Dataset Viewer
Auto-converted to Parquet
city_id
int64
store_id
int64
management_group_id
int64
first_category_id
int64
second_category_id
int64
third_category_id
int64
product_id
int64
dt
string
sale_amount
float64
hours_sale
sequence
stock_hour6_22_cnt
int32
hours_stock_status
sequence
discount
float64
holiday_flag
int32
activity_flag
int32
precpt
float64
avg_temperature
float64
avg_humidity
float64
avg_wind_level
float64
0
0
0
5
6
65
38
2024-03-28
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
1.6999
15.48
73.54
1.97
0
0
0
5
6
65
38
2024-03-29
0.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ]
1
0
0
3.019
15.08
76.56
1.71
0
0
0
5
6
65
38
2024-03-30
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
2.0942
15.91
76.47
1.73
0
0
0
5
6
65
38
2024-03-31
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
1.5618
16.13
77.4
1.76
0
0
0
5
6
65
38
2024-04-01
0.2
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
3.5386
15.37
78.26
1.25
0
0
0
5
6
65
38
2024-04-02
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
3.1459
15.69
76.63
2.13
0
0
0
5
6
65
38
2024-04-03
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
1.7165
16.11
76.31
1.51
0
0
0
5
6
65
38
2024-04-04
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
1.3021
16.08
74.24
1.47
0
0
0
5
6
65
38
2024-04-05
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
1.909
16.24
71.99
1.46
0
0
0
5
6
65
38
2024-04-06
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
2.4001
16.72
78.42
1.67
0
0
0
5
6
65
38
2024-04-07
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
2.0339
16.55
79.62
1.23
0
0
0
5
6
65
38
2024-04-08
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
1.4163
16.21
77.21
1.23
0
0
0
5
6
65
38
2024-04-09
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
12
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
3.8433
17.06
77.5
1.7
0
0
0
5
6
65
38
2024-04-10
0.2
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.794
0
1
2.2487
17.08
75.7
1.92
0
0
0
5
6
65
38
2024-04-11
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.794
0
1
2.8229
17.47
78.42
1.83
0
0
0
5
6
65
38
2024-04-12
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
9
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.794
0
1
4.729
17.38
80.31
1.58
0
0
0
5
6
65
38
2024-04-13
0.8
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0.2, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.794
1
1
1.9464
17.7
81.07
1.71
0
0
0
5
6
65
38
2024-04-14
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0.1, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.794
1
1
3.4433
17.14
78.34
1.72
0
0
0
5
6
65
38
2024-04-15
0.5
[ 0.1, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.794
0
1
2.439
17.86
76.31
1.65
0
0
0
5
6
65
38
2024-04-16
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.794
0
1
3.0607
17.94
74.45
1.65
0
0
0
5
6
65
38
2024-04-17
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
0.9412
18.03
74.65
1.73
0
0
0
5
6
65
38
2024-04-18
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
0.9313
18.11
75.15
1.71
0
0
0
5
6
65
38
2024-04-19
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ]
1
0
0
1.2889
18.39
75.09
1.71
0
0
0
5
6
65
38
2024-04-20
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
1.7975
18.63
74.95
1.89
0
0
0
5
6
65
38
2024-04-21
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0 ]
4
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ]
1
1
0
1.5679
19.65
74.23
1.47
0
0
0
5
6
65
38
2024-04-22
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
10
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
2.0387
17.99
77.43
1.3
0
0
0
5
6
65
38
2024-04-23
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
1.4443
18.17
76.68
1.77
0
0
0
5
6
65
38
2024-04-24
0.4
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0 ]
3
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 ]
0.871
0
1
0.7629
18.88
75.27
1.34
0
0
0
5
6
65
38
2024-04-25
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
3.8271
19.66
74.78
1.44
0
0
0
5
6
65
38
2024-04-26
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
2.3274
19.39
72.43
1.62
0
0
0
5
6
65
38
2024-04-27
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
1
1.5773
19.48
75.59
1.52
0
0
0
5
6
65
38
2024-04-28
0.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
1
3.1543
20.66
76.54
1.78
0
0
0
5
6
65
38
2024-04-29
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
2.3718
19.75
76.32
1.44
0
0
0
5
6
65
38
2024-04-30
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.871
0
1
3.2025
19.49
73.52
1.98
0
0
0
5
6
65
38
2024-05-01
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
2.2958
19.66
73.45
1.18
0
0
0
5
6
65
38
2024-05-02
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
1.3289
20.32
73.23
1.85
0
0
0
