id
int64
0
190k
prompt
stringlengths
21
13.4M
docstring
stringlengths
1
12k
200
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `segment` function. Write a Python function `def segment(text: str)` to solve the following problem: Segments text into semantic units. Args: text: input text Returns: segmented text Here is the function: def segment(text: str): """ Segments text into semantic units. Args: text: input text Returns: segmented text """ return application.get().pipeline("segmentation", (text,))
Segments text into semantic units. Args: text: input text Returns: segmented text
201
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchsegment` function. Write a Python function `def batchsegment(texts: List[str] = Body(...))` to solve the following problem: Segments text into semantic units. Args: texts: list of texts to segment Returns: list of segmented text Here is the function: def batchsegment(texts: List[str] = Body(...)): """ Segments text into semantic units. Args: texts: list of texts to segment Returns: list of segmented text """ return application.get().pipeline("segmentation", (texts,))
Segments text into semantic units. Args: texts: list of texts to segment Returns: list of segmented text
202
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `entity` function. Write a Python function `def entity(text: str)` to solve the following problem: Applies a token classifier to text. Args: text: input text Returns: list of (entity, entity type, score) per text element Here is the function: def entity(text: str): """ Applies a token classifier to text. Args: text: input text Returns: list of (entity, entity type, score) per text element """ return application.get().pipeline("entity", (text,))
Applies a token classifier to text. Args: text: input text Returns: list of (entity, entity type, score) per text element
203
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchentity` function. Write a Python function `def batchentity(texts: List[str] = Body(...))` to solve the following problem: Applies a token classifier to text. Args: texts: list of text Returns: list of (entity, entity type, score) per text element Here is the function: def batchentity(texts: List[str] = Body(...)): """ Applies a token classifier to text. Args: texts: list of text Returns: list of (entity, entity type, score) per text element """ return application.get().pipeline("entity", (texts,))
Applies a token classifier to text. Args: texts: list of text Returns: list of (entity, entity type, score) per text element
204
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `similarity` function. Write a Python function `def similarity(query: str = Body(...), texts: List[str] = Body(...))` to solve the following problem: Computes the similarity between query and list of text. Returns a list of {id: value, score: value} sorted by highest score, where id is the index in texts. Args: query: query text texts: list of text Returns: list of {id: value, score: value} Here is the function: def similarity(query: str = Body(...), texts: List[str] = Body(...)): """ Computes the similarity between query and list of text. Returns a list of {id: value, score: value} sorted by highest score, where id is the index in texts. Args: query: query text texts: list of text Returns: list of {id: value, score: value} """ return application.get().similarity(query, texts)
Computes the similarity between query and list of text. Returns a list of {id: value, score: value} sorted by highest score, where id is the index in texts. Args: query: query text texts: list of text Returns: list of {id: value, score: value}
205
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchsimilarity` function. Write a Python function `def batchsimilarity(queries: List[str] = Body(...), texts: List[str] = Body(...))` to solve the following problem: Computes the similarity between list of queries and list of text. Returns a list of {id: value, score: value} sorted by highest score per query, where id is the index in texts. Args: queries: queries text texts: list of text Returns: list of {id: value, score: value} per query Here is the function: def batchsimilarity(queries: List[str] = Body(...), texts: List[str] = Body(...)): """ Computes the similarity between list of queries and list of text. Returns a list of {id: value, score: value} sorted by highest score per query, where id is the index in texts. Args: queries: queries text texts: list of text Returns: list of {id: value, score: value} per query """ return application.get().batchsimilarity(queries, texts)
Computes the similarity between list of queries and list of text. Returns a list of {id: value, score: value} sorted by highest score per query, where id is the index in texts. Args: queries: queries text texts: list of text Returns: list of {id: value, score: value} per query
206
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `transcribe` function. Write a Python function `def transcribe(file: str)` to solve the following problem: Transcribes audio files to text. Args: file: file to transcribe Returns: transcribed text Here is the function: def transcribe(file: str): """ Transcribes audio files to text. Args: file: file to transcribe Returns: transcribed text """ return application.get().pipeline("transcription", (file,))
Transcribes audio files to text. Args: file: file to transcribe Returns: transcribed text
207
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchtranscribe` function. Write a Python function `def batchtranscribe(files: List[str] = Body(...))` to solve the following problem: Transcribes audio files to text. Args: files: list of files to transcribe Returns: list of transcribed text Here is the function: def batchtranscribe(files: List[str] = Body(...)): """ Transcribes audio files to text. Args: files: list of files to transcribe Returns: list of transcribed text """ return application.get().pipeline("transcription", (files,))
Transcribes audio files to text. Args: files: list of files to transcribe Returns: list of transcribed text
208
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `workflow` function. Write a Python function `def workflow(name: str = Body(...), elements: List = Body(...))` to solve the following problem: Executes a named workflow using elements as input. Args: name: workflow name elements: list of elements to run through workflow Returns: list of processed elements Here is the function: def workflow(name: str = Body(...), elements: List = Body(...)): """ Executes a named workflow using elements as input. Args: name: workflow name elements: list of elements to run through workflow Returns: list of processed elements """ return application.get().workflow(name, elements)
Executes a named workflow using elements as input. Args: name: workflow name elements: list of elements to run through workflow Returns: list of processed elements
209
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `search` function. Write a Python function `def search(query: str, request: Request)` to solve the following problem: Finds documents most similar to the input query. This method will run either an index search or an index + database search depending on if a database is available. Args: query: input query request: FastAPI request Returns: list of {id: value, score: value} for index search, list of dict for an index + database search Here is the function: def search(query: str, request: Request): """ Finds documents most similar to the input query. This method will run either an index search or an index + database search depending on if a database is available. Args: query: input query request: FastAPI request Returns: list of {id: value, score: value} for index search, list of dict for an index + database search """ # Execute search results = application.get().search(query, request=request) # Encode using standard FastAPI encoder but skip certain classes results = jsonable_encoder( results, custom_encoder={bytes: lambda x: x, BytesIO: lambda x: x, PIL.Image.Image: lambda x: x, Graph: lambda x: x.savedict()} ) # Return raw response to prevent duplicate encoding response = ResponseFactory.create(request) return response(results)
Finds documents most similar to the input query. This method will run either an index search or an index + database search depending on if a database is available. Args: query: input query request: FastAPI request Returns: list of {id: value, score: value} for index search, list of dict for an index + database search
210
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `batchsearch` function. Write a Python function `def batchsearch( request: Request, queries: List[str] = Body(...), limit: int = Body(default=None), weights: float = Body(default=None), index: str = Body(default=None), parameters: List[dict] = Body(default=None), graph: bool = Body(default=False), )` to solve the following problem: Finds documents most similar to the input queries. This method will run either an index search or an index + database search depending on if a database is available. Args: queries: input queries limit: maximum results weights: hybrid score weights, if applicable index: index name, if applicable parameters: list of dicts of named parameters to bind to placeholders graph: return graph results if True Returns: list of {id: value, score: value} per query for index search, list of dict per query for an index + database search Here is the function: def batchsearch( request: Request, queries: List[str] = Body(...), limit: int = Body(default=None), weights: float = Body(default=None), index: str = Body(default=None), parameters: List[dict] = Body(default=None), graph: bool = Body(default=False), ): """ Finds documents most similar to the input queries. This method will run either an index search or an index + database search depending on if a database is available. Args: queries: input queries limit: maximum results weights: hybrid score weights, if applicable index: index name, if applicable parameters: list of dicts of named parameters to bind to placeholders graph: return graph results if True Returns: list of {id: value, score: value} per query for index search, list of dict per query for an index + database search """ # Execute search results = application.get().batchsearch(queries, limit, weights, index, parameters, graph) # Encode using standard FastAPI encoder but skip certain classes results = jsonable_encoder( results, custom_encoder={bytes: lambda x: x, BytesIO: lambda x: x, PIL.Image.Image: lambda x: x, Graph: lambda x: x.savedict()} ) # Return raw response to prevent duplicate encoding response = ResponseFactory.create(request) return response(results)
Finds documents most similar to the input queries. This method will run either an index search or an index + database search depending on if a database is available. Args: queries: input queries limit: maximum results weights: hybrid score weights, if applicable index: index name, if applicable parameters: list of dicts of named parameters to bind to placeholders graph: return graph results if True Returns: list of {id: value, score: value} per query for index search, list of dict per query for an index + database search
211
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `add` function. Write a Python function `def add(documents: List[dict] = Body(...))` to solve the following problem: Adds a batch of documents for indexing. Args: documents: list of {id: value, text: value, tags: value} Here is the function: def add(documents: List[dict] = Body(...)): """ Adds a batch of documents for indexing. Args: documents: list of {id: value, text: value, tags: value} """ try: application.get().add(documents) except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e
Adds a batch of documents for indexing. Args: documents: list of {id: value, text: value, tags: value}
212
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph def addobject(data: List[bytes] = File(), uid: List[str] = Form(default=None), field: str = Form(default=None)): """ Adds a batch of binary documents for indexing. Args: data: list of binary objects uid: list of corresponding ids field: optional object field name """ if uid and len(data) != len(uid): raise HTTPException(status_code=422, detail="Length of data and document lists must match") try: # Add objects application.get().addobject(data, uid, field) except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e The provided code snippet includes necessary dependencies for implementing the `addimage` function. Write a Python function `def addimage(data: List[UploadFile] = File(), uid: List[str] = Form(), field: str = Form(default=None))` to solve the following problem: Adds a batch of images for indexing. Args: data: list of images uid: list of corresponding ids field: optional object field name Here is the function: def addimage(data: List[UploadFile] = File(), uid: List[str] = Form(), field: str = Form(default=None)): """ Adds a batch of images for indexing. Args: data: list of images uid: list of corresponding ids field: optional object field name """ if uid and len(data) != len(uid): raise HTTPException(status_code=422, detail="Length of data and uid lists must match") try: # Add images application.get().addobject([PIL.Image.open(content.file) for content in data], uid, field) except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e
Adds a batch of images for indexing. Args: data: list of images uid: list of corresponding ids field: optional object field name
213
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `index` function. Write a Python function `def index()` to solve the following problem: Builds an embeddings index for previously batched documents. Here is the function: def index(): """ Builds an embeddings index for previously batched documents. """ try: application.get().index() except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e
Builds an embeddings index for previously batched documents.
