|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: sentence |
|
dtype: string |
|
- name: gold_label |
|
dtype: string |
|
splits: |
|
- name: test |
|
num_bytes: 20371 |
|
num_examples: 320 |
|
download_size: 10171 |
|
dataset_size: 20371 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: test |
|
path: data/test-* |
|
task_categories: |
|
- text-classification |
|
- zero-shot-classification |
|
language: |
|
- ko |
|
tags: |
|
- syntax |
|
- acceptability |
|
- minimalpairs |
|
size_categories: |
|
- n<1K |
|
--- |
|
# Kontrast Dataset |
|
* Paper: [Evaluating GPTβs Ability to Understand Syntactic Minimal Pairs in Korean](https://doi.org/10.29403/LI.28.3.5) |
|
* Authors: [Jina Song](https://english.hongik.ac.kr/english/0201.do?mode=view&deptCd=AAD140&S1=2024&S2=10024), [Eunbi Cho](https://github.com/EunB2), [Sanghoun Song](http://corpus.mireene.com/) |
|
* [GitHub](https://github.com/EunB2/Kontrast)πΊ |
|
* [Kontrast-YesNo_320sentences](https://huggingface.co/datasets/EunB2/Kontrast-YesNo_320sentences) |
|
* [Kontrast-ForcedChoice_160pairs](https://huggingface.co/datasets/EunB2/Kontrast-ForcedChoice_160pairs) |
|
|
|
This dataset, **Kontrast**, contains Korean syntactic minimal pairs used to evaluate the syntactic competence of large language models (LLMs), including GPT-3.5, GPT-4, and GPT-4o. |
|
|
|
## Main Concept |
|
The dataset consists of **syntactic minimal pairs**, where each pair includes: |
|
* **An acceptable sentence** |
|
* **A less acceptable sentence** (due to a syntactic violation) |
|
|
|
These pairs help assess whether language models align with **native Korean speaker judgments** regarding syntactic acceptability. |
|
|
|
## Data Description |
|
This dataset consists of three subsets based on different experimental tasks: |
|
|
|
1. **Forced Choice Task (`ForcedChoice_160pairs.xlsx`)** |
|
- **160 sentence pairs** where one sentence is grammatically more acceptable than the other. |
|
- The model is asked to choose the more acceptable sentence. |
|
- **Columns:** |
|
- `id`: Unique identifier for the sentence pair. |
|
- `sentence_A`: The more acceptable sentence. |
|
- `sentence_B`: The less acceptable sentence. |
|
- `gold_label`: Correct answer (either `A` or `B`). |
|
|
|
2. **Yes/No Task (`YesNo_320sentences.xlsx`)** |
|
- **320 individual sentences** labeled as acceptable (`μ`) or unacceptable (`μλμ€`). |
|
- The model is asked to determine whether each sentence is acceptable. |
|
- **Columns:** |
|
- `id`: Unique identifier for each sentence. |
|
- `sentence`: The sentence being evaluated. |
|
- `gold_label`: Acceptability judgment (`μ` or `μλμ€`). |
|
|
|
3. **Likert Scale Task (`LikertScale_320sentences.xlsx`)** |
|
- **320 individual sentences**, each rated based on **acceptability judgments** by human annotators. |
|
- The model assigns a score between **1 and 5**, where: |
|
- **1 = μ ν μμ© λΆκ°λ₯ν¨ (Totally unacceptable)** |
|
- **2 = μμ© λΆκ°λ₯ν¨ (Unacceptable)** |
|
- **3 = 보ν΅μ (Neutral)** |
|
- **4 = μμ© κ°λ₯ν¨ (Acceptable)** |
|
- **5 = λ§€μ° μμ© κ°λ₯ν¨ (Very acceptable)** |
|
- **Columns:** |
|
- `id`: Unique identifier for each sentence. |
|
- `sentence`: The sentence being evaluated. |
|
- `gold_label`: Acceptability judgment (`μ λ¬Έ` or `λΉλ¬Έ`). |
|
|
|
### Example Data |
|
#### **Forced Choice Task** |
|
| ID | Acceptable Sentence (A) | Less Acceptable Sentence (B) | Correct Answer | |
|
|----|-------------------------|-----------------------------|----------------| |
|
| 1 | μμΈμ νκ΅μ μλμ΄λ€. | μμΈμ νκ΅μ μλλΏμ΄λ€. | A | |
|
| 2 | μ² μκ° μ΄μ μ€ κ²μ μν¬μκ² μ±
μ΄μΌ. | μ² μκ° μ΄μ μν¬μκ² μ€ κ²μ μ±
μ΄μΌ. | B | |
|
|
|
#### **Yes/No Task** |
|
| ID | Sentence | Judgment | |
|
|----|---------|----------| |
|
| 1 | μ² μκ° μ΄μ μν¬μκ² μ€ κ²μ μ±
μ΄μΌ. | μ | |
|
| 2 | λΉλ²ν μΌμ΄λλ μ κ΄΄ μ¬κ±΄μ΄ μ°λ¦¬λ₯Ό μ¬νκ² νλ€. | μλμ€ | |
|
|
|
#### **Likert Scale Task** |
|
| ID | Sentence | Judgment | |
|
|----|---------|----------| |
|
| 1 | μμΈμ νκ΅μ μλμ΄λ€. | μ λ¬Έ | |
|
| 2 | μμ΄κ° μμμ§ μκ³ μλ€. | λΉλ¬Έ | |
|
|
|
## Citation |
|
``` |
|
@article{song2024evaluating, |
|
author = {Jina Song and Eunbi Cho and Sanghoun Song}, |
|
title = {Evaluating GPTβs Ability to Understand Syntactic Minimal Pairs in Korean}, |
|
journal = {Language and Information}, |
|
volume = {28}, |
|
number = {3}, |
|
pages = {83-109}, |
|
year = {2024}, |
|
publisher = {The Korean Society for Language and Information} |
|
} |
|
``` |
|
|
|
## License |
|
TBD |