5
6
65
38
2024-05-03
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
2.0935
20.49
74.04
1.46
0
0
0
5
6
65
38
2024-05-04
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
2.7406
21.06
70.34
1.59
0
0
0
5
6
65
38
2024-05-05
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.75
1
1
2.5043
20.31
73.87
1.54
0
0
0
5
6
65
38
2024-05-06
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
2.0422
20.51
70.3
1.28
0
0
0
5
6
65
38
2024-05-07
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.914
0
1
0.7429
20.64
68.29
1.44
0
0
0
5
6
65
38
2024-05-08
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
1
0.8385
20.87
64.79
2.25
0
0
0
5
6
65
38
2024-05-09
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
0.2931
20.77
67.8
1.67
0
0
0
5
6
65
38
2024-05-10
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
1.6228
20.43
65.38
1.67
0
0
0
5
6
65
38
2024-05-11
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ]
0.75
1
1
2.1749
21.24
71.85
1.48
0
0
0
5
6
65
38
2024-05-12
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
16
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.75
1
1
0.602
21.59
65.66
1.08
0
0
0
5
6
65
38
2024-05-13
0.4
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0, 0, 0 ]
1
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ]
0.903
0
1
0.8656
22.03
66.13
2.11
0
0
0
5
6
65
38
2024-05-14
3
[ 0.2, 0, 0, 0, 0, 0, 0.4, 0.8, 1, 0.2, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1 ]
0.545
0
1
2.2495
21.79
69.27
2.19
0
0
0
5
6
65
38
2024-05-15
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
1.4316
21.84
64.06
1.79
0
0
0
5
6
65
38
2024-05-16
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0.1, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
2.0522
22.63
68.37
1.86
0
0
0
5
6
65
38
2024-05-17
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.832735
0
1
0.6138
22.51
70.56
1.66
0
0
0
5
6
65
38
2024-05-18
2.8
[ 0, 0, 0, 0, 0, 0, 0.2, 0.4, 0, 0.4, 0, 0, 0, 0, 0, 0.4, 0, 0, 0.8, 0.2, 0.2, 0.2, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.5
1
1
0.8934
22.69
71.88
1.47
0
0
0
5
6
65
38
2024-05-19
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.832735
1
1
2.2914
23.34
73.55
1.48
0
0
0
5
6
65
38
2024-05-20
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
0.8932
22.24
72.51
1.69
0
0
0
5
6
65
38
2024-05-21
3
[ 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.6, 0.6, 0.2, 0.4, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.5
0
1
1.7731
23.09
69.88
1.61
0
0
0
5
6
65
38
2024-05-22
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
1.739
22.5
67.02
1.4
0
0
0
5
6
65
38
2024-05-23
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
1.3164
23.57
66.93
1.84
0
0
0
5
6
65
38
2024-05-24
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
0.3752
23.03
66.9
1.64
0
0
0
5
6
65
38
2024-05-25
2
[ 0, 0, 0, 0, 0, 0, 0.4, 0.4, 0.2, 0.4, 0.2, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.5
1
1
1.0092
23.22
66.95
1.98
0
0
0
5
6
65
38
2024-05-26
0.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
15
[ 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
0.8587
22.52
67.28
1.98
0
0
0
5
6
65
38
2024-05-27
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
2.1076
22.58
66.64
1.86
0
0
0
5
6
65
38
2024-05-28
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
16
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
1.1289
22
67.64
1.55
0
0
0
5
6
65
38
2024-05-29
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
0.811
22.51
63.29
1.71
0
0
0
5
6
65
38
2024-05-30
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
1.2949
22.89
67.61
1.91
0
0
0
5
6
65
38
2024-05-31
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
2.4597
23.1
67.55
1.73
0
0
0
5
6
65
38
2024-06-01
2.6
[ 0, 0, 0, 0, 0, 0, 0, 0.4, 0.6, 0.2, 0.2, 0.2, 0, 0.4, 0, 0.2, 0.2, 0, 0.2, 0, 0, 0, 0, 0 ]
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ]
0.5
1
1
1.9178
23.52
70.26
1.39
0
0
0
5
6
65
38
2024-06-02
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
1.7647
23.43
69.71
1.64
0
0
0
5
6
65
38
2024-06-03
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0.1, 0, 0, 0, 0.1, 0, 0, 0, 0 ]
6
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
2.8477
23.55
73.9
2
0
0
0
5
6
65
38
2024-06-04
3
[ 0, 0, 0, 0, 0, 0, 0.2, 0.4, 0.2, 0.2, 0, 0.6, 0, 0, 0.2, 0.4, 0.4, 0.2, 0.2, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.5
0
1
1.2604
24.02
70.26
1.66
0
0
0
5
6
65
38
2024-06-05
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
8
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.909
0
1
1.9211
24.06
71.73
1.57
0
0
0
5
6
65
38
2024-06-06
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
1
0.7985
24.64
73.1
1.77
0
0
0
5
6
65
38
2024-06-07
0.3
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.897
0
1
