Dataset Viewer
Auto-converted to Parquet
md5hash
string
fitzpatrick
int64
granular_partition_label
string
nd_clique
int64
label_error
int64
off_topic_sample
int64
5e82a45bc5d78bd24ae9202d194423f8
3
drug induced pigmentary changes
11,040
1
0
fa2911a9b13b6f8af79cb700937cc14f
1
photodermatoses
0
1
0
d2bac3c9e4499032ca8e9b07c7d3bc40
2
dermatofibroma
1
0
0
0a94359e7eaacd7178e06b2823777789
1
psoriasis
2
0
0
a39ec3b1f22c08a421fa20535e037bba
1
psoriasis
3
0
1
45f7fe0e10214e32e890cad9d29d4811
6
kaposi sarcoma
4
0
0
6c395be9325dbb10e55497304b398253
2
neutrophilic dermatoses
5
0
0
9dc73230c77ab5c58dc1f11caef39ea2
2
granuloma annulare
6
1
0
f23937e86de55c3471ac5d0143b67e08
4
nematode infection
11,041
0
0
09d46db9589ff45436cda87c4abc946b
3
allergic contact dermatitis
11,042
0
0
9bc21ae9502b720f604907ff56dbc4c7
-1
necrobiosis lipoidica
7
0
0
e702b1a7dc40aa1d8e85ccdb019c4ab2
1
neutrophilic dermatoses
8
0
0
ddcad677b7b1e9084f3f51a8e026aa8d
5
hidradenitis
9
0
0
b87804452f60aa162a6d29c0f66a2466
2
melanoma
11,043
0
0
d1fb87ee7ee50f997cd6497dd90d6bbb
4
acne vulgaris
10
0
0
8438db40abd1eccfbc7ee4b469f1b6f1
4
necrobiosis lipoidica
11
0
0
2d57e08861beb72725ea40af58f9cd46
2
sarcoidosis
11,044
1
0
1e119546f5bc2b9165bb10ddd7fe5f69
5
xeroderma pigmentosum
12
0
0
4c3f795cf8eb72b946f9bd2642cf23c1
6
melanoma
13
0
0
99247c9fe486aa9ab71686c8e676c135
2
dermatofibroma
14
0
0
b09233673fc585369e723ec841ed0acb
5
actinic keratosis
15
0
0
449d63bec3a88dc28c458d338c41cd0a
1
scleroderma
16
1
0
7a06b6baf5155ffe9baafa3b410402ec
4
hidradenitis
11,045
0
0
fb9640a13e0c11610684fe8c0f473cf2
2
syringoma
11,046
0
0
f968e591e15f47b544e551bc3cc5b8d3
2
folliculitis
11,047
0
0
2dd9b408e01e715ddd3d272d3465261f
4
pityriasis lichenoides chronica
17
0
0
076dbdc23a42e011f5871f1261c6e3b5
3
porphyria
18
0
0
cd38c6d449b05025a1e68bd94d387f47
1
dyshidrotic eczema
19
1
1
890cf5d791c7e738d156ec3ea95fae5d
1
allergic contact dermatitis
20
0
0
9a3af1bc39e115bcc6931170cf8a00bb
2
seborrheic dermatitis
11,048
0
0
9d5a90fa3f6934608add10e698001760
3
prurigo nodularis
21
0
0
4235913d0b8803702095b54856a07702
1
acne
22
0
0
a1af72c02caeb90947880eb024b23ae1
1
neurofibromatosis
23
1
0
31749f92677e70999c28fe49fbc6dafc
2
eczema
24
1
0
5bd4fcff50e9a50c529080f03ab824a7
6
neurofibromatosis
25
0
0
77a885f30ac2e7100dec35cdbfc9fa92
-1
pediculosis lids
11,049
0
1
d2c77aa81ca884f99174471132bd3e24
1
basal cell carcinoma
26
1
0
e0c8193753f60351382d60934d4dbf1e
5
pityriasis rubra pilaris
11,050
0
0
59ccb668671950ca657b6bc48213b763
4
pityriasis rosea
27
1
0
a0adccb2c37a8ed14e0438ebf3d4f0d8
4
livedo reticularis
28
0
0
adc119731addaea687474d777ff1dc54
1
necrobiosis lipoidica
29
1
0
9a42fde8716c42154e9457180f08f9b0
3
stevens johnson syndrome
30
1
0
9fbbb6fad5bdbf9476be1ec573a49ff5
5
erythema multiforme
11,051
0
0
fdfbcca21acc8015bfe3ab09b6e254b2
2
syringoma
11,052
0
0
13adab488f0d546393badd628e6b0cab
2
acrodermatitis enteropathica
31
0
0
b919dab66b3ec2964fb73865d241942d
2
epidermolysis bullosa
32
0
0
e34646f6778dbdc86130a4babf62d01b
2
psoriasis
33
0
1
5f4376e41dff7efbbb53ca5b9928919d
5
prurigo nodularis
11,053
0
0
3ebdf5bc47b0a5db96b1cb22841b0fa0
3
dermatomyositis
