events / README.md
Samoed's picture
Upload dataset
ddb0a32 verified
metadata
dataset_info:
  - config_name: default
    features:
      - name: utterance
        dtype: string
      - name: label
        sequence: int64
    splits:
      - name: train
        num_bytes: 8999208
        num_examples: 2742
      - name: test
        num_bytes: 1255307
        num_examples: 378
    download_size: 22576550
    dataset_size: 10254515
  - config_name: intents
    features:
      - name: id
        dtype: int64
      - name: name
        dtype: string
      - name: tags
        sequence: 'null'
      - name: regex_full_match
        sequence: 'null'
      - name: regex_partial_match
        sequence: 'null'
      - name: description
        dtype: 'null'
    splits:
      - name: full_intents
        num_bytes: 1240
        num_examples: 29
      - name: intents
        num_bytes: 907
        num_examples: 21
    download_size: 8042
    dataset_size: 2147
  - config_name: intentsqwen3-32b
    features:
      - name: id
        dtype: int64
      - name: name
        dtype: string
      - name: tags
        sequence: 'null'
      - name: regex_full_match
        sequence: 'null'
      - name: regex_partial_match
        sequence: 'null'
      - name: description
        dtype: string
    splits:
      - name: intents
        num_bytes: 2497
        num_examples: 21
    download_size: 5062
    dataset_size: 2497
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
  - config_name: intents
    data_files:
      - split: full_intents
        path: intents/full_intents-*
      - split: intents
        path: intents/intents-*
  - config_name: intentsqwen3-32b
    data_files:
      - split: intents
        path: intentsqwen3-32b/intents-*

events

This is a text classification dataset. It is intended for machine learning research and experimentation.

This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.

Usage

It is intended to be used with our AutoIntent Library:

from autointent import Dataset
banking77 = Dataset.from_hub("AutoIntent/events")

Source

This dataset is taken from knowledgator/events_classification_biotech and formatted with our AutoIntent Library:

"""Convert events dataset to autointent internal format and scheme."""

from datasets import Dataset as HFDataset
from datasets import load_dataset

from autointent import Dataset
from autointent.schemas import Intent


def extract_intents_data(events_dataset: HFDataset) -> list[Intent]:
    """Extract intent names and assign ids to them."""
    intent_names = sorted({name for intents in events_dataset["train"]["all_labels"] for name in intents})
    return [Intent(id=i,name=name) for i, name in enumerate(intent_names)]


def converting_mapping(example: dict, intents_data: list[Intent]) -> dict[str, str | list[int] | None]:
    """Extract utterance and OHE label and drop the rest."""
    res = {
        "utterance": example["content"],
        "label": [
            int(intent.name in example["all_labels"]) for intent in intents_data
        ]
    }
    if sum(res["label"]) == 0:
        res["label"] = None
    return res


def convert_events(events_split: HFDataset, intents_data: dict[str, int]) -> list[dict]:
    """Convert one split into desired format."""
    events_split = events_split.map(
        converting_mapping, remove_columns=events_split.features.keys(),
        fn_kwargs={"intents_data": intents_data}
    )

    return [sample for sample in events_split if sample["utterance"] is not None]


def get_low_resource_classes_mask(ds: list[dict], intent_names: list[str], fraction_thresh: float = 0.01) -> list[bool]:
    res = [0] * len(intent_names)
    for sample in ds:
        for i, indicator in enumerate(sample["label"]):
            res[i] += indicator
    for i in range(len(intent_names)):
        res[i] /= len(ds)
    return [(frac < fraction_thresh) for frac in res]


def remove_low_resource_classes(ds: list[dict], mask: list[bool]) -> list[dict]:
    res = []
    for sample in ds:
        if sum(sample["label"]) == 1 and mask[sample["label"].index(1)]:
            continue
        sample["label"] = [
            indicator for indicator, low_resource in
            zip(sample["label"], mask, strict=True) if not low_resource
        ]
        res.append(sample)
    return res


def remove_oos(ds: list[dict]):
    return [sample for sample in ds if sum(sample["label"]) != 0]
    

if __name__ == "__main__":
    # `load_dataset` might not work
    # fix is here: https://github.com/huggingface/datasets/issues/7248
    events_dataset = load_dataset("knowledgator/events_classification_biotech", trust_remote_code=True)

    intents_data = extract_intents_data(events_dataset)

    train_samples = convert_events(events_dataset["train"], intents_data)
    test_samples = convert_events(events_dataset["test"], intents_data)

    intents_names = [intent.name for intent in intents_data]
    mask = get_low_resource_classes_mask(train_samples, intents_names)
    train_samples = remove_oos(remove_low_resource_classes(train_samples, mask))
    test_samples = remove_oos(remove_low_resource_classes(test_samples, mask))

    events_converted = Dataset.from_dict(
        {"train": train_samples, "test": test_samples, "intents": intents_data}
    )