214
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `upsert` function. Write a Python function `def upsert()` to solve the following problem: Runs an embeddings upsert operation for previously batched documents. Here is the function: def upsert(): """ Runs an embeddings upsert operation for previously batched documents. """ try: application.get().upsert() except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e
Runs an embeddings upsert operation for previously batched documents.
215
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `delete` function. Write a Python function `def delete(ids: List = Body(...))` to solve the following problem: Deletes from an embeddings index. Returns list of ids deleted. Args: ids: list of ids to delete Returns: ids deleted Here is the function: def delete(ids: List = Body(...)): """ Deletes from an embeddings index. Returns list of ids deleted. Args: ids: list of ids to delete Returns: ids deleted """ try: return application.get().delete(ids) except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e
Deletes from an embeddings index. Returns list of ids deleted. Args: ids: list of ids to delete Returns: ids deleted
216
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `reindex` function. Write a Python function `def reindex(config: dict = Body(...), function: str = Body(default=None))` to solve the following problem: Recreates this embeddings index using config. This method only works if document content storage is enabled. Args: config: new config function: optional function to prepare content for indexing Here is the function: def reindex(config: dict = Body(...), function: str = Body(default=None)): """ Recreates this embeddings index using config. This method only works if document content storage is enabled. Args: config: new config function: optional function to prepare content for indexing """ try: application.get().reindex(config, function) except ReadOnlyError as e: raise HTTPException(status_code=403, detail=e.args[0]) from e
Recreates this embeddings index using config. This method only works if document content storage is enabled. Args: config: new config function: optional function to prepare content for indexing
217
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `count` function. Write a Python function `def count()` to solve the following problem: Deletes from an embeddings index. Returns list of ids deleted. Args: ids: list of ids to delete Returns: ids deleted Here is the function: def count(): """ Deletes from an embeddings index. Returns list of ids deleted. Args: ids: list of ids to delete Returns: ids deleted """ return application.get().count()
Deletes from an embeddings index. Returns list of ids deleted. Args: ids: list of ids to delete Returns: ids deleted
218
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `explain` function. Write a Python function `def explain(query: str = Body(...), texts: List[str] = Body(default=None), limit: int = Body(default=None))` to solve the following problem: Explains the importance of each input token in text for a query. Args: query: query text texts: list of text Returns: list of dict where a higher scores represents higher importance relative to the query Here is the function: def explain(query: str = Body(...), texts: List[str] = Body(default=None), limit: int = Body(default=None)): """ Explains the importance of each input token in text for a query. Args: query: query text texts: list of text Returns: list of dict where a higher scores represents higher importance relative to the query """ return application.get().explain(query, texts, limit)
Explains the importance of each input token in text for a query. Args: query: query text texts: list of text Returns: list of dict where a higher scores represents higher importance relative to the query
219
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `batchexplain` function. Write a Python function `def batchexplain(queries: List[str] = Body(...), texts: List[str] = Body(default=None), limit: int = Body(default=None))` to solve the following problem: Explains the importance of each input token in text for a query. Args: query: query text texts: list of text Returns: list of dict where a higher scores represents higher importance relative to the query Here is the function: def batchexplain(queries: List[str] = Body(...), texts: List[str] = Body(default=None), limit: int = Body(default=None)): """ Explains the importance of each input token in text for a query. Args: query: query text texts: list of text Returns: list of dict where a higher scores represents higher importance relative to the query """ return application.get().batchexplain(queries, texts, limit)
Explains the importance of each input token in text for a query. Args: query: query text texts: list of text Returns: list of dict where a higher scores represents higher importance relative to the query
220
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `transform` function. Write a Python function `def transform(text: str)` to solve the following problem: Transforms text into an embeddings array. Args: text: input text Returns: embeddings array Here is the function: def transform(text: str): """ Transforms text into an embeddings array. Args: text: input text Returns: embeddings array """ return application.get().transform(text)
Transforms text into an embeddings array. Args: text: input text Returns: embeddings array
221
from io import BytesIO from typing import List import PIL from fastapi import APIRouter, Body, File, Form, HTTPException, Request, UploadFile from fastapi.encoders import jsonable_encoder from .. import application from ..responses import ResponseFactory from ..route import EncodingAPIRoute from ...app import ReadOnlyError from ...graph import Graph The provided code snippet includes necessary dependencies for implementing the `batchtransform` function. Write a Python function `def batchtransform(texts: List[str] = Body(...))` to solve the following problem: Transforms list of text into embeddings arrays. Args: texts: list of text Returns: embeddings arrays Here is the function: def batchtransform(texts: List[str] = Body(...)): """ Transforms list of text into embeddings arrays. Args: texts: list of text Returns: embeddings arrays """ return application.get().batchtransform(texts)
Transforms list of text into embeddings arrays. Args: texts: list of text Returns: embeddings arrays
222
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `caption` function. Write a Python function `def caption(file: str)` to solve the following problem: Builds captions for images. Args: file: file to process Returns: list of captions Here is the function: def caption(file: str): """ Builds captions for images. Args: file: file to process Returns: list of captions """ return application.get().pipeline("caption", (file,))
Builds captions for images. Args: file: file to process Returns: list of captions
223
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchcaption` function. Write a Python function `def batchcaption(files: List[str] = Body(...))` to solve the following problem: Builds captions for images. Args: files: list of files to process Returns: list of captions Here is the function: def batchcaption(files: List[str] = Body(...)): """ Builds captions for images. Args: files: list of files to process Returns: list of captions """ return application.get().pipeline("caption", (files,))
Builds captions for images. Args: files: list of files to process Returns: list of captions
224
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `objects` function. Write a Python function `def objects(file: str)` to solve the following problem: Applies object detection/image classification models to images. Args: file: file to process Returns: list of (label, score) elements Here is the function: def objects(file: str): """ Applies object detection/image classification models to images. Args: file: file to process Returns: list of (label, score) elements """ return application.get().pipeline("objects", (file,))
Applies object detection/image classification models to images. Args: file: file to process Returns: list of (label, score) elements
225
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchobjects` function. Write a Python function `def batchobjects(files: List[str] = Body(...))` to solve the following problem: Applies object detection/image classification models to images. Args: files: list of files to process Returns: list of (label, score) elements Here is the function: def batchobjects(files: List[str] = Body(...)): """ Applies object detection/image classification models to images. Args: files: list of files to process Returns: list of (label, score) elements """ return application.get().pipeline("objects", (files,))
Applies object detection/image classification models to images. Args: files: list of files to process Returns: list of (label, score) elements
226
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `textract` function. Write a Python function `def textract(file: str)` to solve the following problem: Extracts text from a file at path. Args: file: file to extract text Returns: extracted text Here is the function: def textract(file: str): """ Extracts text from a file at path. Args: file: file to extract text Returns: extracted text """ return application.get().pipeline("textractor", (file,))
Extracts text from a file at path. Args: file: file to extract text Returns: extracted text
227
from typing import List from fastapi import APIRouter, Body from .. import application from ..route import EncodingAPIRoute The provided code snippet includes necessary dependencies for implementing the `batchtextract` function. Write a Python function `def batchtextract(files: List[str] = Body(...))` to solve the following problem: Extracts text from a file at path. Args: files: list of files to extract text Returns: list of extracted text Here is the function: def batchtextract(files: List[str] = Body(...)): """ Extracts text from a file at path. Args: files: list of files to extract text Returns: list of extracted text """ return application.get().pipeline("textractor", (files,))
Extracts text from a file at path. Args: files: list of files to extract text Returns: list of extracted text
228
import inspect import os import sys from fastapi import APIRouter, Depends, FastAPI from .authorization import Authorization from .base import API from .factory import APIFactory from ..app import Application def lifespan(application): """ FastAPI lifespan event handler. Args: application: FastAPI application to initialize """ # pylint: disable=W0603 global INSTANCE # Load YAML settings config = Application.read(os.environ.get("CONFIG")) # Instantiate API instance api = os.environ.get("API_CLASS") INSTANCE = APIFactory.create(config, api) if api else API(config) # Get all known routers routers = apirouters() # Conditionally add routes based on configuration for name, router in routers.items(): if name in config: application.include_router(router) # Special case for embeddings clusters if "cluster" in config and "embeddings" not in config: application.include_router(routers["embeddings"]) # Special case to add similarity instance for embeddings if "embeddings" in config and "similarity" not in config: application.include_router(routers["similarity"]) # Execute extensions if present extensions = os.environ.get("EXTENSIONS") if extensions: for extension in extensions.split(","): # Create instance and execute extension extension = APIFactory.get(extension.strip())() extension(application) yield app, INSTANCE = create(), None The provided code snippet includes necessary dependencies for implementing the `start` function. Write a Python function `def start()` to solve the following problem: Runs application lifespan handler. Here is the function: def start(): """ Runs application lifespan handler. """ list(lifespan(app))
Runs application lifespan handler.