34
0
0
2b6ea0581d59b23e033bf2059c2ae6af
3
actinic keratosis
35
0
0
27778fee07afbc98a74b0012ba6f76ff
4
urticaria
36
0
0
6d2fb27bbaf2691ea85fa2ad7f334060
2
basal cell carcinoma morpheiform
11,054
0
0
970a43f132f9e171642f44f85112ea13
5
necrobiosis lipoidica
11,055
0
0
a199b3d2956018f8d8bf6c57fb2fca59
2
vitiligo
37
0
0
9fd9783c093d140d12bee4eaa67da1a0
3
erythema nodosum
11,056
0
0
77c8889c5b1f7ed6df703cb73296d60a
3
psoriasis
38
0
0
f1459b032c9853d78f2ba389040a3dad
2
psoriasis
39
0
0
9f8207a0d87de2ea85ae8d439e50641d
-1
scleroderma
40
1
0
6d4be984bf6407587a032f6080f099b2
6
lupus erythematosus
11,057
1
0
a385043f505268bfad6448be4c018a68
4
lichen planus
11,058
0
0
6a37014ba090dce3237a1aeac8f5312a
2
psoriasis
41
0
0
56e697186c86b0eb09f19021ebe4b9a8
2
allergic contact dermatitis
42
0
0
d908bdbcab52fd0c69a248cc43d200ad
2
sun damaged skin
43
1
0
f944b734a9fc37ff262da8b313300d25
1
drug eruption
44
0
0
67ac5bbaeb3f15071e74a36f64270aef
-1
dermatofibroma
45
0
0
23e9d3d002a88c0b3c5b9c5c95876d38
5
xeroderma pigmentosum
46
0
0
997d8434ffab55de06dc1759f4525d57
2
neutrophilic dermatoses
47
0
0
025074f01318b141392d5d8ae3824e8d
3
scabies
11,059
0
0
d60b7061146729d32cfe2fba4b089278
2
cheilitis
48
1
0
805e1d42b9f0af58c33fc1f9e2c6d0e4
2
urticaria pigmentosa
49
0
0
3e9d90d0dbde2afe3fc1e0cd72f04379
2
behcets disease
50
0
0
bb18c8800c62e37bd21641ad30aa3982
3
nevocytic nevus
51
0
0
dab1abcb214f3e1cf7b509fa75972eb7
4
mycosis fungoides
52
0
0
9b39239bae217b6f29603dddf3f24d56
3
porphyria
11,060
0
0
abd80d96eade01f32e5bf22a33a735b5
1
neutrophilic dermatoses
53
0
0
81c007db8cc1bc57cb08bcc00dda653b
2
superficial spreading melanoma ssm
54
0
0
5a3d754f30836ede76691cdf1b4f0cfb
3
porokeratosis of mibelli
55
0
0
a4fbf75b5f55d41fccfab653a7a1a5cf
4
psoriasis
56
0
0
677d022c11c0d454bf58e76ab26852f0
2
juvenile xanthogranuloma
11,061
0
0
62f8df393e05fd7e1588d70891238f53
3
milia
57
1
0
d6dfb47fe3c00e624af51b3548b8ee5e
4
granuloma pyogenic
11,062
0
0
3eb192d5b5c1d44b6f52ab1bc6f390e6
3
papilomatosis confluentes and reticulate
11,063
0
0
6d3346e06233d2445f6b19075facfaed
3
sarcoidosis
58
1
0
a45a2533b5e4ac6b482b4bc8439e4166
3
neurotic excoriations
59
0
0
b8bf2ccc8ceeb97d4bc30c16d536834f
2
neurofibromatosis
11,064
0
0
d98b961ecb24b31d672ca92d42fa644f
1
epidermal nevus
60
0
0
099c6e631e0f54a5a5ffe64dd938f21e
2
drug eruption
61
0
0
d6c626a40f77f7262353dc2db7e0b757
4
hidradenitis
62
0
0
39b1853bbd7aee8beb2bd4be5bf0f922
2
dermatomyositis
63
0
0
78cdc95d817a9c8e5cbe32a481673125
5
sun damaged skin
64
0
0
04e8c9f72761f00075f2f70459d7027f
1
lupus erythematosus
65
0
0
730a5db8eee84f8637f31c2eeefbea61
5
naevus comedonicus
11,065
0
0
055754f56bd5a8c37c3b7e01ae2caa35
1
erythema annulare centrifigum
66
0
0
a7432cf3e4faf44ab58bcb093fb6a3bd
4
pilar cyst
67
0
0
53d69b9f140ac6b48514141564dc6b2f
2
eczema
68
0
0
c204c7c8443fbe404200e36285a8cae0
-1
pustular psoriasis
69
0
0
8d0095170ff1c91f2c6cd7c9a67270f5
-1
scabies
11,066
0
0
9838b6548e7842a1c228e9548a32099c
2
basal cell carcinoma
70
0
0
d565fec5dcef772cc1a7b9f76430eb77
4
ichthyosis vulgaris
71
0
0
a4c6b049eff3dc3080aa26feea752ef0
2
lyme disease
72
0
0
End of preview. Expand in Data Studio

