conv_bool(input_value: Optional[Union[str, int, bool]]) <MASK>
if input_value is None:
return False
elif input_value is False or str(input_value).lower() in ("false", "", "no"):
return False
elif input_value == 0:
return False
else:
return True |
Python | Dict[str, Dict[str, str]] | def program_catalogue_data(src: Optional[str] = None) -> Dict[str, Dict[str, str]]:
if src is None:
src = URL_USASK_PROGRAMS_LIST
else:
src = str(src)
content = get_content(src)
return parse_fields(content, src) | def program_catalogue_data(src: Optional[str] = None) <MASK>
if src is None:
src = URL_USASK_PROGRAMS_LIST
else:
src = str(src)
content = get_content(src)
return parse_fields(content, src) |
Python | Dict[str, Dict[str, str]] | def parse_fields(content: str, base_href: str = '') -> Dict[str, Dict[str, str]]:
html_root = html5lib.parse(content)
css_root = cssselect2.ElementWrapper.from_html_root(html_root)
section_heading_selector = 'section.uofs-section h1'
data = {
get_cleaned_text(section): section_data(section, base_href)
for section in css_root.query_all(section_heading_selector)
}
return data | def parse_fields(content: str, base_href: str = '') <MASK>
html_root = html5lib.parse(content)
css_root = cssselect2.ElementWrapper.from_html_root(html_root)
section_heading_selector = 'section.uofs-section h1'
data = {
get_cleaned_text(section): section_data(section, base_href)
for section in css_root.query_all(section_heading_selector)
}
return data |
Python | dict | def field_data(content: str, base_href: str) -> dict:
root = cssselect2.ElementWrapper.from_html_root(
html5lib.parse(content))
links_selector = 'section#Programs ul>li>a'
links = root.query_all(links_selector)
programs_in_subject = {
clean_whitespace(element.etree_element.text):
abs_url(base_href, get_href(element))
for element in links
}
return programs_in_subject | def field_data(content: str, base_href: str) <MASK>
root = cssselect2.ElementWrapper.from_html_root(
html5lib.parse(content))
links_selector = 'section#Programs ul>li>a'
links = root.query_all(links_selector)
programs_in_subject = {
clean_whitespace(element.etree_element.text):
abs_url(base_href, get_href(element))
for element in links
}
return programs_in_subject |
Python | str | def program_page(program: str, field: str, level: str) -> str:
program_page_url = program_url(field, level, program)
content = get_content(program_page_url)
return content | def program_page(program: str, field: str, level: str) <MASK>
program_page_url = program_url(field, level, program)
content = get_content(program_page_url)
return content |
Python | dict | def parse_program(content: str) -> dict:
content_root = cssselect2.ElementWrapper.from_html_root(html5lib.parse(content))
selector_section_heading = 'section.uofs-section h1'
section_headings = content_root.query_all(selector_section_heading)
return {
clean_whitespace(heading.etree_element.text): course_dict(heading)
for heading in section_headings
} | def parse_program(content: str) <MASK>
content_root = cssselect2.ElementWrapper.from_html_root(html5lib.parse(content))
selector_section_heading = 'section.uofs-section h1'
section_headings = content_root.query_all(selector_section_heading)
return {
clean_whitespace(heading.etree_element.text): course_dict(heading)
for heading in section_headings
} |
Python | dict | def course_dict(heading: cssselect2.ElementWrapper) -> dict:
parent = heading.parent
selector = 'ul>li'
return {
code: get_course_url(code)
for code in course_codes(parent, selector)
} | def course_dict(heading: cssselect2.ElementWrapper) <MASK>
parent = heading.parent
selector = 'ul>li'
return {
code: get_course_url(code)
for code in course_codes(parent, selector)
} |
Python | Generator[str, Any, None] | def course_codes(parent: ElementWrapper, selector: str) -> Generator[str, Any, None]:
query: ElementWrapper = parent.query_all(selector)
children: Generator[str, Any, None] = (
clean_whitespace(list_item_node.etree_element.text)
for list_item_node in query
)
return children | def course_codes(parent: ElementWrapper, selector: str) <MASK>
query: ElementWrapper = parent.query_all(selector)
children: Generator[str, Any, None] = (
clean_whitespace(list_item_node.etree_element.text)
for list_item_node in query
)
return children |
Python | str | def wrapped(key: str) -> str:
try:
return cache.get(key)
except KeyError:
text = function(key)
cache.set(key, text)
return text | def wrapped(key: str) <MASK>
try:
return cache.get(key)
except KeyError:
text = function(key)
cache.set(key, text)
return text |
Python | Dict[Text, Any] | def parse_course(content: Text) -> Dict[Text, Any]:
root: ElementWrapper = ElementWrapper.from_html_root(
html5lib.parse(content))
description_node = root.query('section#Description'
'>div#Description-subsection-0')
selector_second_p = 'p:nth-child(2)'
selector_first_p = 'p:nth-child(1)'
prerequisites_node: ElementWrapper = description_node.query(selector_second_p)
node: ElementWrapper = description_node.query(selector_first_p)
text = node.etree_element.text
data = generate_mapping(prerequisites_node, text)
return data | def parse_course(content: Text) <MASK>
root: ElementWrapper = ElementWrapper.from_html_root(
html5lib.parse(content))
description_node = root.query('section#Description'
'>div#Description-subsection-0')
selector_second_p = 'p:nth-child(2)'
selector_first_p = 'p:nth-child(1)'
prerequisites_node: ElementWrapper = description_node.query(selector_second_p)
node: ElementWrapper = description_node.query(selector_first_p)
text = node.etree_element.text
data = generate_mapping(prerequisites_node, text)
return data |
Python | Dict[str, Any] | def generate_mapping(prerequisites_node: ElementWrapper, text: str) -> Dict[str, Any]:
data = {
"prerequisites":
course_data(prerequisites_node),
"summary":
clean_whitespace(text),
}
return data | def generate_mapping(prerequisites_node: ElementWrapper, text: str) <MASK>
data = {
"prerequisites":
course_data(prerequisites_node),
"summary":
clean_whitespace(text),
}
return data |
Python | str | def filename_from_url(key: str) -> str:
as_dict = urllib.parse.urlparse(key)._asdict()
exploded = as_dict.values()
base_name = SEP_DOT.join(exploded)
filename = f"{base_name}.html"
return filename | def filename_from_url(key: str) <MASK>
as_dict = urllib.parse.urlparse(key)._asdict()
exploded = as_dict.values()
base_name = SEP_DOT.join(exploded)
filename = f"{base_name}.html"
return filename |
Python | Path | def mkdir_path(path: PATH) -> Path:
resolve = Path(path).resolve()
try:
resolve.mkdir(parents=True,
exist_ok=True)
except FileExistsError:
print(f"File exists at {resolve}.", file=sys.stderr)
if not os.path.isdir(resolve):
raise NotADirectoryError(resolve)
return resolve | def mkdir_path(path: PATH) <MASK>
resolve = Path(path).resolve()
try:
resolve.mkdir(parents=True,
exist_ok=True)
except FileExistsError:
print(f"File exists at {resolve}.", file=sys.stderr)
if not os.path.isdir(resolve):
raise NotADirectoryError(resolve)
return resolve |
Python | Generator[Path, None, None] | def dir_path(path: PATH) -> Generator[Path, None, None]:
path = Path(path)
assert path.is_dir()
return path.iterdir() | def dir_path(path: PATH) <MASK>
path = Path(path)
assert path.is_dir()
return path.iterdir() |
Python | str | def load(self, key: str) -> str:
path = self.file_path(key)
try:
result = path.read_text()
except FileNotFoundError:
raise KeyError('Key does not exist: ', key)
return result | def load(self, key: str) <MASK>
path = self.file_path(key)
try:
result = path.read_text()
except FileNotFoundError:
raise KeyError('Key does not exist: ', key)
return result |
Python | int | def save(self, filename: str, text: str) -> int:
file_path = self.file_path(filename)
return file_path.write_text(text) | def save(self, filename: str, text: str) <MASK>
file_path = self.file_path(filename)
return file_path.write_text(text) |
Python | str | def sanitize_filename(filename: str) -> str:
return re.sub(r'(?u)[^-\w.]', '', filename) | def sanitize_filename(filename: str) <MASK>
return re.sub(r'(?u)[^-\w.]', '', filename) |
Python | str | def clean_whitespace(text: str) -> str:
text = str(text or '')
stripped = text.strip()
sub = re.sub(r'\s+', ' ', stripped, )
return sub | def clean_whitespace(text: str) <MASK>
text = str(text or '')
stripped = text.strip()
sub = re.sub(r'\s+', ' ', stripped, )
return sub |
Python | Generator[Any, str, None] | def find_tag_with_text(node: cssselect2.ElementWrapper, tag: str, text: str) -> Generator[Any, str, None]:
return (
child_node.etree_element.tail
for child_node
in node.query_all(tag)
if clean_whitespace(child_node.etree_element.text) == text
) | def find_tag_with_text(node: cssselect2.ElementWrapper, tag: str, text: str) <MASK>
return (
child_node.etree_element.tail
for child_node
in node.query_all(tag)
if clean_whitespace(child_node.etree_element.text) == text
) |
Python | dict | def init_notebook_resources(self) -> dict:
resources = {}
resources['unique_key'] = self.output
if self.config.inline.enabled and self.config.inline.solution:
resources['output_files_dir'] = os.path.join(os.pardir, f'{self.output}_files')
else:
resources['output_files_dir'] = f'{self.output}_files'
return resources | def init_notebook_resources(self) <MASK>
resources = {}
resources['unique_key'] = self.output
if self.config.inline.enabled and self.config.inline.solution:
resources['output_files_dir'] = os.path.join(os.pardir, f'{self.output}_files')
else:
resources['output_files_dir'] = f'{self.output}_files'
return resources |
Python | ConfigEntry | def create_mock_myenergi_config_entry(
hass: HomeAssistant,
data: dict[str, Any] | None = None,
options: dict[str, Any] | None = None,
) -> ConfigEntry:
config_entry: MockConfigEntry = MockConfigEntry(
entry_id=TEST_CONFIG_ENTRY_ID,
domain=DOMAIN,
data=data or MOCK_CONFIG,
title="",
options=options or {},
)
config_entry.add_to_hass(hass)
return config_entry | def create_mock_myenergi_config_entry(
hass: HomeAssistant,
data: dict[str, Any] | None = None,
options: dict[str, Any] | None = None,
) <MASK>
config_entry: MockConfigEntry = MockConfigEntry(
entry_id=TEST_CONFIG_ENTRY_ID,
domain=DOMAIN,
data=data or MOCK_CONFIG,
title="",
options=options or {},
)
config_entry.add_to_hass(hass)
return config_entry |
Python | Tuple[np.ndarray, float] | def estep(X: np.ndarray, mixture: GaussianMixture) -> Tuple[np.ndarray, float]:
dim = X.shape[1]
exponents = np.sum((X[:, np.newaxis, :] - mixture.mu) ** 2, axis=2) / (2 * mixture.var[np.newaxis, :])
weighted_likelihoods = np.transpose(1 / ((2 * np.pi * mixture.var[:, np.newaxis]) ** (dim / 2))) * np.exp(
-exponents) * mixture.p
post = np.transpose(weighted_likelihoods.T / np.sum(weighted_likelihoods, axis=1))
log_likelihood = np.sum(np.log(np.sum(weighted_likelihoods, axis=1))).astype(float)
return post, log_likelihood | def estep(X: np.ndarray, mixture: GaussianMixture) <MASK>
dim = X.shape[1]
exponents = np.sum((X[:, np.newaxis, :] - mixture.mu) ** 2, axis=2) / (2 * mixture.var[np.newaxis, :])
weighted_likelihoods = np.transpose(1 / ((2 * np.pi * mixture.var[:, np.newaxis]) ** (dim / 2))) * np.exp(
-exponents) * mixture.p
post = np.transpose(weighted_likelihoods.T / np.sum(weighted_likelihoods, axis=1))
log_likelihood = np.sum(np.log(np.sum(weighted_likelihoods, axis=1))).astype(float)
return post, log_likelihood |
Python | GaussianMixture | def mstep(X: np.ndarray, post: np.ndarray) -> GaussianMixture:
dim = X.shape[1]
weight = np.sum(post, axis=0) / X.shape[0]
mean = np.transpose(np.transpose(np.dot(np.transpose(post), X)) / np.sum(post, axis=0))
var = np.sum(np.sum((X[:, np.newaxis, :] - mean) ** 2, axis=2) * post, axis=0) / (dim * np.sum(post, axis=0))
return GaussianMixture(mu=mean, var=var, p=weight) | def mstep(X: np.ndarray, post: np.ndarray) <MASK>
dim = X.shape[1]
weight = np.sum(post, axis=0) / X.shape[0]
mean = np.transpose(np.transpose(np.dot(np.transpose(post), X)) / np.sum(post, axis=0))
var = np.sum(np.sum((X[:, np.newaxis, :] - mean) ** 2, axis=2) * post, axis=0) / (dim * np.sum(post, axis=0))
return GaussianMixture(mu=mean, var=var, p=weight) |
Python | Tuple[np.ndarray, float] | def estep(X: np.ndarray, mixture: GaussianMixture) -> Tuple[np.ndarray, float]:
non_null_index = X.astype(bool).astype(int)
dim = np.sum(non_null_index, axis=1)
means = non_null_index[:, np.newaxis, :] * mixture.mu
quadratic = np.sum((X[:, np.newaxis, :] - means) ** 2, axis=2) / (2 * mixture.var[np.newaxis, :])
normalization = np.transpose(dim / 2 * np.log(2 * np.pi * mixture.var[:, np.newaxis]))
f = np.log(mixture.p + 1e-16) - normalization - quadratic
f_max = np.max(f, axis=1)
log_likelihood = f_max + logsumexp(f.T - f_max, axis=0)
post = np.exp(np.transpose(f.T - log_likelihood))
return post, np.sum(log_likelihood).astype(float) | def estep(X: np.ndarray, mixture: GaussianMixture) <MASK>
non_null_index = X.astype(bool).astype(int)
dim = np.sum(non_null_index, axis=1)
means = non_null_index[:, np.newaxis, :] * mixture.mu
quadratic = np.sum((X[:, np.newaxis, :] - means) ** 2, axis=2) / (2 * mixture.var[np.newaxis, :])
normalization = np.transpose(dim / 2 * np.log(2 * np.pi * mixture.var[:, np.newaxis]))
f = np.log(mixture.p + 1e-16) - normalization - quadratic
f_max = np.max(f, axis=1)
log_likelihood = f_max + logsumexp(f.T - f_max, axis=0)
post = np.exp(np.transpose(f.T - log_likelihood))
return post, np.sum(log_likelihood).astype(float) |
Python | GaussianMixture | def mstep(X: np.ndarray, post: np.ndarray, mixture: GaussianMixture,
min_variance: float = .25) -> GaussianMixture:
non_null_index = X.astype(bool).astype(int)
dim = np.sum(non_null_index, axis=1)
reduced_post = np.transpose(non_null_index.T[:, np.newaxis, :] * post.T)
no_update = np.sum(reduced_post, axis=0) < 1
mu = np.sum(reduced_post * X[:, np.newaxis, :], axis=0) / (np.sum(reduced_post, axis=0) + 1e-16)
mu[no_update] = mixture.mu[no_update]
pi = np.sum(post, axis=0) / X.shape[0]
var = np.sum(np.sum((X[:, np.newaxis, :] - mu) ** 2 * reduced_post, axis=2), axis=0) / np.transpose(
np.sum(dim * post.T, axis=1))
var[var < min_variance] = min_variance
return GaussianMixture(mu=mu, var=var, p=pi) | def mstep(X: np.ndarray, post: np.ndarray, mixture: GaussianMixture,
min_variance: float = .25) <MASK>
non_null_index = X.astype(bool).astype(int)
dim = np.sum(non_null_index, axis=1)
reduced_post = np.transpose(non_null_index.T[:, np.newaxis, :] * post.T)
no_update = np.sum(reduced_post, axis=0) < 1
mu = np.sum(reduced_post * X[:, np.newaxis, :], axis=0) / (np.sum(reduced_post, axis=0) + 1e-16)
mu[no_update] = mixture.mu[no_update]
pi = np.sum(post, axis=0) / X.shape[0]
var = np.sum(np.sum((X[:, np.newaxis, :] - mu) ** 2 * reduced_post, axis=2), axis=0) / np.transpose(
np.sum(dim * post.T, axis=1))
var[var < min_variance] = min_variance
return GaussianMixture(mu=mu, var=var, p=pi) |
Python | np.ndarray | def fill_matrix(X: np.ndarray, mixture: GaussianMixture) -> np.ndarray:
non_null_index = X.astype(bool).astype(int)
dim = np.sum(non_null_index, axis=1)
means = non_null_index[:, np.newaxis, :] * mixture.mu
quadratic = np.sum((X[:, np.newaxis, :] - means) ** 2, axis=2) / (2 * mixture.var[np.newaxis, :])
normalization = np.transpose(dim / 2 * np.log(2 * np.pi * mixture.var[:, np.newaxis]))
f = np.log(mixture.p + 1e-16) - normalization - quadratic
f_max = np.max(f, axis=1)
log_likelihood = f_max + logsumexp(f.T - f_max, axis=0)
post = np.exp(np.transpose(f.T - log_likelihood))
return np.where(X == 0, np.dot(post, mixture.mu), X) | def fill_matrix(X: np.ndarray, mixture: GaussianMixture) <MASK>
non_null_index = X.astype(bool).astype(int)
dim = np.sum(non_null_index, axis=1)
means = non_null_index[:, np.newaxis, :] * mixture.mu
quadratic = np.sum((X[:, np.newaxis, :] - means) ** 2, axis=2) / (2 * mixture.var[np.newaxis, :])