229
import logging import os import pickle import tempfile from errno import ENOENT from multiprocessing import Pool import numpy as np from ..pipeline import Tokenizer from ..version import __pickle__ from .base import Vectors VECTORS = None class WordVectors(Vectors): """ Builds sentence embeddings/vectors using weighted word embeddings. """ def loadmodel(self, path): # Ensure that vector path exists if not path or not os.path.isfile(path): raise IOError(ENOENT, "Vector model file not found", path) # Load magnitude model. If this is a training run (uninitialized config), block until vectors are fully loaded return Magnitude(path, case_insensitive=True, blocking=not self.initialized) def encode(self, data): # Iterate over each data element, tokenize (if necessary) and build an aggregated embeddings vector embeddings = [] for tokens in data: # Convert to tokens if necessary if isinstance(tokens, str): tokens = Tokenizer.tokenize(tokens) # Generate weights for each vector using a scoring method weights = self.scoring.weights(tokens) if self.scoring else None # pylint: disable=E1133 if weights and [x for x in weights if x > 0]: # Build weighted average embeddings vector. Create weights array as float32 to match embeddings precision. embedding = np.average(self.lookup(tokens), weights=np.array(weights, dtype=np.float32), axis=0) else: # If no weights, use mean embedding = np.mean(self.lookup(tokens), axis=0) embeddings.append(embedding) return np.array(embeddings, dtype=np.float32) def index(self, documents, batchsize=1): # Use default single process indexing logic if "parallel" in self.config and not self.config["parallel"]: return super().index(documents, batchsize) # Customize indexing logic with multiprocessing pool to efficiently build vectors ids, dimensions, batches, stream = [], None, 0, None # Shared objects with Pool args = (self.config, self.scoring) # Convert all documents to embedding arrays, stream embeddings to disk to control memory usage with Pool(os.cpu_count(), initializer=create, initargs=args) as pool: with tempfile.NamedTemporaryFile(mode="wb", suffix=".npy", delete=False) as output: stream = output.name embeddings = [] for uid, embedding in pool.imap(transform, documents): if not dimensions: # Set number of dimensions for embeddings dimensions = embedding.shape[0] ids.append(uid) embeddings.append(embedding) if len(embeddings) == batchsize: pickle.dump(np.array(embeddings, dtype=np.float32), output, protocol=__pickle__) batches += 1 embeddings = [] # Final embeddings batch if embeddings: pickle.dump(np.array(embeddings, dtype=np.float32), output, protocol=__pickle__) batches += 1 return (ids, dimensions, batches, stream) def lookup(self, tokens): """ Queries word vectors for given list of input tokens. Args: tokens: list of tokens to query Returns: word vectors array """ return self.model.query(tokens) def isdatabase(path): """ Checks if this is a SQLite database file which is the file format used for word vectors databases. Args: path: path to check Returns: True if this is a SQLite database """ if isinstance(path, str) and os.path.isfile(path) and os.path.getsize(path) >= 100: # Read 100 byte SQLite header with open(path, "rb") as f: header = f.read(100) # Check for SQLite header return header.startswith(b"SQLite format 3\000") return False def build(data, size, mincount, path): """ Builds fastText vectors from a file. Args: data: path to input data file size: number of vector dimensions mincount: minimum number of occurrences required to register a token path: path to output file """ # Train on data file using largest dimension size model = fasttext.train_unsupervised(data, dim=size, minCount=mincount) # Output file path logger.info("Building %d dimension model", size) # Output vectors in vec/txt format with open(path + ".txt", "w", encoding="utf-8") as output: words = model.get_words() output.write(f"{len(words)} {model.get_dimension()}\n") for word in words: # Skip end of line token if word != "</s>": vector = model.get_word_vector(word) data = "" for v in vector: data += " " + str(v) output.write(word + data + "\n") # Build magnitude vectors database logger.info("Converting vectors to magnitude format") converter.convert(path + ".txt", path + ".magnitude", subword=True) The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create(config, scoring)` to solve the following problem: Multiprocessing helper method. Creates a global embeddings object to be accessed in a new subprocess. Args: config: vector configuration scoring: scoring instance Here is the function: def create(config, scoring): """ Multiprocessing helper method. Creates a global embeddings object to be accessed in a new subprocess. Args: config: vector configuration scoring: scoring instance """ global VECTORS # Create a global embedding object using configuration and saved VECTORS = WordVectors(config, scoring, None)
Multiprocessing helper method. Creates a global embeddings object to be accessed in a new subprocess. Args: config: vector configuration scoring: scoring instance
230
import logging import os import pickle import tempfile from errno import ENOENT from multiprocessing import Pool import numpy as np from ..pipeline import Tokenizer from ..version import __pickle__ from .base import Vectors VECTORS = None The provided code snippet includes necessary dependencies for implementing the `transform` function. Write a Python function `def transform(document)` to solve the following problem: Multiprocessing helper method. Transforms document into an embeddings vector. Args: document: (id, data, tags) Returns: (id, embedding) Here is the function: def transform(document): """ Multiprocessing helper method. Transforms document into an embeddings vector. Args: document: (id, data, tags) Returns: (id, embedding) """ return (document[0], VECTORS.transform(document))
Multiprocessing helper method. Transforms document into an embeddings vector. Args: document: (id, data, tags) Returns: (id, embedding)
231
The provided code snippet includes necessary dependencies for implementing the `idcolumn` function. Write a Python function `def idcolumn()` to solve the following problem: Creates an id column. This method creates an unbounded text field for platforms that support it. Returns: id column definition Here is the function: def idcolumn(): """ Creates an id column. This method creates an unbounded text field for platforms that support it. Returns: id column definition """ return String(512).with_variant(Text(), "sqlite", "postgresql")
Creates an id column. This method creates an unbounded text field for platforms that support it. Returns: id column definition
232
import os import urllib.parse import requests import streamlit as st from txtai.pipeline import Summary class Application: """ Main application. """ SEARCH_TEMPLATE = "https://en.wikipedia.org/w/api.php?action=opensearch&search=%s&limit=1&namespace=0&format=json" CONTENT_TEMPLATE = "https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&exintro&explaintext&redirects=1&titles=%s" def __init__(self): """ Creates a new application. """ self.summary = Summary("sshleifer/distilbart-cnn-12-6") def run(self): """ Runs a Streamlit application. """ st.title("Wikipedia") st.markdown("This application queries the Wikipedia API and summarizes the top result.") query = st.text_input("Query") if query: query = urllib.parse.quote_plus(query) data = requests.get(Application.SEARCH_TEMPLATE % query).json() if data and data[1]: page = urllib.parse.quote_plus(data[1][0]) content = requests.get(Application.CONTENT_TEMPLATE % page).json() content = list(content["query"]["pages"].values())[0]["extract"] st.write(self.summary(content)) st.markdown("*Source: " + data[3][0] + "*") else: st.markdown("*No results found*") The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create()` to solve the following problem: Creates and caches a Streamlit application. Returns: Application Here is the function: def create(): """ Creates and caches a Streamlit application. Returns: Application """ return Application()
Creates and caches a Streamlit application. Returns: Application
233
import argparse import csv import json import os import pickle import sqlite3 import time import psutil import yaml import numpy as np from rank_bm25 import BM25Okapi from pytrec_eval import RelevanceEvaluator from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk from txtai.embeddings import Embeddings from txtai.pipeline import Extractor, LLM, Tokenizer from txtai.scoring import ScoringFactory def evaluate(methods, path, args): """ Runs an evaluation. Args: methods: list of indexing methods to test path: path to dataset args: command line arguments Returns: {calculated performance metrics} """ print(f"------ {os.path.basename(path)} ------") # Performance stats performance = {} # Calculate stats for each model type topk = args.topk evaluator = RelevanceEvaluator(relevance(path), {f"ndcg_cut.{topk}", f"map_cut.{topk}", f"recall.{topk}", f"P.