CleanPatrick: A Benchmark for Data Cleaning

Welcome to CleanPatrick, the first large-scale benchmark designed for data cleaning in the image domain. Built on the Fitzpatrick17k dermatology dataset, CleanPatrick is a dataset for measuring the performance in detecting three major data quality issues: off-topic samples, near-duplicates, and label errors.

CleanPatrick Teaser

Overview

CleanPatrick consists of dermatological images annotated with over 500,000 binary labels across three data quality issues:

  1. Off-topic Samples: Images that are irrelevant to the dataset, such as non-dermatological content or images with no visible skin diseases.
  2. Near-Duplicates: Highly similar images that may be caused by transformations, resolutions, or multiple views of the same condition.
  3. Label Errors: Images with incorrect labels, including mislabeling and rare conditions mistakenly classified.

This dataset provides a realistic test bed to benchmark data cleaning strategies for image datasets, particularly in the medical domain.

Data Quality Issues

Key Features

  • Real-World Contamination: Unlike synthetic datasets with artificially induced errors, CleanPatrick contains naturally occurring issues that reflect true real-world contamination found in dermatology image datasets.
  • Expert Annotations: The dataset was annotated by medical crowd workers with expertise, and results were validated by medical professionals to ensure high-quality ground truth.
  • Evaluation Framework: Along with the dataset, CleanPatrick provides an evaluation framework for benchmarking methods to detect data quality issues, offering standardized metrics to compare various cleaning strategies.

Benchmark

Dataset Details

  • Total Number of Images: 17,000 dermatology images
  • Annotation Volume: 500,000 annotations from 933 medical crowd workers
  • Categories of Data Quality Issues:
    • Off-Topic: 4% of the images
    • Near-Duplicates: 21% of the images
    • Label Errors: 22% of the images

The dataset is available as a set of image-label pairs, with each image labeled according to whether it suffers from one or more of the three data quality issues.

Installation

To load the dataset using the HuggingFace datasets library:

from datasets import load_dataset

dataset = load_dataset("Digital-Dermatology/CleanPatrick")

Citation

If you use this dataset in your research, please cite the following paper:

@article{
  groeger2025cleanpatrick,
  title={CleanPatrick: A Benchmark for Data Cleaning in Medical Imaging},
  author={Gr\"oger, Fabian and Lionetti, Simone and Gottfrois, Philippe and Gonzalez-Jimenez, Alvaro
    and Amruthalingam, Ludovic and Goessinger, Elisabeth V. and Lindemann, Hanna and Bargiela, Marie
    and Hofbauer, Marie and Badri, Omar and Tschandl, Philipp and Koochek, Arash and Groh, Matthew
    and Navarini, Alexander A. and Pouly, Marc},
  year={2025},
}

Acknowledgements

We thank the medical crowd workers and domain experts who contributed to this dataset. The creation of CleanPatrick was made possible by their efforts and the valuable annotations provided. Additionally we want to thank Centaur Labs for their help in collecting large amounts of crowdsourced annotations.

License

This dataset is released under the CC BY-NC-SA 3.0 license.

Downloads last month
47