FLARE Task1 Pancancer Seg Dataset
Data Description
This is the dataset for MICCAI FLARE 2025 Task 1: Pan-cancer segmentation in CT scans. We aim to further promote the development of pan-cancer segmentation and model deployment on low-resource settings.
Data Structure
train_label: This is a partially labeled dataset. Only the primary lesion is labeled in each case. The other lesions may not be labeled (e.g., metastatic lesions).
train_unlabel: Only images are provided and the lesion annotations are not available. README.md For the abdominal images, we also provide the pseudo labels, which are generated by MedSAM2.
validation-public: Both images and annotations are provided. Please do not use them for model training!
validation-hidden: The labels of hidden validation set will not be released. Please submit the segmentation results on codabench to get the metrics.
FLARE-Task1-Pancancer/
├── train_label/
│ ├── DeepLesion5K-MedSAM2/
│ ├── images/
│ ├── labels/
│ ├── imagesTr/
│ └── labelsTr/
├── train_unlabel/
│ ├── AMOS-2350/
│ ├── MSD-506/
│ ├── MSD-Colon/
│ ├── MSD-HapaticVessel/
│ ├── MSD-Liver/
│ ├── MSD-Lung/
│ ├── MSD-Pancreas/
│ └── MSD-Spleen/
├── validation/
│ ├── HealthyImages-noLesion/
│ ├── Validation-Hidden-Images/
│ ├── Validation-Public-Images
│ └── Validation-Public-Labels
└── README.md
Dataset Download Instructions
Participants can download the complete dataset using the following Python script:
from huggingface_hub import snapshot_download
local_dir = "./FLARE-Task1-Pancancer"
snapshot_download(
repo_id="FLARE-MedFM/FLARE-Task1-Pancancer",
repo_type="dataset",
local_dir=local_dir,
local_dir_use_symlinks=False,
resume_download=True,
)
- Downloads last month
- 2,581