{topk}"}) for method in methods: # Stats for this source stats = {} performance[method] = stats # Create index and get results start = time.time() output = args.output if args.output else f"{path}/{method}" index = create(method, path, args.config, output, args.refresh) # Add indexing metrics stats["index"] = round(time.time() - start, 2) stats["memory"] = int(psutil.Process().memory_info().rss / (1024 * 1024)) stats["disk"] = int(sum(d.stat().st_size for d in os.scandir(output) if d.is_file()) / 1024) if os.path.isdir(output) else 0 print("INDEX TIME =", time.time() - start) print(f"MEMORY USAGE = {stats['memory']} MB") print(f"DISK USAGE = {stats['disk']} KB") start = time.time() results = index(topk) # Add search metrics stats["search"] = round(time.time() - start, 2) print("SEARCH TIME =", time.time() - start) # Calculate stats metrics = compute(evaluator.evaluate(results)) # Add accuracy metrics for stat in [f"ndcg_cut_{topk}", f"map_cut_{topk}", f"recall_{topk}", f"P_{topk}"]: stats[stat] = metrics[stat] # Print model stats print(f"------ {method} ------") print(f"NDCG@{topk} =", metrics[f"ndcg_cut_{topk}"]) print(f"MAP@{topk} =", metrics[f"map_cut_{topk}"]) print(f"Recall@{topk} =", metrics[f"recall_{topk}"]) print(f"P@{topk} =", metrics[f"P_{topk}"]) print() return performance The provided code snippet includes necessary dependencies for implementing the `benchmarks` function. Write a Python function `def benchmarks(args)` to solve the following problem: Main benchmark execution method. Args: args: command line arguments Here is the function: def benchmarks(args): """ Main benchmark execution method. Args: args: command line arguments """ # Directory where BEIR datasets are stored directory = args.directory if args.directory else "beir" if args.sources and args.methods: sources, methods = args.sources.split(","), args.methods.split(",") mode = "a" else: # Default sources and methods sources = [ "trec-covid", "nfcorpus", "nq", "hotpotqa", "fiqa", "arguana", "webis-touche2020", "quora", "dbpedia-entity", "scidocs", "fever", "climate-fever", "scifact", ] methods = ["bm25", "embed", "es", "hybrid", "rank", "sqlite"] mode = "w" # Run and save benchmarks with open("benchmarks.json", mode, encoding="utf-8") as f: for source in sources: # Run evaluations results = evaluate(methods, f"{directory}/{source}", args) # Save as JSON lines output for method, stats in results.items(): stats["source"] = source stats["method"] = method stats["name"] = args.name if args.name else method json.dump(stats, f) f.write("\n")
Main benchmark execution method. Args: args: command line arguments
234
import glob import os import sys import streamlit as st from PIL import Image from txtai.embeddings import Embeddings class Application: """ Main application """ def __init__(self, directory): """ Creates a new application. Args: directory: directory of images """ self.embeddings = self.build(directory) def build(self, directory): """ Builds an image embeddings index. Args: directory: directory with images Returns: Embeddings index """ embeddings = Embeddings({"method": "sentence-transformers", "path": "clip-ViT-B-32"}) embeddings.index(self.images(directory)) # Update model to support multilingual queries embeddings.config["path"] = "sentence-transformers/clip-ViT-B-32-multilingual-v1" embeddings.model = embeddings.loadvectors() return embeddings def images(self, directory): """ Generator that loops over each image in a directory. Args: directory: directory with images """ for path in glob.glob(directory + "/*jpg") + glob.glob(directory + "/*png"): yield (path, Image.open(path), None) def run(self): """ Runs a Streamlit application. """ st.title("Image search") st.markdown("This application shows how images and text can be embedded into the same space to support similarity search. ") st.markdown( "[sentence-transformers](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/image-search) " + "recently added support for the [OpenAI CLIP model](https://github.com/openai/CLIP). This model embeds text and images into " + "the same space, enabling image similarity search. txtai can directly utilize these models." ) query = st.text_input("Search query:") if query: index, _ = self.embeddings.search(query, 1)[0] st.image(Image.open(index)) The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create(directory)` to solve the following problem: Creates and caches a Streamlit application. Args: directory: directory of images to index Returns: Application Here is the function: def create(directory): """ Creates and caches a Streamlit application. Args: directory: directory of images to index Returns: Application """ return Application(directory)
Creates and caches a Streamlit application. Args: directory: directory of images to index Returns: Application
235
import os import streamlit as st from txtai.embeddings import Embeddings class Application: """ Main application. """ def __init__(self): """ Creates a new application. """ # Create embeddings model, backed by sentence-transformers & transformers self.embeddings = Embeddings({"path": "sentence-transformers/nli-mpnet-base-v2"}) def run(self): """ Runs a Streamlit application. """ st.title("Similarity Search") st.markdown("This application runs a basic similarity search that identifies the best matching row for a query.") data = [ "US tops 5 million confirmed virus cases", "Canada's last fully intact ice shelf has suddenly collapsed, forming a Manhattan-sized iceberg", "Beijing mobilises invasion craft along coast as Taiwan tensions escalate", "The National Park Service warns against sacrificing slower friends in a bear attack", "Maine man wins $1M from $25 lottery ticket", "Make huge profits without work, earn up to $100,000 a day", ] data = st.text_area("Data", value="\n".join(data)) query = st.text_input("Query") data = data.split("\n") if query: # Get index of best section that best matches query uid = self.embeddings.similarity(query, data)[0][0] st.write(data[uid]) The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create()` to solve the following problem: Creates and caches a Streamlit application. Returns: Application Here is the function: def create(): """ Creates and caches a Streamlit application. Returns: Application """ return Application()
Creates and caches a Streamlit application. Returns: Application
236
import datetime import math import os import random import altair as alt import numpy as np import pandas as pd import streamlit as st from txtai.embeddings import Embeddings class Application: """ Main application. """ def __init__(self): """ Creates a new application. """ # Batting stats self.batting = Batting() # Pitching stats self.pitching = Pitching() def run(self): """ Runs a Streamlit application. """ st.title("⚾ Baseball Statistics") st.markdown( """ This application finds the best matching historical players using vector search with [txtai](https://github.com/neuml/txtai). Raw data is from the [Baseball Databank](https://github.com/chadwickbureau/baseballdatabank) GitHub project. Read [this article](https://medium.com/neuml/explore-baseball-history-with-vector-search-5778d98d6846) for more details. """ ) player, search = st.tabs(["Player", "Search"]) # Player tab with player: self.player() # Search with search: self.search() def player(self): """ Player tab. """ st.markdown("Match by player-season. Each player search defaults to the best season sorted by OPS or Wins Adjusted.") # Get parameters params = self.params() # Category and stats category = self.category(params.get("category"), "category") stats = self.batting if category == "Batting" else self.pitching # Player name name = self.name(stats.names, params.get("name")) # Player metrics active, best, metrics = stats.metrics(name) # Player year year = self.year(active, params.get("year"), best) # Display metrics chart if len(active) > 1: self.chart(category, metrics) # Run search results = stats.search(name, year) # Display results self.table(results, ["link", "nameFirst", "nameLast", "teamID"] + stats.columns[1:]) # Save parameters st.experimental_set_query_params(category=category, name=name, year=year) def search(self): """ Stats search tab. """ st.markdown("Find players with similar statistics.") category = self.category("Batting", "searchcategory") with st.form("search"): if category == "Batting": stats, columns = self.batting, self.batting.columns[:-6] elif category == "Pitching": stats, columns = self.pitching, self.pitching.columns[:-2] # Enter stats with data editor inputs = st.data_editor(pd.DataFrame([dict((column, None) for column in columns)]), hide_index=True).astype(float) submitted = st.form_submit_button("Search") if submitted: # Run search results = stats.search(row=inputs.to_dict(orient="records")[0]) # Display table self.table(results, ["link", "nameFirst", "nameLast", "teamID"] + stats.columns[1:]) def params(self): """ Get application parameters. This method combines URL parameters with session parameters. Returns: parameters """ # Get parameters params = st.experimental_get_query_params() params = {x: params[x][0] for x in params} # Sync parameters with session state if all(x in st.session_state for x in ["category", "name", "year"]): # Copy session year if category and name are unchanged params["year"] = str(st.session_state["year"]) if all(params.get(x) == st.session_state[x] for x in ["category", "name"]) else None # Copy category and name from session state params["category"] = st.session_state["category"] params["name"] = st.session_state["name"] return params def category(self, category, key): """ Builds category input widget. Args: category: category parameter key: widget key Returns: category component """ # List of stat categories categories = ["Batting", "Pitching"] # Get category parameter, default if not available or valid default = categories.index(category) if category and category in categories else 0 # Radio box component return st.radio("Stat", categories, index=default, horizontal=True, key=key) def name(self, names, name): """ Builds name input widget. Args: names: list of all allowable names Returns: name component """ # Get name parameter, default to random weighted value if not valid name = name if name and name in names else random.choices(list(names.keys()), weights=[names[x][1] for x in names])[0] # Sort names for display names = sorted(names) # Select box