normalization = np.transpose(dim / 2 * np.log(2 * np.pi * mixture.var[:, np.newaxis]))
f = np.log(mixture.p + 1e-16) - normalization - quadratic
f_max = np.max(f, axis=1)
log_likelihood = f_max + logsumexp(f.T - f_max, axis=0)
post = np.exp(np.transpose(f.T - log_likelihood))
return np.where(X == 0, np.dot(post, mixture.mu), X) |
Python | http.client.HTTPResponse | def make_request(*args, **kwargs) -> http.client.HTTPResponse:
if "headers" not in kwargs:
kwargs["headers"] = _http_headers
return urllib.request.urlopen(urllib.request.Request(*args, **kwargs)) | def make_request(*args, **kwargs) <MASK>
if "headers" not in kwargs:
kwargs["headers"] = _http_headers
return urllib.request.urlopen(urllib.request.Request(*args, **kwargs)) |
Python | list[Symbol] | def find_symbols(self, text: str) -> list[Symbol]:
schedule.run_pending()
symbols = []
stocks = set(re.findall(self.STOCK_REGEX, text))
for stock in stocks:
if stock.upper() in self.stock.symbol_list["symbol"].values:
symbols.append(Stock(stock))
else:
info(f"{stock} is not in list of stocks")
coins = set(re.findall(self.CRYPTO_REGEX, text))
for coin in coins:
if coin.lower() in self.crypto.symbol_list["symbol"].values:
symbols.append(Coin(coin.lower()))
else:
info(f"{coin} is not in list of coins")
if symbols:
info(symbols)
for symbol in symbols:
self.trending_count[symbol.tag] = (
self.trending_count.get(symbol.tag, 0) + 1
)
return symbols | def find_symbols(self, text: str) <MASK>
schedule.run_pending()
symbols = []
stocks = set(re.findall(self.STOCK_REGEX, text))
for stock in stocks:
if stock.upper() in self.stock.symbol_list["symbol"].values:
symbols.append(Stock(stock))
else:
info(f"{stock} is not in list of stocks")
coins = set(re.findall(self.CRYPTO_REGEX, text))
for coin in coins:
if coin.lower() in self.crypto.symbol_list["symbol"].values:
symbols.append(Coin(coin.lower()))
else:
info(f"{coin} is not in list of coins")
if symbols:
info(symbols)
for symbol in symbols:
self.trending_count[symbol.tag] = (
self.trending_count.get(symbol.tag, 0) + 1
)
return symbols |
Python | str | def status(self, bot_resp) -> str:
stats = f"""
Bot Status:
{bot_resp}
Stock Market Data:
{self.stock.status()}
Cryptocurrency Data:
{self.crypto.status()}
"""
warning(stats)
return stats | def status(self, bot_resp) <MASK>
stats = f"""
Bot Status:
{bot_resp}
Stock Market Data:
{self.stock.status()}
Cryptocurrency Data:
{self.crypto.status()}
"""
warning(stats)
return stats |
Python | list[str] | def price_reply(self, symbols: list[Symbol]) -> list[str]:
replies = []
for symbol in symbols:
info(symbol)
if isinstance(symbol, Stock):
replies.append(self.stock.price_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.price_reply(symbol))
else:
info(f"{symbol} is not a Stock or Coin")
return replies | def price_reply(self, symbols: list[Symbol]) <MASK>
replies = []
for symbol in symbols:
info(symbol)
if isinstance(symbol, Stock):
replies.append(self.stock.price_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.price_reply(symbol))
else:
info(f"{symbol} is not a Stock or Coin")
return replies |
Python | list[str] | def dividend_reply(self, symbols: list) -> list[str]:
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.dividend_reply(symbol))
elif isinstance(symbol, Coin):
replies.append("Cryptocurrencies do no have Dividends.")
else:
debug(f"{symbol} is not a Stock or Coin")
return replies | def dividend_reply(self, symbols: list) <MASK>
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.dividend_reply(symbol))
elif isinstance(symbol, Coin):
replies.append("Cryptocurrencies do no have Dividends.")
else:
debug(f"{symbol} is not a Stock or Coin")
return replies |
Python | list[str] | def news_reply(self, symbols: list) -> list[str]:
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.news_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(
"News is not yet supported for cryptocurrencies. If you have any suggestions for news sources please contatct @MisterBiggs"
)
else:
debug(f"{symbol} is not a Stock or Coin")
return replies | def news_reply(self, symbols: list) <MASK>
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.news_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(
"News is not yet supported for cryptocurrencies. If you have any suggestions for news sources please contatct @MisterBiggs"
)
else:
debug(f"{symbol} is not a Stock or Coin")
return replies |
Python | list[str] | def info_reply(self, symbols: list) -> list[str]:
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.info_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.info_reply(symbol))
else:
debug(f"{symbol} is not a Stock or Coin")
return replies | def info_reply(self, symbols: list) <MASK>
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.info_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.info_reply(symbol))
else:
debug(f"{symbol} is not a Stock or Coin")
return replies |
Python | pd.DataFrame | def intra_reply(self, symbol: Symbol) -> pd.DataFrame:
if isinstance(symbol, Stock):
return self.stock.intra_reply(symbol)
elif isinstance(symbol, Coin):
return self.crypto.intra_reply(symbol)
else:
debug(f"{symbol} is not a Stock or Coin")
return pd.DataFrame() | def intra_reply(self, symbol: Symbol) <MASK>
if isinstance(symbol, Stock):
return self.stock.intra_reply(symbol)
elif isinstance(symbol, Coin):
return self.crypto.intra_reply(symbol)
else:
debug(f"{symbol} is not a Stock or Coin")
return pd.DataFrame() |
Python | pd.DataFrame | def chart_reply(self, symbol: Symbol) -> pd.DataFrame:
if isinstance(symbol, Stock):
return self.stock.chart_reply(symbol)
elif isinstance(symbol, Coin):
return self.crypto.chart_reply(symbol)
else:
debug(f"{symbol} is not a Stock or Coin")
return pd.DataFrame() | def chart_reply(self, symbol: Symbol) <MASK>
if isinstance(symbol, Stock):
return self.stock.chart_reply(symbol)
elif isinstance(symbol, Coin):
return self.crypto.chart_reply(symbol)
else:
debug(f"{symbol} is not a Stock or Coin")
return pd.DataFrame() |
Python | list[str] | def stat_reply(self, symbols: list[Symbol]) -> list[str]:
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.stat_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.stat_reply(symbol))
else:
debug(f"{symbol} is not a Stock or Coin")
return replies | def stat_reply(self, symbols: list[Symbol]) <MASK>
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.stat_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.stat_reply(symbol))
else:
debug(f"{symbol} is not a Stock or Coin")
return replies |
Python | list[str] | def cap_reply(self, symbols: list[Symbol]) -> list[str]:
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.cap_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.cap_reply(symbol))
else:
debug(f"{symbol} is not a Stock or Coin")
return replies | def cap_reply(self, symbols: list[Symbol]) <MASK>
replies = []
for symbol in symbols:
if isinstance(symbol, Stock):
replies.append(self.stock.cap_reply(symbol))
elif isinstance(symbol, Coin):
replies.append(self.crypto.cap_reply(symbol))
else:
debug(f"{symbol} is not a Stock or Coin")
return replies |
Python | str | def trending(self) -> str:
stocks = self.stock.trending()
coins = self.crypto.trending()
reply = ""
if self.trending_count:
reply += "🔥Trending on the Stock Bot:\n`"
reply += "━" * len("Trending on the Stock Bot:") + "`\n"
sorted_trending = [
s[0]
for s in sorted(self.trending_count.items(), key=lambda item: item[1])
][::-1][0:5]
for t in sorted_trending:
reply += self.spark_reply(self.find_symbols(t))[0] + "\n"
if stocks:
reply += "\n\n💵Trending Stocks:\n`"
reply += "━" * len("Trending Stocks:") + "`\n"
for stock in stocks:
reply += stock + "\n"
if coins:
reply += "\n\n🦎Trending Crypto:\n`"
reply += "━" * len("Trending Crypto:") + "`\n"
for coin in coins:
reply += coin + "\n"
if "`$GME" in reply:
reply = reply.replace("🔥", "🦍")
if reply:
return reply
else:
warning("Failed to collect trending data.")