1.8196
24.98
73.61
1.52
0
0
0
5
6
65
38
2024-06-08
2.6
[ 0.2, 0, 0, 0, 0, 0, 0.2, 0.8, 0.2, 0.4, 0.4, 0, 0, 0.2, 0, 0.2, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.5
1
1
2.3723
25.07
74.11
1.64
0
0
0
5
6
65
38
2024-06-09
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.845
1
1
5.3505
25.95
76.57
1.45
0
0
0
5
6
65
38
2024-06-10
0.4
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0 ]
5
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0.897
1
1
5.1672
25.73
75.61
1.52
0
0
0
5
6
65
38
2024-06-11
3.3
[ 0.2, 0, 0, 0, 0, 0.2, 0.2, 0, 0.8, 0.2, 0.2, 0, 0.6, 0, 0.8, 0, 0.1, 0, 0, 0, 0, 0, 0, 0 ]
5
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 ]
0.526
0
1
5.6895
25.3
76.54
1.64
0
0
0
5
6
65
38
2024-06-12
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
5.4862
25.77
80.3
1.5
0
0
0
5
6
65
38
2024-06-13
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
7.567
26.36
79.61
1.66
0
0
0
5
6
65
38
2024-06-14
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
6.4905
26.92
77.55
1.77
0
0
0
5
6
65
38
2024-06-15
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1 ]
1
1
0
7.1521
25.73
78.73
1.98
0
0
0
5
6
65
38
2024-06-16
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0 ]
0
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ]
1
1
0
8.0521
26.59
81.41
1.52
0
0
0
5
6
65
38
2024-06-17
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
13
[ 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
7.8803
26.9
78.7
1.5
0
0
0
5
6
65
38
2024-06-18
2.4
[ 0, 0.2, 0, 0, 0, 0.4, 0, 0, 0.6, 0.2, 0.2, 0.2, 0.2, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.5
0
1
13.2459
26.28
82.25
1.57
0
0
0
5
6
65
38
2024-06-19
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
14.2063
25.66
83.2
1.64
0
0
0
5
6
65
38
2024-06-20
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
9.7209
27.56
86.84
1.91
0
0
0
5
6
65
38
2024-06-21
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
4
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1 ]
1
0
0
7.0993
26.59
82.02
1.64
0
0
0
5
6
65
38
2024-06-22
2.6
[ 0.2, 0, 0, 0, 0, 0, 0.4, 1.2, 0.4, 0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0.5
1
1
8.1333
27.01
82.11
1.84
0
0
0
5
6
65
38
2024-06-23
0.2
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
1
0
10.2556
27.03
84.77
1.32
0
0
0
5
6
65
38
2024-06-24
0.1
[ 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
11.2242
26.21
82.34
1.5
0
0
0
5
6
65
38
2024-06-25
0.2
[ 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1 ]
1
0
0
12.4903
28.01
84.82
1.32
0
0
0
28
72
154
834
2024-03-28
0.9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0.2, 0, 0, 0, 0, 0.1, 0, 0.3, 0, 0.1, 0.1, 0 ]
0
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
1.6999
15.48
73.54
1.97
0
0
0
28
72
154
834
2024-03-29
2
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0, 0, 0.3, 0.2, 0.2, 0, 0, 0.1, 0.2, 0.6, 0.2, 0, 0 ]
0
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
1
0
0
3.019
15.08
76.56
1.71
0
0
0
28
72
154
834
2024-03-30
1.9
[ 0, 0.1, 0, 0, 0, 0, 0, 0, 0.6, 0.4, 0.1, 0.3, 0.1, 0, 0.1, 0, 0, 0, 0.1, 0, 0, 0, 0.1, 0 ]
9
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
2.0942
15.91
76.47
1.73
0
0
0
28
72
154
834
2024-03-31
1.1
[ 0, 0, 0, 0, 0, 0, 0.1, 0, 0.2, 0.3, 0.4, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0 ]
12
[ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
1.5618
16.13
77.4
1.76
0
0
0
28
72
154
834
2024-04-01
1.3
[ 0, 0, 0, 0, 0, 0, 0, 0.3, 0, 0.3, 0, 0.2, 0.1, 0, 0.3, 0, 0, 0, 0, 0, 0.1, 0, 0, 0 ]
7
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
3.5386
15.37
78.26
1.25
0
0
0
28
72
154
834
2024-04-02
1.9
[ 0, 0, 0, 0, 0, 0, 0, 0.3, 0.1, 0, 0.7, 0.2, 0.2, 0, 0.1, 0, 0, 0.1, 0, 0, 0, 0.2, 0, 0 ]
7
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
0
0
3.1459
15.69
76.63
2.13
0
0
0
28
72
154
834
2024-04-03
1.6
[ 0, 0, 0.1, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.3, 0.1, 0.4, 0.1, 0, 0.1, 0.1 ]
2
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1 ]
1
0
0
1.7165
16.11
76.31
1.51
0
0
0
28
72
154
834
2024-04-04
1.4
[ 0, 0, 0, 0, 0, 0, 0, 0.2, 0, 0.1, 0.4, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0, 0, 0.1, 0, 0, 0 ]
8
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
0.993
1
0
1.3021
16.08
74.24
1.47
0
0
0
28
72
154
834
2024-04-05
2.1
[ 0.1, 0, 0, 0, 0, 0.1, 0, 0.2, 0, 0.6, 0.6, 0.1, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.2, 0, 0 ]
10
[ 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
1.909
16.24
71.99
1.46
0
0
0
28
72
154
834
2024-04-06
1.4
[ 0, 0, 0, 0, 0, 0, 0.1, 0.5, 0.2, 0.1, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
11
[ 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
1
1
0
2.4001
16.72
78.42
1.67
End of preview. Expand in Data Studio