component return st.selectbox("Name", names, names.index(name), key="name") def year(self, years, year, best): """ Builds year input widget. Args: years: active years for a player year: year parameter best: default to best year if year is invalid Returns: year component """ # Get year parameter, default if not available or valid year = int(year) if year and year.isdigit() and int(year) in years else best # Slider component return int(st.select_slider("Year", years, year, key="year") if len(years) > 1 else years[0]) def chart(self, category, metrics): """ Displays a metric chart. Args: category: Batting or Pitching metrics: player metrics to plot """ # Key metric metric = self.batting.metric() if category == "Batting" else self.pitching.metric() # Cast year to string metrics["yearID"] = metrics["yearID"].astype(str) # Metric over years chart = ( alt.Chart(metrics) .mark_line(interpolate="monotone", point=True, strokeWidth=2.5, opacity=0.75) .encode(x=alt.X("yearID", title=""), y=alt.Y(metric, scale=alt.Scale(zero=False))) ) # Create metric median rule line rule = alt.Chart(metrics).mark_rule(color="gray", strokeDash=[3, 5], opacity=0.5).encode(y=f"median({metric})") # Layered chart configuration chart = (chart + rule).encode(y=alt.Y(title=metric)).properties(height=200).configure_axis(grid=False) # Draw chart st.altair_chart(chart + rule, theme="streamlit", use_container_width=True) def table(self, results, columns): """ Displays a list of results as a table. Args: results: list of results columns: column names """ if results: st.dataframe( results, column_order=columns, column_config={ "link": st.column_config.LinkColumn("Link", width="small"), "yearID": st.column_config.NumberColumn("Year", format="%d"), "nameFirst": "First", "nameLast": "Last", "teamID": "Team", "age": "Age", "weight": "Weight", "height": "Height", }, ) else: st.write("Player-Year not found") The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create()` to solve the following problem: Creates and caches a Streamlit application. Returns: Application Here is the function: def create(): """ Creates and caches a Streamlit application. Returns: Application """ return Application()
Creates and caches a Streamlit application. Returns: Application
237
import os import streamlit as st from txtai.pipeline import Summary, Textractor from txtai.workflow import UrlTask, Task, Workflow class Application: """ Main application. """ def __init__(self): """ Creates a new application. """ textract = Textractor(paragraphs=True, minlength=100, join=True) summary = Summary("sshleifer/distilbart-cnn-12-6") self.workflow = Workflow([UrlTask(textract), Task(summary)]) def run(self): """ Runs a Streamlit application. """ st.title("Article Summary") st.markdown("This application builds a summary of an article.") url = st.text_input("URL") if url: # Run workflow and get summary summary = list(self.workflow([url]))[0] # Write results st.write(summary) st.markdown("*Source: " + url + "*") The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create()` to solve the following problem: Creates and caches a Streamlit application. Returns: Application Here is the function: def create(): """ Creates and caches a Streamlit application. Returns: Application """ return Application()
Creates and caches a Streamlit application. Returns: Application
238
import json from txtai.api import API APP = None The provided code snippet includes necessary dependencies for implementing the `handler` function. Write a Python function `def handler(event, context)` to solve the following problem: Runs a workflow using input event parameters. Args: event: input event context: input context Returns: Workflow results Here is the function: def handler(event, context): """ Runs a workflow using input event parameters. Args: event: input event context: input context Returns: Workflow results """ # Create (or get) global app instance global APP APP = APP if APP else API("config.yml") # Get parameters from event body event = json.loads(event["body"]) # Run workflow and return results return {"statusCode": 200, "headers": {"Content-Type": "application/json"}, "body": list(APP.workflow(event["name"], event["elements"]))}
Runs a workflow using input event parameters. Args: event: input event context: input context Returns: Workflow results
239
import fire import sys from human_eval.data import HUMAN_EVAL from human_eval.evaluation import evaluate_functional_correctness HUMAN_EVAL = os.path.join(ROOT, "..", "data", "HumanEval.jsonl.gz") def evaluate_functional_correctness( sample_file: str, k: List[int] = [1, 10, 100], n_workers: int = 4, timeout: float = 3.0, problem_file: str = HUMAN_EVAL, ): """ Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz" """ problems = read_problems(problem_file) # Check the generated samples against test suites. with ThreadPoolExecutor(max_workers=n_workers) as executor: futures = [] completion_id = Counter() n_samples = 0 results = defaultdict(list) print("Reading samples...") for sample in tqdm.tqdm(stream_jsonl(sample_file)): task_id = sample["task_id"] completion = sample["completion"] args = (problems[task_id], completion, timeout, completion_id[task_id]) future = executor.submit(check_correctness, *args) futures.append(future) completion_id[task_id] += 1 n_samples += 1 assert len(completion_id) == len(problems), "Some problems are not attempted." print("Running test suites...") for future in tqdm.tqdm(as_completed(futures), total=len(futures)): result = future.result() results[result["task_id"]].append((result["completion_id"], result)) # Calculate pass@k. total, correct = [], [] for result in results.values(): result.sort() passed = [r[1]["passed"] for r in result] total.append(len(passed)) correct.append(sum(passed)) total = np.array(total) correct = np.array(correct) ks = k pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()} # Finally, save the results in one file: def combine_results(): for sample in stream_jsonl(sample_file): task_id = sample["task_id"] result = results[task_id].pop(0) sample["result"] = result[1]["result"] sample["passed"] = result[1]["passed"] yield sample out_file = sample_file + "_results.jsonl" print(f"Writing results to {out_file}...") write_jsonl(out_file, tqdm.tqdm(combine_results(), total=n_samples)) return pass_at_k The provided code snippet includes necessary dependencies for implementing the `entry_point` function. Write a Python function `def entry_point( sample_file: str, k: str = "1,10,100", n_workers: int = 4, timeout: float = 3.0, problem_file: str = HUMAN_EVAL, )` to solve the following problem: Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz" Here is the function: def entry_point( sample_file: str, k: str = "1,10,100", n_workers: int = 4, timeout: float = 3.0, problem_file: str = HUMAN_EVAL, ): """ Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz" """ k = list(map(int, k.split(","))) results = evaluate_functional_correctness(sample_file, k, n_workers, timeout, problem_file) print(results)
Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz"
240
from setuptools import setup, find_namespace_packages def read_file(fname): with open(fname, "r", encoding="utf-8") as f: return f.read()
null
241
import argparse import json import re from warnings import warn from pyspark.sql import SparkSession from pyspark.sql.types import DateType, FloatType, StructField, StructType from merlion.spark.dataset import create_hier_dataset, read_dataset, write_dataset, TSID_COL_NAME from merlion.spark.pandas_udf import forecast, reconciliation def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--train_data", required=True, help="Path at which the train data is stored.") parser.add_argument("--output_path", required=True, help="Path at which to save output forecasts.") parser.add_argument( "--time_stamps", required=True, help='JSON list of times we want to forecast, e.g. \'["2022-01-01 00:00:00", "2020-01-01 00:01:00"]\'.', ) parser.add_argument("--target_col", required=True, help="Name of the column whose value we want to forecast.") parser.add_argument( "--predict_on_train", action="store_true", help="Whether to return the model's prediction on the training data." ) parser.add_argument("--file_format", default="csv", help="File format of train data & output file.") parser.add_argument( "--model", default=json.dumps({"name": "DefaultForecaster"}), help="JSON dict specifying the model we wish to use for forecasting.", ) parser.add_argument( "--index_cols", default="[]", help="JSON list of columns used to demarcate different time series. For example, if the dataset contains sales " 'for multiple items at different stores, this could be \'["store", "item"]\'. ' "If not given, we assume the dataset contains only 1 time series.", ) parser.add_argument( "--hierarchical", action="store_true", default=False, help="Whether the time series have a hierarchical structure. If true, we aggregate the time series in the " "dataset (by summation), in the order specified by index_cols. For example, if index_cols is " '\'["store", "item"]\', we first sum the sales of all items within store, and then sum the global ' "sales of all stores and all items.", ) parser.add_argument( "--agg_dict", default="{}", help="JSON dict indicating how different data columns should be aggregated if working with hierarchical time " "series. Keys are column names, values are names of standard aggregations (e.g. sum, mean, max, etc.). " "If a column is not specified, it is not aggregated. Note that we always sum the target column, regardless of " "whether it is specified. This ensures that hierarchical time series reconciliation works correctly.", ) parser.add_argument( "--time_col", default=None, help="Name of the column containing timestamps. We use the first non-index column if one is not given.", ) parser.add_argument( "--data_cols", default=None, help="JSON list of columns to use when modeling the data." "If not given, we do univariate forecasting using only target_col.", ) args = parser.parse_args() # Parse time_stamps JSON string try: time_stamps = json.loads(re.sub("'", '"', args.time_stamps)) assert isinstance(time_stamps, list) and len(time_stamps) > 0 except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --time_stamps to be a non-empty JSON list. Got {args.time_stamps}.