return "Trending data is not currently available." | def trending(self) <MASK>
stocks = self.stock.trending()
coins = self.crypto.trending()
reply = ""
if self.trending_count:
reply += "🔥Trending on the Stock Bot:\n`"
reply += "━" * len("Trending on the Stock Bot:") + "`\n"
sorted_trending = [
s[0]
for s in sorted(self.trending_count.items(), key=lambda item: item[1])
][::-1][0:5]
for t in sorted_trending:
reply += self.spark_reply(self.find_symbols(t))[0] + "\n"
if stocks:
reply += "\n\n💵Trending Stocks:\n`"
reply += "━" * len("Trending Stocks:") + "`\n"
for stock in stocks:
reply += stock + "\n"
if coins:
reply += "\n\n🦎Trending Crypto:\n`"
reply += "━" * len("Trending Crypto:") + "`\n"
for coin in coins:
reply += coin + "\n"
if "`$GME" in reply:
reply = reply.replace("🔥", "🦍")
if reply:
return reply
else:
warning("Failed to collect trending data.")
return "Trending data is not currently available." |
Python | list[str] | def batch_price_reply(self, symbols: list[Symbol]) -> list[str]:
replies = []
stocks = []
coins = []
for symbol in symbols:
if isinstance(symbol, Stock):
stocks.append(symbol)
elif isinstance(symbol, Coin):
coins.append(symbol)
else:
debug(f"{symbol} is not a Stock or Coin")
if stocks:
for stock in stocks:
replies.append(self.stock.price_reply(stock))
if coins:
replies = replies + self.crypto.batch_price(coins)
return replies | def batch_price_reply(self, symbols: list[Symbol]) <MASK>
replies = []
stocks = []
coins = []
for symbol in symbols:
if isinstance(symbol, Stock):
stocks.append(symbol)
elif isinstance(symbol, Coin):
coins.append(symbol)
else:
debug(f"{symbol} is not a Stock or Coin")
if stocks:
for stock in stocks:
replies.append(self.stock.price_reply(stock))
if coins:
replies = replies + self.crypto.batch_price(coins)
return replies |
Python | str | def status(self) -> str:
status = r.get(
"https://api.coingecko.com/api/v3/ping",
timeout=5,
)
try:
status.raise_for_status()
return f"CoinGecko API responded that it was OK with a {status.status_code} in {status.elapsed.total_seconds()} Seconds."
except:
return f"CoinGecko API returned an error code {status.status_code} in {status.elapsed.total_seconds()} Seconds." | def status(self) <MASK>
status = r.get(
"https://api.coingecko.com/api/v3/ping",
timeout=5,
)
try:
status.raise_for_status()
return f"CoinGecko API responded that it was OK with a {status.status_code} in {status.elapsed.total_seconds()} Seconds."
except:
return f"CoinGecko API returned an error code {status.status_code} in {status.elapsed.total_seconds()} Seconds." |
Python | str | def price_reply(self, coin: Coin) -> str:
if resp := self.get(
"/simple/price",
params={
"ids": coin.id,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
):
try:
data = resp[coin.id]
price = data[self.vs_currency]
change = data[self.vs_currency + "_24h_change"]
if change is None:
change = 0
except KeyError:
return f"{coin.id} returned an error."
message = f"The current price of {coin.name} is $**{price:,}**"
if change > 0:
message += f", the coin is currently **up {change:.3f}%** for today"
elif change < 0:
message += f", the coin is currently **down {change:.3f}%** for today"
else:
message += ", the coin hasn't shown any movement today."
else:
message = f"The price for {coin.name} is not available. If you suspect this is an error run `/status`"
return message | def price_reply(self, coin: Coin) <MASK>
if resp := self.get(
"/simple/price",
params={
"ids": coin.id,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
):
try:
data = resp[coin.id]
price = data[self.vs_currency]
change = data[self.vs_currency + "_24h_change"]
if change is None:
change = 0
except KeyError:
return f"{coin.id} returned an error."
message = f"The current price of {coin.name} is $**{price:,}**"
if change > 0:
message += f", the coin is currently **up {change:.3f}%** for today"
elif change < 0:
message += f", the coin is currently **down {change:.3f}%** for today"
else:
message += ", the coin hasn't shown any movement today."