FreshRetailNet-50K

Dataset Overview

FreshRetailNet-50K is the first industrial-grade time series dataset in the fresh retail domain, comprises 50,000 store-products which have hourly sales amount for 90 days, and features about 20% organically out-of-stock data. It also includes additional important information such as discounts, holiday status and various weather situations. This dataset is an ideal benchmark for future researches on time series imputation and forecasting techniques.

  • [Technical Report](It will be posted later.) - Discover the methodology and technical details behind FreshRetailNet-50K.
  • [Github Repo](It will be posted later.) - Access the complete pipeline used to train and evaluate.

This dataset is ready for commercial/non-commercial use.

Data Fields

Field Type Description
city_id int64 The encoded city id
store_id int64 The encoded store id
management_group_id int64 The encoded management group id
first_category_id int64 The encoded first category id
second_category_id int64 The encoded second category id
third_category_id int64 The encoded third category id
product_id int64 The encoded product id
dt string The date
sale_amount float64 The daily sales amount after global normalization (Multiplied by a specific coefficient)
hours_sale Sequence(float64) The hourly sales amount after global normalization (Multiplied by a specific coefficient)
stock_hour6_22_cnt int32 The number of out-of-stock hours between 6:00 and 22:00
hours_stock_status Sequence(int32) The hourly out-of-stock status
discount float64 The discount rate (1.0 means no discount, 0.9 means 10% off)
holiday_flag int32 Holiday indicator
activity_flag int32 Activity indicator
precpt float64 The total precipitation
avg_temperature float64 The average temperature
avg_humidity float64 The average humidity
avg_wind_level float64 The average wind force

Hierarchical structure

  • warehouse: city_id > store_id
  • product category: management_group_id > first_category_id > second_category_id > third_category_id > product_id

How to use it

You can load the dataset with the following lines of code.

from datasets import load_dataset
dataset = load_dataset("Dingdong-Inc/FreshRetailNet-50K")
print(dataset)
DatasetDict({
    train: Dataset({
        features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
        num_rows: 4500000
    })
    eval: Dataset({
        features: ['city_id', 'store_id', 'management_group_id', 'first_category_id', 'second_category_id', 'third_category_id', 'product_id', 'dt', 'sale_amount', 'hours_sale', 'stock_hour6_22_cnt', 'hours_stock_status', 'discount', 'holiday_flag', 'activity_flag', 'precpt', 'avg_temperature', 'avg_humidity', 'avg_wind_level'],
        num_rows: 350000
    })
})

License/Terms of Use

This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0) available at https://creativecommons.org/licenses/by/4.0/legalcode.

Data Developer: Dingdong-Inc

Use Case:

Developers researching time series imputation and forecasting techniques.

Release Date:

05/08/2025

Data Version

1.0 (05/08/2025)

Intended use

The FreshRetailNet-50K Dataset is intended to be freely used by the community to continue to improve time series imputation and forecasting techniques. However, for each dataset an user elects to use, the user is responsible for checking if the dataset license is fit for the intended purpose.

Citation

If you find the data useful, please cite:

@article{2025freshretailnet-50k,
      title={FreshRetailNet-50K: A Censored Demand Dataset with Stockout Interventions for Inventory-Aware Forecasting in Fresh Retail}, 
      author={Anonymous Author(s)},
      year={2025},
      eprint={2505.xxxxx},
      archivePrefix={arXiv},
      primaryClass={stat.ML},
      url={https://arxiv.org/abs/2505.xxxxx}, 
}
Downloads last month
142