\n Caught {type(e).__name__}({e})" ) else: args.time_stamps = time_stamps # Parse index_cols JSON string try: index_cols = json.loads(re.sub("'", '"', args.index_cols)) or [] assert isinstance(index_cols, list) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --index_cols to be a JSON list. Got {args.index_cols}.\n Caught {type(e).__name__}({e})" ) else: args.index_cols = index_cols # Parse agg_dict JSON string try: agg_dict = json.loads(re.sub("'", '"', args.agg_dict)) or {} assert isinstance(agg_dict, dict) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error(f"Expected --agg_dict to be a JSON dict. Got {args.agg_dict}.\n Caught {type(e).__name__}({e})") else: if args.target_col not in agg_dict: agg_dict[args.target_col] = "sum" elif agg_dict[args.target_col] != "sum": warn( f'Expected the agg_dict to specify "sum" for target_col {args.target_col}, ' f'but got {agg_dict[args.target_col]}. Manually changing to "sum".' ) agg_dict[args.target_col] = "sum" args.agg_dict = agg_dict # Set default data_cols if needed & make sure target_col is in data_cols if args.data_cols is None: args.data_cols = [args.target_col] else: try: data_cols = json.loads(re.sub("'", '"', args.data_cols)) assert isinstance(data_cols, list) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --data_cols to be a JSON list if given. Got {args.data_cols}.\n" f"Caught {type(e).__name__}({e})" ) else: args.data_cols = data_cols if args.target_col not in args.data_cols: parser.error(f"Expected --data_cols {args.data_cols} to contain --target_col {args.target_col}.") # Parse JSON string for the model and set the model's target_seq_index try: model = json.loads(re.sub("'", '"', args.model)) assert isinstance(model, dict) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --model to be a JSON dict specifying a Merlion model. Got {args.model}.\n" f"Caught {type(e).__name__}({e})" ) else: target_seq_index = {v: i for i, v in enumerate(args.data_cols)}[args.target_col] model["target_seq_index"] = target_seq_index args.model = model # Only do hierarchical forecasting if there are index columns specifying a hierarchy args.hierarchical = args.hierarchical and len(args.index_cols) > 0 return args
null
242
import argparse import json import re from pyspark.sql import SparkSession from pyspark.sql.types import DateType, FloatType, StructField, StructType from merlion.spark.dataset import read_dataset, write_dataset, TSID_COL_NAME from merlion.spark.pandas_udf import anomaly def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--data", required=True, help="Path at which the dataset is stored.") parser.add_argument("--output_path", required=True, help="Path at which to save output anomaly scores.") parser.add_argument( "--train_test_split", required=True, help="First timestamp in the dataset which should be used for testing." ) parser.add_argument("--file_format", default="csv", help="File format of train data & output file.") parser.add_argument( "--model", default=json.dumps({"name": "DefaultDetector"}), help="JSON dict specifying the model we wish to use for anomaly detection.", ) parser.add_argument( "--index_cols", default="[]", help="JSON list of columns used to demarcate different time series. For example, if the dataset contains sales " 'for multiple items at different stores, this could be \'["store", "item"]\'. ' "If not given, we assume the dataset contains only 1 time series.", ) parser.add_argument( "--time_col", default=None, help="Name of the column containing timestamps. If not given, use the first non-index column.", ) parser.add_argument( "--data_cols", default="[]", help="JSON list of columns to use when modeling the data. If not given, use all non-index, non-time columns.", ) parser.add_argument( "--predict_on_train", action="store_true", help="Whether to return the model's prediction on the training data." ) args = parser.parse_args() # Parse index_cols JSON string try: index_cols = json.loads(re.sub("'", '"', args.index_cols)) assert isinstance(index_cols, list) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --index_cols to be a JSON list. Got {args.index_cols}.\n" f"Caught {type(e).__name__}({e})" ) else: args.index_cols = index_cols # Parse data_cols JSON string try: data_cols = json.loads(re.sub("'", '"', args.data_cols)) assert isinstance(data_cols, list) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --data_cols to be a JSON list if given. Got {args.data_cols}.\n" f"Caught {type(e).__name__}({e})" ) else: args.data_cols = data_cols # Parse JSON string for the model and set the model's target_seq_index try: model = json.loads(re.sub("'", '"', args.model)) assert isinstance(model, dict) except (json.decoder.JSONDecodeError, AssertionError) as e: parser.error( f"Expected --model to be a JSON dict specifying a Merlion model. Got {args.model}.\n" f"Caught {type(e).__name__}({e})" ) else: args.model = model return args
null
243
import os import re import shutil from bs4 import BeautifulSoup as bs from git import Repo def create_version_dl(soup, prefix, current_version, all_versions): dl = soup.new_tag("dl") dt = soup.new_tag("dt") dt.string = "Versions" dl.append(dt) for version in all_versions: # Create the href for this version & bold it if it's the current version href = soup.new_tag("a", href=f"{prefix}/{version}/index.html") href.string = version if version == current_version: strong = soup.new_tag("strong") strong.append(href) href = strong # Create a list item & add it to the dl dd = soup.new_tag("dd") dd.append(href) dl.append(dd) return dl
null
244
import argparse from collections import OrderedDict import glob import json import logging import math import os import re import sys import git from typing import Dict, List import numpy as np import pandas as pd import tqdm from merlion.evaluate.forecast import ForecastEvaluator, ForecastMetric, ForecastEvaluatorConfig from merlion.models.ensemble.combine import CombinerBase, Mean, ModelSelector, MetricWeightedMean from merlion.models.ensemble.forecast import ForecasterEnsembleConfig, ForecasterEnsemble from merlion.models.factory import ModelFactory from merlion.models.forecast.base import ForecasterBase from merlion.transform.resample import TemporalResample, granularity_str_to_seconds from merlion.utils import TimeSeries, UnivariateTimeSeries from merlion.utils.resample import infer_granularity, to_pd_datetime from ts_datasets.base import BaseDataset from ts_datasets.forecast import * import matplotlib.pyplot as plt CONFIG_JSON = os.path.join(MERLION_ROOT, "conf", "benchmark_forecast.json") def parse_args(): with open(CONFIG_JSON, "r") as f: valid_models = list(json.load(f).keys()) parser = argparse.ArgumentParser( description="Script to benchmark various Merlion forecasting models on " "univariate forecasting task. This file assumes that " "you have pip installed both merlion (this repo's main " "package) and ts_datasets (a sub-repo)." ) parser.add_argument( "--dataset", default="M4_Hourly", help="Name of dataset to run benchmark on. See get_dataset() " "in ts_datasets/ts_datasets/forecast/__init__.py for " "valid options.", ) parser.add_argument("--data_root", default=None, help="Root directory/file of dataset.") parser.add_argument("--data_kwargs", default="{}", help="JSON of keyword arguments for the data loader.") parser.add_argument( "--models", type=str, nargs="*", default=None, help="Name of forecasting model to benchmark.", choices=valid_models, ) parser.add_argument( "--hash", type=str, default=None, help="Unique identifier for the output file. Can be useful " "if doing multiple runs with the same model but different " "hyperparameters.", ) parser.add_argument( "--ensemble_type", type=str, default="selector", help="How to combine multiple models in an ensemble", choices=["mean", "err_weighted_mean", "selector"], ) parser.add_argument( "--retrain_type", type=str, default="without_retrain", help="Name of retrain type, should be one of the three " "types, without_retrain, sliding_window_retrain" "or expanding_window_retrain.", choices=["without_retrain", "sliding_window_retrain", "expanding_window_retrain"], ) parser.add_argument("--n_retrain", type=int, default=0, help="Specify the number of retrain times.") parser.add_argument( "--load_checkpoint", action="store_true", default=False, help="Specify this option if you would like continue " "training your model on a dataset from a " "checkpoint, instead of restarting from scratch.", ) parser.add_argument("--debug", action="store_true", default=False, help="Whether to set logging level to debug.") parser.add_argument( "--visualize", action="store_true", default=False, help="Whether to plot the model's predictions after " "training on each example. Mutually exclusive " "with running any sort of evaluation.", ) parser.add_argument( "--summarize", action="store_true", default=False, help="Specify this option if you want to summarize " "all results for a particular dataset. Note " "that this option only summarizes the results " "that have already been computed! It does not " "run any algorithms, aside from the one(s) given " "to --models (if any).", ) args = parser.parse_args() args.data_kwargs = json.loads(args.data_kwargs) assert isinstance(args.data_kwargs, dict) # If not summarizing all results, we need at least one model to evaluate if args.summarize and args.models is None: args.models = [] elif not args.summarize: if args.models is None: args.models = ["ARIMA"] elif len(args.models) == 0: parser.error("At least one model required if --summarize not given") return args