else:
message = f"The price for {coin.name} is not available. If you suspect this is an error run `/status`"
return message |
Python | pd.DataFrame | def intra_reply(self, symbol: Coin) -> pd.DataFrame:
if resp := self.get(
f"/coins/{symbol.id}/ohlc",
params={"vs_currency": self.vs_currency, "days": 1},
):
df = pd.DataFrame(
resp, columns=["Date", "Open", "High", "Low", "Close"]
).dropna()
df["Date"] = pd.to_datetime(df["Date"], unit="ms")
df = df.set_index("Date")
return df
return pd.DataFrame() | def intra_reply(self, symbol: Coin) <MASK>
if resp := self.get(
f"/coins/{symbol.id}/ohlc",
params={"vs_currency": self.vs_currency, "days": 1},
):
df = pd.DataFrame(
resp, columns=["Date", "Open", "High", "Low", "Close"]
).dropna()
df["Date"] = pd.to_datetime(df["Date"], unit="ms")
df = df.set_index("Date")
return df
return pd.DataFrame() |
Python | pd.DataFrame | def chart_reply(self, symbol: Coin) -> pd.DataFrame:
if resp := self.get(
f"/coins/{symbol.id}/ohlc",
params={"vs_currency": self.vs_currency, "days": 30},
):
df = pd.DataFrame(
resp, columns=["Date", "Open", "High", "Low", "Close"]
).dropna()
df["Date"] = pd.to_datetime(df["Date"], unit="ms")
df = df.set_index("Date")
return df
return pd.DataFrame() | def chart_reply(self, symbol: Coin) <MASK>
if resp := self.get(
f"/coins/{symbol.id}/ohlc",
params={"vs_currency": self.vs_currency, "days": 30},
):
df = pd.DataFrame(
resp, columns=["Date", "Open", "High", "Low", "Close"]
).dropna()
df["Date"] = pd.to_datetime(df["Date"], unit="ms")
df = df.set_index("Date")
return df
return pd.DataFrame() |
Python | str | def stat_reply(self, symbol: Coin) -> str:
if data := self.get(
f"/coins/{symbol.id}",
params={
"localization": "false",
},
):
return f"""
[{data['name']}]({data['links']['homepage'][0]}) Statistics:
Market Cap: ${data['market_data']['market_cap'][self.vs_currency]:,}
Market Cap Ranking: {data.get('market_cap_rank',"Not Available")}
CoinGecko Scores:
Overall: {data.get('coingecko_score','Not Available')}
Development: {data.get('developer_score','Not Available')}
Community: {data.get('community_score','Not Available')}
Public Interest: {data.get('public_interest_score','Not Available')}
"""
else:
return f"{symbol.symbol} returned an error." | def stat_reply(self, symbol: Coin) <MASK>
if data := self.get(
f"/coins/{symbol.id}",
params={
"localization": "false",
},
):
return f"""
[{data['name']}]({data['links']['homepage'][0]}) Statistics:
Market Cap: ${data['market_data']['market_cap'][self.vs_currency]:,}
Market Cap Ranking: {data.get('market_cap_rank',"Not Available")}
CoinGecko Scores:
Overall: {data.get('coingecko_score','Not Available')}
Development: {data.get('developer_score','Not Available')}
Community: {data.get('community_score','Not Available')}
Public Interest: {data.get('public_interest_score','Not Available')}
"""
else:
return f"{symbol.symbol} returned an error." |
Python | list[str] | def trending(self) -> list[str]:
coins = self.get("/search/trending")
try:
trending = []
for coin in coins["coins"]:
c = coin["item"]
sym = c["symbol"].upper()
name = c["name"]
change = self.get(
f"/simple/price",
params={
"ids": c["id"],
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)[c["id"]]["usd_24h_change"]
msg = f"`$${sym}`: {name}, {change:.2f}%"
trending.append(msg)
except Exception as e:
logging.warning(e)
return self.trending_cache
self.trending_cache = trending
return trending | def trending(self) <MASK>
coins = self.get("/search/trending")
try:
trending = []
for coin in coins["coins"]:
c = coin["item"]
sym = c["symbol"].upper()
name = c["name"]
change = self.get(
f"/simple/price",
params={
"ids": c["id"],
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)[c["id"]]["usd_24h_change"]
msg = f"`$${sym}`: {name}, {change:.2f}%"
trending.append(msg)
except Exception as e:
logging.warning(e)
return self.trending_cache
self.trending_cache = trending
return trending |
Python | list[str] | def batch_price(self, coins: list[Coin]) -> list[str]:
query = ",".join([c.id for c in coins])
prices = self.get(
f"/simple/price",
params={
"ids": query,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)
replies = []
for coin in coins:
if coin.id in prices:
p = prices[coin.id]
if p.get("usd_24h_change") is None:
p["usd_24h_change"] = 0
replies.append(
f"{coin.name}: ${p.get('usd',0):,} and has moved {p.get('usd_24h_change',0.0):.2f}% in the past 24 hours."
)
return replies | def batch_price(self, coins: list[Coin]) <MASK>
query = ",".join([c.id for c in coins])
prices = self.get(
f"/simple/price",
params={
"ids": query,
"vs_currencies": self.vs_currency,
"include_24hr_change": "true",
},
)
replies = []
for coin in coins:
if coin.id in prices:
p = prices[coin.id]
if p.get("usd_24h_change") is None:
p["usd_24h_change"] = 0
replies.append(
f"{coin.name}: ${p.get('usd',0):,} and has moved {p.get('usd_24h_change',0.0):.2f}% in the past 24 hours."
)
return replies |
Python | str | def status(self) -> str:
if self.IEX_TOKEN == "":
return "The `IEX_TOKEN` is not set so Stock Market data is not available."
resp = r.get(
"https://pjmps0c34hp7.statuspage.io/api/v2/status.json",
timeout=15,
)
if resp.status_code == 200:
status = resp.json()["status"]
else:
return "IEX Cloud did not respond. Please check their status page for more information. https://status.iexapis.com"
if status["indicator"] == "none":
return "IEX Cloud is currently not reporting any issues with its API."
else:
return (
f"{status['indicator']}: {status['description']}."
+ " Please check the status page for more information. https://status.iexapis.com"
) | def status(self) <MASK>
if self.IEX_TOKEN == "":
return "The `IEX_TOKEN` is not set so Stock Market data is not available."
resp = r.get(
"https://pjmps0c34hp7.statuspage.io/api/v2/status.json",
timeout=15,
)
if resp.status_code == 200:
status = resp.json()["status"]
else:
return "IEX Cloud did not respond. Please check their status page for more information. https://status.iexapis.com"
if status["indicator"] == "none":
return "IEX Cloud is currently not reporting any issues with its API."
else:
return (
f"{status['indicator']}: {status['description']}."
+ " Please check the status page for more information. https://status.iexapis.com"
) |
Python | str | def price_reply(self, symbol: Stock) -> str:
if IEXData := self.get(f"/stock/{symbol.id}/quote"):
if symbol.symbol.upper() in self.otc_list:
return f"OTC - {symbol.symbol.upper()}, {IEXData['companyName']} most recent price is: $**{IEXData['latestPrice']}**"
keys = (
"extendedChangePercent",
"extendedPrice",
"companyName",
"latestPrice",
"changePercent",
)
if set(keys).issubset(IEXData):
if change := IEXData.get("changePercent", 0):
change = round(change * 100, 2)
else:
change = 0
if (
IEXData.get("isUSMarketOpen", True)
or (IEXData["extendedChangePercent"] is None)
or (IEXData["extendedPrice"] is None)
):
message = f"The current stock price of {IEXData['companyName']} is $**{IEXData['latestPrice']}**"
else:
message = (
f"{IEXData['companyName']} closed at $**{IEXData['latestPrice']}** with a change of {change}%,"
+ f" after hours _(15 minutes delayed)_ the stock price is $**{IEXData['extendedPrice']}**"
)
if change := IEXData.get("extendedChangePercent", 0):
change = round(change * 100, 2)
else:
change = 0
if change > 0:
message += f", the stock is currently **up {change}%**"
elif change < 0:
message += f", the stock is currently **down {change}%**"
else:
message += ", the stock hasn't shown any movement today."
else:
message = (
f"The symbol: {symbol} encountered and error. This could be due to "
)
else:
message = f"The symbol: {symbol} was not found."
return message | def price_reply(self, symbol: Stock) <MASK>
if IEXData := self.get(f"/stock/{symbol.id}/quote"):
if symbol.symbol.upper() in self.otc_list:
return f"OTC - {symbol.symbol.upper()}, {IEXData['companyName']} most recent price is: $**{IEXData['latestPrice']}**"
keys = (
"extendedChangePercent",
"extendedPrice",
"companyName",
"latestPrice",
"changePercent",
)
if set(keys).issubset(IEXData):
if change := IEXData.get("changePercent", 0):
change = round(change * 100, 2)
else:
change = 0
if (
IEXData.get("isUSMarketOpen", True)
or (IEXData["extendedChangePercent"] is None)
or (IEXData["extendedPrice"] is None)
):
message = f"The current stock price of {IEXData['companyName']} is $**{IEXData['latestPrice']}**"
else:
message = (
f"{IEXData['companyName']} closed at $**{IEXData['latestPrice']}** with a change of {change}%,"
+ f" after hours _(15 minutes delayed)_ the stock price is $**{IEXData['extendedPrice']}**"
)
if change := IEXData.get("extendedChangePercent", 0):
change = round(change * 100, 2)
else:
change = 0
if change > 0:
message += f", the stock is currently **up {change}%**"
elif change < 0:
message += f", the stock is currently **down {change}%**"
else:
message += ", the stock hasn't shown any movement today."
else:
message = (
f"The symbol: {symbol} encountered and error. This could be due to "
)
else:
message = f"The symbol: {symbol} was not found."
return message |
Python | str | def dividend_reply(self, symbol: Stock) -> str:
if symbol.symbol.upper() in self.otc_list:
return "OTC stocks do not currently support any commands."