null
245
import argparse from collections import OrderedDict import glob import json import logging import math import os import re import sys import git from typing import Dict, List import numpy as np import pandas as pd import tqdm from merlion.evaluate.forecast import ForecastEvaluator, ForecastMetric, ForecastEvaluatorConfig from merlion.models.ensemble.combine import CombinerBase, Mean, ModelSelector, MetricWeightedMean from merlion.models.ensemble.forecast import ForecasterEnsembleConfig, ForecasterEnsemble from merlion.models.factory import ModelFactory from merlion.models.forecast.base import ForecasterBase from merlion.transform.resample import TemporalResample, granularity_str_to_seconds from merlion.utils import TimeSeries, UnivariateTimeSeries from merlion.utils.resample import infer_granularity, to_pd_datetime from ts_datasets.base import BaseDataset from ts_datasets.forecast import * import matplotlib.pyplot as plt logger = logging.getLogger(__name__) MERLION_ROOT = os.path.dirname(os.path.abspath(__file__)) def get_dataset_name(dataset: BaseDataset) -> str: name = type(dataset).__name__ if hasattr(dataset, "subset") and dataset.subset is not None: name += "_" + dataset.subset if isinstance(dataset, CustomDataset): root = dataset.rootdir name = os.path.join(name, os.path.basename(os.path.dirname(root) if os.path.isfile(root) else root)) return name def resolve_model_name(model_name: str): with open(CONFIG_JSON, "r") as f: config_dict = json.load(f) if model_name not in config_dict: raise NotImplementedError( f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}" ) while "alias" in config_dict[model_name]: model_name = config_dict[model_name]["alias"] return model_name def get_model(model_name: str, dataset: BaseDataset, **kwargs) -> ForecasterBase: """Gets the model, configured for the specified dataset.""" with open(CONFIG_JSON, "r") as f: config_dict = json.load(f) if model_name not in config_dict: raise NotImplementedError( f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}" ) while "alias" in config_dict[model_name]: model_name = config_dict[model_name]["alias"] # Load the model with default kwargs, but override with dataset-specific # kwargs where relevant, as well as manual kwargs model_configs = config_dict[model_name]["config"] model_type = config_dict[model_name].get("model_type", model_name) model_kwargs = model_configs["default"] model_kwargs.update(model_configs.get(type(dataset).__name__, {})) model_kwargs.update(kwargs) # Override the transform with Identity if "transform" in model_kwargs: logger.warning( f"Data pre-processing transforms currently not " f"supported for forecasting. Ignoring " f"transform {model_kwargs['transform']} and " f"using Identity instead." ) model_kwargs["transform"] = TemporalResample( granularity=None, aggregation_policy="Mean", missing_value_policy="FFill" ) return ModelFactory.create(name=model_type, **model_kwargs) def get_combiner(ensemble_type: str) -> CombinerBase: if ensemble_type == "mean": return Mean(abs_score=False) elif ensemble_type == "selector": return ModelSelector(metric=ForecastMetric.sMAPE) elif ensemble_type == "err_weighted_mean": return MetricWeightedMean(metric=ForecastMetric.sMAPE) else: raise KeyError(f"ensemble_type {ensemble_type} not supported.") def get_dirname(model_names: List[str], ensemble_type: str) -> str: dirname = "+".join(sorted(model_names)) if len(model_names) > 1: dirname += "_" + ensemble_type return dirname def get_code_version_info(): return dict(time=str(pd.Timestamp.now()), commit=git.Repo(search_parent_directories=True).head.object.hexsha) def plot_unrolled_compare(train_vals, test_vals, train_pred, test_pred, outputpath, title): truth_pd = (train_vals + test_vals).to_pd() truth_pd.columns = ["ground_truth"] pred_pd = (train_pred + test_pred).to_pd() pred_pd.columns = ["prediction"] result_pd = pd.concat([truth_pd, pred_pd], axis=1) plt.figure() plt.rcParams["savefig.dpi"] = 500 plt.rcParams["figure.dpi"] = 500 result_pd.plot(linewidth=0.5) plt.axvline(train_vals.to_pd().index[-1], color="r") plt.title(title) plt.savefig(outputpath) plt.clf() class ForecastMetric(Enum): """ Enumeration of evaluation metrics for time series forecasting. For each value, the name is the metric, and the value is a partial function of form ``f(ground_truth, predict, **kwargs)``. Here, ``ground_truth`` is the original time series, and ``predict`` is the result returned by a `ForecastEvaluator`. """ MAE = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.mae) """ Mean Absolute Error (MAE) is formulated as: .. math:: \\frac{1}{T}\\sum_{t=1}^T{(|y_t - \\hat{y}_t|)}. """ MARRE = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.marre) """ Mean Absolute Ranged Relative Error (MARRE) is formulated as: .. math:: 100 \\cdot \\frac{1}{T} \\sum_{t=1}^{T} {\\left| \\frac{y_t - \\hat{y}_t} {\\max_t{y_t} - \\min_t{y_t}} \\right|}. """ RMSE = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.rmse) """ Root Mean Squared Error (RMSE) is formulated as: .. math:: \\sqrt{\\frac{1}{T}\\sum_{t=1}^T{(y_t - \\hat{y}_t)^2}}. """ sMAPE = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.smape) """ symmetric Mean Absolute Percentage Error (sMAPE) is formulated as: .. math:: 200 \\cdot \\frac{1}{T}\\sum_{t=1}^{T}{\\frac{\\left| y_t - \\hat{y}_t \\right|}{\\left| y_t \\right| + \\left| \\hat{y}_t \\right|}}. """ RMSPE = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.rmspe) """ Root Mean Square Percent Error is formulated as: .. math:: 100 \\cdot \\sqrt{\\frac{1}{T}\\sum_{t=1}^T\\frac{(y_t - \\hat{y}_t)}{y_t}^2}. """ MASE = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.mase) """ Mean Absolute Scaled Error (MASE) is formulated as: .. math:: \\frac{1}{T}\\cdot\\frac{\\sum_{t=1}^{T}\\left| y_t - \\hat{y}_t \\right|}{\\frac{1}{N-m}\\sum_{t=m+1}^{N}\\left| x_t - x_{t-m} \\right|}. """ MSIS = partial(accumulate_forecast_score, metric=ForecastScoreAccumulator.msis) """ Mean Scaled Interval Score (MSIS) is formulated as: .. math:: \\frac{1}{T}\\cdot\\frac{\\sum_{t=1}^{T} (U_t - L_t) + 100 \\cdot (L_t - y_t)[y_t<L_t] + 100\\cdot(y_t - U_t)[y_t > U_t]}{\\frac{1}{N-m}\\sum_{t=m+1}^{N}\\left| x_t - x_{t-m} \\right|}. """ class ForecastEvaluatorConfig(EvaluatorConfig): """ Configuration class for a `ForecastEvaluator` """ _timedelta_keys = EvaluatorConfig._timedelta_keys + ["horizon"] def __init__(self, horizon: float = None, **kwargs): """ :param horizon: the model's prediction horizon. Whenever the model makes a prediction, it will predict ``horizon`` seconds into the future. """ super().__init__(**kwargs) self.horizon = horizon def horizon(self) -> Union[pd.Timedelta, pd.DateOffset, None]: """ :return: the horizon our model is predicting into the future. Defaults to the retraining frequency. """ if self._horizon is None: return self.retrain_freq return self._horizon def horizon(self, horizon): self._horizon = to_offset(horizon) def cadence(self) -> Union[pd.Timedelta, pd.DateOffset, None]: """ :return: the cadence at which we are having our model produce new predictions. Defaults to the predictive horizon if there is one, and the retraining frequency otherwise. """ if self._cadence is None: return self.horizon return self._cadence def cadence(self, cadence): self._cadence = to_offset(cadence) class ForecastEvaluator(EvaluatorBase): """ Simulates the live deployment of an forecaster model. """ config_class = ForecastEvaluatorConfig def __init__(self, model, config): assert isinstance(model, ForecasterBase) super().__init__(model=model, config=config) def horizon(self): return self.config.horizon def cadence(self): return self.config.cadence def _call_model( self, time_series: TimeSeries, time_series_prev: TimeSeries, exog_data: TimeSeries = None, return_err: bool = False, ) -> Union[Tuple[TimeSeries, TimeSeries], TimeSeries]: if self.model.target_seq_index is not None: name = time_series.names[self.model.target_seq_index] time_stamps = time_series.univariates[name].time_stamps else: time_stamps = time_series.time_stamps forecast, err = self.model.forecast( time_stamps=time_stamps, time_series_prev=time_series_prev, exog_data=exog_data ) return (forecast, err) if return_err else forecast def evaluate( self, ground_truth: TimeSeries, predict: Union[TimeSeries, List[TimeSeries]], metric: ForecastMetric = ForecastMetric.sMAPE, ): """ :param ground_truth: the series of test data :param predict: the series of predicted values :param metric: the evaluation metric. """ if self.model.target_seq_index is not None: name = ground_truth.names[self.model.target_seq_index] ground_truth = ground_truth.univariates[name].to_ts() if isinstance(predict, TimeSeries): if metric is not None: return metric.value(ground_truth, predict) return accumulate_forecast_score(ground_truth, predict) else: if metric is not None: weights = np.asarray([len(p) for p in predict if not p.is_empty()]) vals = [metric.value(ground_truth, p) for p in predict if not p.is_empty()] return np.dot(weights / weights.sum(), vals) return [accumulate_forecast_score(ground_truth, p) for p in predict if not p.is_empty()] class ForecasterEnsembleConfig(ForecasterExogConfig, EnsembleConfig): """ Config class for an ensemble of forecasters. """ _default_combiner = Mean(abs_score=False) def __init__(self, max_forecast_steps=None, target_seq_index=None, verbose=False, **kwargs): self.verbose = verbose super().