if resp := self.get(f"/stock/{symbol.id}/dividends/next"):
try:
IEXData = resp[0]
except IndexError as e:
logging.info(e)
return f"Getting dividend information for ${symbol.id.upper()} encountered an error. The provider for upcoming dividend information has been having issues recently which has likely caused this error. It is also possible that the stock has no dividend or does not exist."
keys = (
"amount",
"currency",
"declaredDate",
"exDate",
"frequency",
"paymentDate",
"flag",
)
if set(keys).issubset(IEXData):
if IEXData["currency"] == "USD":
price = f"${IEXData['amount']}"
else:
price = f"{IEXData['amount']} {IEXData['currency']}"
pattern = "%Y-%m-%d"
declared = datetime.strptime(IEXData["declaredDate"], pattern).strftime(
"%A, %B %w"
)
ex = datetime.strptime(IEXData["exDate"], pattern).strftime("%A, %B %w")
payment = datetime.strptime(IEXData["paymentDate"], pattern).strftime(
"%A, %B %w"
)
daysDelta = (
datetime.strptime(IEXData["paymentDate"], pattern) - datetime.now()
).days
return (
"The next dividend for "
+ f"{self.symbol_list[self.symbol_list['symbol']==symbol.id.upper()]['description'].item()}"
+ f" is on {payment} which is in {daysDelta} days."
+ f" The dividend is for {price} per share."
+ f"\n\nThe dividend was declared on {declared} and the ex-dividend date is {ex}"
)
return f"Getting dividend information for ${symbol.id.upper()} encountered an error. The provider for upcoming dividend information has been having issues recently which has likely caused this error. It is also possible that the stock has no dividend or does not exist." | def dividend_reply(self, symbol: Stock) <MASK>
if symbol.symbol.upper() in self.otc_list:
return "OTC stocks do not currently support any commands."
if resp := self.get(f"/stock/{symbol.id}/dividends/next"):
try:
IEXData = resp[0]
except IndexError as e:
logging.info(e)
return f"Getting dividend information for ${symbol.id.upper()} encountered an error. The provider for upcoming dividend information has been having issues recently which has likely caused this error. It is also possible that the stock has no dividend or does not exist."
keys = (
"amount",
"currency",
"declaredDate",
"exDate",
"frequency",
"paymentDate",
"flag",
)
if set(keys).issubset(IEXData):
if IEXData["currency"] == "USD":
price = f"${IEXData['amount']}"
else:
price = f"{IEXData['amount']} {IEXData['currency']}"
pattern = "%Y-%m-%d"
declared = datetime.strptime(IEXData["declaredDate"], pattern).strftime(
"%A, %B %w"
)
ex = datetime.strptime(IEXData["exDate"], pattern).strftime("%A, %B %w")
payment = datetime.strptime(IEXData["paymentDate"], pattern).strftime(
"%A, %B %w"
)
daysDelta = (
datetime.strptime(IEXData["paymentDate"], pattern) - datetime.now()
).days
return (
"The next dividend for "
+ f"{self.symbol_list[self.symbol_list['symbol']==symbol.id.upper()]['description'].item()}"
+ f" is on {payment} which is in {daysDelta} days."
+ f" The dividend is for {price} per share."
+ f"\n\nThe dividend was declared on {declared} and the ex-dividend date is {ex}"
)
return f"Getting dividend information for ${symbol.id.upper()} encountered an error. The provider for upcoming dividend information has been having issues recently which has likely caused this error. It is also possible that the stock has no dividend or does not exist." |
Python | str | def cap_reply(self, symbol: Stock) -> str:
if data := self.get(f"/stock/{symbol.id}/stats"):
try:
cap = data["marketcap"]
except KeyError:
return f"{symbol.id} returned an error."
message = f"The current market cap of {symbol.name} is $**{cap:,.2f}**"
else:
message = f"The Stock: {symbol.name} was not found or returned and error."
return message | def cap_reply(self, symbol: Stock) <MASK>
if data := self.get(f"/stock/{symbol.id}/stats"):
try:
cap = data["marketcap"]
except KeyError:
return f"{symbol.id} returned an error."
message = f"The current market cap of {symbol.name} is $**{cap:,.2f}**"
else:
message = f"The Stock: {symbol.name} was not found or returned and error."
return message |
Python | pd.DataFrame | def intra_reply(self, symbol: Stock) -> pd.DataFrame:
if symbol.symbol.upper() in self.otc_list:
return pd.DataFrame()
if symbol.id.upper() not in list(self.symbol_list["symbol"]):
return pd.DataFrame()
if data := self.get(f"/stock/{symbol.id}/intraday-prices"):
df = pd.DataFrame(data)
df.dropna(inplace=True, subset=["date", "minute", "high", "low", "volume"])
df["DT"] = pd.to_datetime(df["date"] + "T" + df["minute"])
df = df.set_index("DT")
return df
return pd.DataFrame() | def intra_reply(self, symbol: Stock) <MASK>
if symbol.symbol.upper() in self.otc_list:
return pd.DataFrame()
if symbol.id.upper() not in list(self.symbol_list["symbol"]):
return pd.DataFrame()
if data := self.get(f"/stock/{symbol.id}/intraday-prices"):
df = pd.DataFrame(data)
df.dropna(inplace=True, subset=["date", "minute", "high", "low", "volume"])
df["DT"] = pd.to_datetime(df["date"] + "T" + df["minute"])
df = df.set_index("DT")
return df
return pd.DataFrame() |
Python | pd.DataFrame | def chart_reply(self, symbol: Stock) -> pd.DataFrame:
schedule.run_pending()
if symbol.symbol.upper() in self.otc_list:
return pd.DataFrame()
if symbol.id.upper() not in list(self.symbol_list["symbol"]):
return pd.DataFrame()
try:
return self.charts[symbol.id.upper()]
except KeyError:
pass
if data := self.get(
f"/stock/{symbol.id}/chart/1mm",
params={"chartInterval": 3, "includeToday": "false"},
):
df = pd.DataFrame(data)
df.dropna(inplace=True, subset=["date", "minute", "high", "low", "volume"])
df["DT"] = pd.to_datetime(df["date"] + "T" + df["minute"])
df = df.set_index("DT")
self.charts[symbol.id.upper()] = df
return df
return pd.DataFrame() | def chart_reply(self, symbol: Stock) <MASK>
schedule.run_pending()
if symbol.symbol.upper() in self.otc_list:
return pd.DataFrame()
if symbol.id.upper() not in list(self.symbol_list["symbol"]):
return pd.DataFrame()
try:
return self.charts[symbol.id.upper()]
except KeyError:
pass
if data := self.get(
f"/stock/{symbol.id}/chart/1mm",
params={"chartInterval": 3, "includeToday": "false"},
):
df = pd.DataFrame(data)
df.dropna(inplace=True, subset=["date", "minute", "high", "low", "volume"])
df["DT"] = pd.to_datetime(df["date"] + "T" + df["minute"])
df = df.set_index("DT")
self.charts[symbol.id.upper()] = df
return df
return pd.DataFrame() |
Python | Any | def deserialize(self, string: str) -> Any:
try:
return self._deserializer(string)
except (ValueError, TypeError):
return string | def deserialize(self, string: str) <MASK>
try:
return self._deserializer(string)
except (ValueError, TypeError):
return string |
Python | Response | def prep_response(self, resp: Response, deserialize: bool = True) -> Response:
if deserialize:
resp.body = self.deserialize(resp.raw_body)
if isinstance(resp.body, dict):
resp.error_code = resp.body.get("errorNum")
resp.error_message = resp.body.get("errorMessage")
else:
resp.body = resp.raw_body
http_ok = 200 <= resp.status_code < 300
resp.is_success = http_ok and resp.error_code is None
return resp | def prep_response(self, resp: Response, deserialize: bool = True) <MASK>
if deserialize:
resp.body = self.deserialize(resp.raw_body)
if isinstance(resp.body, dict):
resp.error_code = resp.body.get("errorNum")
resp.error_message = resp.body.get("errorMessage")
else:
resp.body = resp.raw_body
http_ok = 200 <= resp.status_code < 300
resp.is_success = http_ok and resp.error_code is None
return resp |
Python | Response | def prep_bulk_err_response(self, parent_response: Response, body: Json) -> Response:
resp = Response(
method=parent_response.method,
url=parent_response.url,
headers=parent_response.headers,
status_code=parent_response.status_code,
status_text=parent_response.status_text,
raw_body=self.serialize(body),
)
resp.body = body
resp.error_code = body["errorNum"]
resp.error_message = body["errorMessage"]
resp.is_success = False
return resp | def prep_bulk_err_response(self, parent_response: Response, body: Json) <MASK>
resp = Response(
method=parent_response.method,
url=parent_response.url,
headers=parent_response.headers,
status_code=parent_response.status_code,
status_text=parent_response.status_text,
raw_body=self.serialize(body),
)
resp.body = body
resp.error_code = body["errorNum"]
resp.error_message = body["errorMessage"]
resp.is_success = False
return resp |
Python | int | def ping(self) -> int:
request = Request(method="get", endpoint="/_api/collection")
resp = self.send_request(request)
if resp.status_code in {401, 403}:
raise ServerConnectionError("bad username and/or password")
if not resp.is_success:
raise ServerConnectionError(resp.error_message or "bad server response")
return resp.status_code | def ping(self) <MASK>
request = Request(method="get", endpoint="/_api/collection")
resp = self.send_request(request)
if resp.status_code in {401, 403}:
raise ServerConnectionError("bad username and/or password")
if not resp.is_success:
raise ServerConnectionError(resp.error_message or "bad server response")
return resp.status_code |
Python | Response | def send_request(self, request: Request) -> Response:
raise NotImplementedError | def send_request(self, request: Request) <MASK>
raise NotImplementedError |
Python | Response | def send_request(self, request: Request) -> Response:
host_index = self._host_resolver.get_host_index()
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
auth=self._auth,
)
return self.prep_response(resp, request.deserialize) | def send_request(self, request: Request) <MASK>
host_index = self._host_resolver.get_host_index()
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
auth=self._auth,
)
return self.prep_response(resp, request.deserialize) |
Python | Response | def send_request(self, request: Request) -> Response:
host_index = self._host_resolver.get_host_index()
if self._auth_header is not None:
request.headers["Authorization"] = self._auth_header
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
)
resp = self.prep_response(resp, request.deserialize)
if resp.error_code != 11 or resp.status_code != 401:
return resp
now = int(time.time())
if self._token_exp < now - self.exp_leeway:
return resp
self.refresh_token()
if self._auth_header is not None:
request.headers["Authorization"] = self._auth_header
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
)
return self.prep_response(resp, request.deserialize) | def send_request(self, request: Request) <MASK>
host_index = self._host_resolver.get_host_index()
if self._auth_header is not None:
request.headers["Authorization"] = self._auth_header
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
)
resp = self.prep_response(resp, request.deserialize)
if resp.error_code != 11 or resp.status_code != 401:
return resp
now = int(time.time())
if self._token_exp < now - self.exp_leeway:
return resp
self.refresh_token()
if self._auth_header is not None:
request.headers["Authorization"] = self._auth_header
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
)
return self.prep_response(resp, request.deserialize) |
Python | Response | def send_request(self, request: Request) -> Response:
host_index = self._host_resolver.get_host_index()
request.headers["Authorization"] = self._auth_header
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
)
return self.prep_response(resp, request.deserialize) | def send_request(self, request: Request) <MASK>
host_index = self._host_resolver.get_host_index()
request.headers["Authorization"] = self._auth_header
resp = self._http.send_request(
session=self._sessions[host_index],
method=request.method,
url=self._url_prefixes[host_index] + request.endpoint,
params=request.params,
data=self.normalize_data(request.data),
headers=request.headers,
)
return self.prep_response(resp, request.deserialize) |
Python | Sequence[str] | def hosts(self) -> Sequence[str]:
return self._hosts | def hosts(self) <MASK>
return self._hosts |
Python | StandardDatabase | def db(
self,
name: str = "_system",
username: str = "root",
password: str = "",
verify: bool = False,
auth_method: str = "basic",
superuser_token: Optional[str] = None,
) -> StandardDatabase:
connection: Connection
if superuser_token is not None:
connection = JwtSuperuserConnection(
hosts=self._hosts,
host_resolver=self._host_resolver,
sessions=self._sessions,
db_name=name,
http_client=self._http,
serializer=self._serializer,
deserializer=self._deserializer,
superuser_token=superuser_token,
)
elif auth_method.lower() == "basic":
connection = BasicConnection(
hosts=self._hosts,
host_resolver=self._host_resolver,
sessions=self._sessions,
db_name=name,
username=username,
password=password,
http_client=self._http,
serializer=self._serializer,
deserializer=self._deserializer,
)
elif auth_method.lower() == "jwt":
connection = JwtConnection(
hosts=self._hosts,
host_resolver=self._host_resolver,
sessions=self._sessions,
db_name=name,
username=username,
password=password,
http_client=self._http,
serializer=self._serializer,
deserializer=self._deserializer,
)
else:
raise ValueError(f"invalid auth_method: {auth_method}")
if verify:
try:
connection.ping()
except ServerConnectionError as err:
raise err
except Exception as err:
raise ServerConnectionError(f"bad connection: {err}")
return StandardDatabase(connection) | def db(
self,
name: str = "_system",
username: str = "root",
password: str = "",
verify: bool = False,
auth_method: str = "basic",
superuser_token: Optional[str] = None,
) <MASK>
connection: Connection
if superuser_token is not None:
connection = JwtSuperuserConnection(
hosts=self._hosts,
host_resolver=self._host_resolver,
sessions=self._sessions,
db_name=name,
http_client=self._http,
serializer=self._serializer,
deserializer=self._deserializer,
superuser_token=superuser_token,
)
elif auth_method.lower() == "basic":
connection = BasicConnection(
hosts=self._hosts,
host_resolver=self._host_resolver,
sessions=self._sessions,
db_name=name,
username=username,
password=password,
http_client=self._http,
serializer=self._serializer,
deserializer=self._deserializer,
)
elif auth_method.lower() == "jwt":
connection = JwtConnection(
hosts=self._hosts,
host_resolver=self._host_resolver,
sessions=self._sessions,
db_name=name,
username=username,
password=password,
http_client=self._http,
serializer=self._serializer,
deserializer=self._deserializer,
)
else:
raise ValueError(f"invalid auth_method: {auth_method}")
if verify:
try:
connection.ping()
except ServerConnectionError as err:
raise err
except Exception as err:
raise ServerConnectionError(f"bad connection: {err}")
return StandardDatabase(connection) |
Python | Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]] | def forward(
self,
x: torch.Tensor,
state_init: Tuple[torch.Tensor, torch.Tensor],
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
seq_length, batch_sz, _ = x.shape
if self.reverse:
x = x.flip(0)
x = torch.unbind(x, dim=0)
h_0, c_0 = state_init
h_n = [h_0]
c_n = [c_0]
for t in range(seq_length):
h_next, c_next = self.cell(x[t], h_n[t], c_n[t])
if self.dropout:
h_next = self.dropout_layer(h_next)
h_n.append(h_next)
c_n.append(c_next)
h_n = torch.stack(h_n[1:], dim=0)
return (
h_n.flip(0) if self.reverse else h_n,
(h_n[-1], c_n[-1]),
) | def forward(
self,
x: torch.Tensor,
state_init: Tuple[torch.Tensor, torch.Tensor],
) <MASK>
seq_length, batch_sz, _ = x.shape
if self.reverse:
x = x.flip(0)
x = torch.unbind(x, dim=0)
h_0, c_0 = state_init
h_n = [h_0]
c_n = [c_0]
for t in range(seq_length):
h_next, c_next = self.cell(x[t], h_n[t], c_n[t])
if self.dropout:
h_next = self.dropout_layer(h_next)
h_n.append(h_next)
c_n.append(c_next)
h_n = torch.stack(h_n[1:], dim=0)
return (
h_n.flip(0) if self.reverse else h_n,
(h_n[-1], c_n[-1]),
) |
Python | Dict[str, torch.tensor] | def compute_microbatch_grad_sample(
self,
x: torch.Tensor,
module: nn.Module,
batch_first=True,
loss_reduction="mean",
) -> Dict[str, torch.tensor]:
torch.set_deterministic(True)
torch.manual_seed(0)
np.random.seed(0)
module = ModelWithLoss(clone_module(module), loss_reduction)
for p in module.parameters():
p.microbatch_grad_sample = []
if not batch_first:
x = x.transpose(0, 1)
for x_i in x:
x_i = x_i.unsqueeze(
0 if batch_first else 1
)
module.zero_grad()
loss_i = module(x_i)
loss_i.backward()
for p in module.parameters():
p.microbatch_grad_sample.append(p.grad.detach().clone())
for p in module.parameters():
if batch_first:
p.microbatch_grad_sample = torch.stack(
p.microbatch_grad_sample, dim=0
)
else:
p.microbatch_grad_sample = torch.stack(
p.microbatch_grad_sample, dim=1
).transpose(
0, 1
)
microbatch_grad_samples = {
name: p.microbatch_grad_sample
for name, p in module.wrapped_module.named_parameters()
}
return microbatch_grad_samples | def compute_microbatch_grad_sample(
self,
x: torch.Tensor,
module: nn.Module,
batch_first=True,
loss_reduction="mean",
) <MASK>
torch.set_deterministic(True)
torch.manual_seed(0)
np.random.seed(0)
module = ModelWithLoss(clone_module(module), loss_reduction)
for p in module.parameters():
p.microbatch_grad_sample = []
if not batch_first:
x = x.transpose(0, 1)
for x_i in x:
x_i = x_i.unsqueeze(
0 if batch_first else 1
)
module.zero_grad()
loss_i = module(x_i)
loss_i.backward()
for p in module.parameters():
p.microbatch_grad_sample.append(p.grad.detach().clone())
for p in module.parameters():
if batch_first:
p.microbatch_grad_sample = torch.stack(
p.microbatch_grad_sample, dim=0
)
else:
p.microbatch_grad_sample = torch.stack(
p.microbatch_grad_sample, dim=1
).transpose(
0, 1
)
microbatch_grad_samples = {
name: p.microbatch_grad_sample
for name, p in module.wrapped_module.named_parameters()
}
return microbatch_grad_samples |
Python | Dict[str, torch.tensor] | def compute_opacus_grad_sample(
self,
x: torch.Tensor,
module: nn.Module,
batch_first=True,
loss_reduction="mean",
) -> Dict[str, torch.tensor]:
torch.set_deterministic(True)
torch.manual_seed(0)
np.random.seed(0)
gs_module = clone_module(module)
opacus.autograd_grad_sample.add_hooks(gs_module, loss_reduction, batch_first)
grad_sample_module = ModelWithLoss(gs_module, loss_reduction)
grad_sample_module.zero_grad()
loss = grad_sample_module(x)
loss.backward()
opacus_grad_samples = {
name: p.grad_sample
for name, p in grad_sample_module.wrapped_module.named_parameters()
}
return opacus_grad_samples | def compute_opacus_grad_sample(
self,
x: torch.Tensor,
module: nn.Module,
batch_first=True,
loss_reduction="mean",
) <MASK>
torch.set_deterministic(True)
torch.manual_seed(0)
np.random.seed(0)
gs_module = clone_module(module)
opacus.autograd_grad_sample.add_hooks(gs_module, loss_reduction, batch_first)
grad_sample_module = ModelWithLoss(gs_module, loss_reduction)
grad_sample_module.zero_grad()
loss = grad_sample_module(x)
loss.backward()
opacus_grad_samples = {
name: p.grad_sample
for name, p in grad_sample_module.wrapped_module.named_parameters()
}
return opacus_grad_samples |
Python | Distro | def guess_distro() -> Distro:
if shutil.which('apt') or shutil.which('apt-get'):
return Distro.debian_derivative
if shutil.which('dnf'):
return Distro.fedora_derivative
return Distro.unknown | def guess_distro() <MASK>
if shutil.which('apt') or shutil.which('apt-get'):
return Distro.debian_derivative
if shutil.which('dnf'):
return Distro.fedora_derivative
return Distro.unknown |
Python | bool | def pypi_version_exists(package_name: str, version: str) -> bool:
l = pypi_versions(package_name)
if not version in l:
sys.stderr.write(
_(
"The specified PyQt5 version does not exist. Valid versions are: {}."
).format(', '.join(l)) + "\n"
)
return False
return True | def pypi_version_exists(package_name: str, version: str) <MASK>
l = pypi_versions(package_name)
if not version in l:
sys.stderr.write(
_(
"The specified PyQt5 version does not exist. Valid versions are: {}."
).format(', '.join(l)) + "\n"
)
return False
return True |
Python | str | def make_distro_packager_command(distro_family: Distro,
packages: str,
interactive: bool,
command: str='install',
sudo: bool=True) -> str:
installer = installer_cmds[distro_family]
cmd = shutil.which(installer)
if interactive:
automatic = ''
else:
automatic = '-y'
if sudo:
super = 'sudo '
else:
super = ''
if distro_family != Distro.opensuse:
return '{}{} {} {} {}'.format(super, cmd, automatic, command, packages)
else:
return '{}{} {} {} {}'.format(super, cmd, command, automatic, packages) | def make_distro_packager_command(distro_family: Distro,
packages: str,
interactive: bool,
command: str='install',
sudo: bool=True) <MASK>
installer = installer_cmds[distro_family]
cmd = shutil.which(installer)
if interactive:
automatic = ''
else:
automatic = '-y'
if sudo:
super = 'sudo '
else:
super = ''
if distro_family != Distro.opensuse:
return '{}{} {} {} {}'.format(super, cmd, automatic, command, packages)
else:
return '{}{} {} {} {}'.format(super, cmd, command, automatic, packages) |
Python | str | def make_distro_mark_commmand(distro_family: Distro,
packages: str,
interactive: bool,
sudo: bool=True) -> str:
marker, command = manually_mark_cmds[distro_family]
cmd = shutil.which(marker)
if sudo:
super = 'sudo '
else:
super = ''
return '{}{} {} {}'.format(super, cmd, command, packages) | def make_distro_mark_commmand(distro_family: Distro,
packages: str,
interactive: bool,
sudo: bool=True) <MASK>
marker, command = manually_mark_cmds[distro_family]
cmd = shutil.which(marker)
if sudo:
super = 'sudo '
else:
super = ''
return '{}{} {} {}'.format(super, cmd, command, packages) |
Python | str | def python_package_version(package: str) -> str:
try:
return pkg_resources.get_distribution(package).version
except pkg_resources.DistributionNotFound:
return '' | def python_package_version(package: str) <MASK>
try:
return pkg_resources.get_distribution(package).version
except pkg_resources.DistributionNotFound:
return '' |
Python | int | def popen_capture_output(cmd: str) -> int:
with Popen(cmd, stdout=PIPE, stderr=PIPE, bufsize=1, universal_newlines=True) as p:
for line in p.stdout:
print(line, end='')
p.wait()
i = p.returncode
return i | def popen_capture_output(cmd: str) <MASK>
with Popen(cmd, stdout=PIPE, stderr=PIPE, bufsize=1, universal_newlines=True) as p:
for line in p.stdout:
print(line, end='')
p.wait()
i = p.returncode
return i |
Python | int | def install_pygobject_from_pip() -> int:
cmd = make_pip_command(
'install {} -U --disable-pip-version-check pycairo'.format(pip_user)
)
i = popen_capture_output(cmd)
if i != 0:
return i
cmd = make_pip_command(
'install {} -U --disable-pip-version-check PyGObject'.format(pip_user)
)
return popen_capture_output(cmd) | def install_pygobject_from_pip() <MASK>
cmd = make_pip_command(
'install {} -U --disable-pip-version-check pycairo'.format(pip_user)
)
i = popen_capture_output(cmd)
if i != 0:
return i
cmd = make_pip_command(
'install {} -U --disable-pip-version-check PyGObject'.format(pip_user)
)
return popen_capture_output(cmd) |
End of preview. Expand
in Data Studio
No dataset card yet
- Downloads last month
- 0