__init__(max_forecast_steps=max_forecast_steps, target_seq_index=None, **kwargs) # Override the target_seq_index of all individual models after everything has been initialized # FIXME: doesn't work if models have heterogeneous transforms which change the dim of the input time series self.target_seq_index = target_seq_index if self.models is not None: assert all(model.target_seq_index == self.target_seq_index for model in self.models) def target_seq_index(self): return self._target_seq_index def target_seq_index(self, target_seq_index): if self.models is not None: # Get the target_seq_index from the models if None is given if target_seq_index is None: non_none_idxs = [m.target_seq_index for m in self.models if m.target_seq_index is not None] if len(non_none_idxs) > 0: target_seq_index = non_none_idxs[0] assert all(m.target_seq_index in [None, target_seq_index] for m in self.models), ( f"Attempted to infer target_seq_index from the individual models in the ensemble, but " f"not all models have the same target_seq_index. Got {[m.target_seq_index for m in self.models]}" ) # Only override the target_seq_index from the models if there is one if target_seq_index is not None: for model in self.models: model.config.target_seq_index = target_seq_index # Save the ensemble-level target_seq_index as a private variable self._target_seq_index = target_seq_index class ForecasterEnsemble(EnsembleBase, ForecasterExogBase): """ Class representing an ensemble of multiple forecasting models. """ models: List[ForecasterBase] config_class = ForecasterEnsembleConfig def _default_train_config(self): return EnsembleTrainConfig(valid_frac=0.2) def require_even_sampling(self) -> bool: return False def __init__(self, config: ForecasterEnsembleConfig = None, models: List[ForecasterBase] = None): super().__init__(config=config, models=models) for model in self.models: assert isinstance( model, ForecasterBase ), f"Expected all models in {type(self).__name__} to be forecasters, but got a {type(model).__name__}." model.config.invert_transform = True def train_pre_process( self, train_data: TimeSeries, exog_data: TimeSeries = None, return_exog=None ) -> Union[TimeSeries, Tuple[TimeSeries, Union[TimeSeries, None]]]: idxs = [model.target_seq_index for model in self.models] if any(i is not None for i in idxs): self.config.target_seq_index = [i for i in idxs if i is not None][0] assert all(i in [None, self.target_seq_index] for i in idxs), ( f"All individual forecasters must have the same target_seq_index " f"to be used in a ForecasterEnsemble, but got the following " f"target_seq_idx values: {idxs}" ) return super().train_pre_process(train_data=train_data, exog_data=exog_data, return_exog=return_exog) def resample_time_stamps(self, time_stamps: Union[int, List[int]], time_series_prev: TimeSeries = None): return time_stamps def train_combiner(self, all_model_outs: List[TimeSeries], target: TimeSeries, **kwargs) -> TimeSeries: return super().train_combiner(all_model_outs, target, target_seq_index=self.target_seq_index, **kwargs) def _train_with_exog( self, train_data: TimeSeries, train_config: EnsembleTrainConfig = None, exog_data: TimeSeries = None ) -> Tuple[Optional[TimeSeries], None]: train, valid = self.train_valid_split(train_data, train_config) per_model_train_configs = train_config.per_model_train_configs if per_model_train_configs is None: per_model_train_configs = [None] * len(self.models) assert len(per_model_train_configs) == len(self.models), ( f"You must provide the same number of per-model train configs " f"as models, but received received {len(per_model_train_configs)} " f"train configs for an ensemble with {len(self.models)} models" ) # Train individual models on the training data preds, errs = [], [] eval_cfg = ForecastEvaluatorConfig(retrain_freq=None, horizon=self.get_max_common_horizon(train)) # TODO: parallelize me for i, (model, cfg) in enumerate(zip(self.models, per_model_train_configs)): logger.info(f"Training & evaluating model {i+1}/{len(self.models)} ({type(model).__name__})...") try: train_kwargs = dict(train_config=cfg) (train_pred, train_err), pred = ForecastEvaluator(model=model, config=eval_cfg).get_predict( train_vals=train, test_vals=valid, exog_data=exog_data, train_kwargs=train_kwargs ) preds.append(train_pred if valid is None else pred) errs.append(train_err if valid is None else None) except Exception: logger.warning( f"Caught an exception while training model {i+1}/{len(self.models)} ({type(model).__name__}). " f"Model will not be used. {traceback.format_exc()}" ) self.combiner.set_model_used(i, False) preds.append(None) errs.append(None) # Train the combiner on the train data if we didn't use validation data. if valid is None: pred = self.train_combiner(preds, train_data) err = None if any(e is None for e in errs) else self.combiner(errs, train_data) return pred, err # Otherwise, train the combiner on the validation data, and re-train the models on the full data self.train_combiner(preds, valid) full_preds, full_errs = [], [] # TODO: parallelize me for i, (model, used, cfg) in enumerate(zip(self.models, self.models_used, per_model_train_configs)): model.reset() if used: logger.info(f"Re-training model {i+1}/{len(self.models)} ({type(model).__name__}) on full data...") pred, err = model.train(train_data, train_config=cfg, exog_data=exog_data) else: pred, err = None, None full_preds.append(pred) full_errs.append(err) if any(used and e is None for used, e in zip(self.models_used, full_errs)): err = None else: err = self.combiner(full_errs, train_data) return self.combiner(full_preds, train_data), err def _forecast_with_exog( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False, exog_data: pd.DataFrame = None, exog_data_prev: pd.DataFrame = None, ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: preds, errs = [], [] time_series_prev = TimeSeries.from_pd(time_series_prev) if exog_data is not None: exog_data = pd.concat((exog_data_prev, exog_data)) if exog_data_prev is not None else exog_data exog_data = TimeSeries.from_pd(exog_data) for model, used in zip(self.models, self.models_used): if used: pred, err = model.forecast( time_stamps=time_stamps, time_series_prev=time_series_prev, exog_data=exog_data, return_prev=return_prev, ) preds.append(pred) errs.append(err) pred = self.combiner(preds, None).to_pd() err = None if any(e is None for e in errs) else self.combiner(errs, None).to_pd() return pred, err class TemporalResample(TransformBase): """ Defines a policy to temporally resample a time series at a specified granularity. Note that while this transform does support inversion, the recovered time series may differ from the input due to information loss when resampling. """ def __init__( self, granularity: Union[str, int, float] = None, origin: int = None, trainable_granularity: bool = None, remove_non_overlapping=True, aggregation_policy: Union[str, AggregationPolicy] = "Mean", missing_value_policy: Union[str, MissingValuePolicy] = "Interpolate", ): """ Defines a policy to temporally resample a time series. :param granularity: The granularity at which we want to resample. :param origin: The time stamp defining the offset to start at. :param trainable_granularity: Whether we will automatically infer the granularity of the time series. If ``None`` (default), it will be trainable only if no granularity is explicitly given. :param remove_non_overlapping: If ``True``, we will only keep the portions of the univariates that overlap with each other. For example, if we have 3 univariates which span timestamps [0, 3600], [60, 3660], and [30, 3540], we will only keep timestamps in the range [60, 3540]. If ``False``, we will keep all timestamps produced by the resampling. :param aggregation_policy: The policy we will use to aggregate multiple values in a window (downsampling). :param missing_value_policy: The policy we will use to impute missing values (upsampling). """ super().__init__() self.granularity = granularity self.origin = origin self.trainable_granularity = (granularity is None) if trainable_granularity is None else trainable_granularity self.remove_non_overlapping = remove_non_overlapping self.aggregation_policy = aggregation_policy self.missing_value_policy = missing_value_policy def requires_inversion_state(self): return False def proper_inversion(self): """ We treat resampling as a proper inversion to avoid emitting warnings. """ return True def granularity(self): return self._granularity def granularity(self, granularity): if not isinstance(granularity, (int, float)): try: granularity = granularity_str_to_seconds(granularity) except: granularity = getattr(granularity, "freqstr", granularity) self._granularity = granularity def aggregation_policy(self) -> AggregationPolicy: return self._aggregation_policy def aggregation_policy(self, agg: Union[str, AggregationPolicy]): if isinstance(agg, str): valid = set(AggregationPolicy.__members__.keys()) if agg not in valid: raise KeyError(f"{agg} is not a valid aggregation policy. Valid aggregation policies are: {valid}") agg = AggregationPolicy[agg] self._aggregation_policy = agg def missing_value_policy(self) -> MissingValuePolicy: return self._missing_value_policy def missing_value_policy(self, mv: Union[str, MissingValuePolicy]): if isinstance(mv, str): valid = set(MissingValuePolicy.__members__.keys()) if mv not in valid: raise KeyError(f"{mv} is not a valid missing value policy. Valid aggregation policies are: {valid}") mv = MissingValuePolicy[mv] self._missing_value_policy = mv def train(self, time_series: TimeSeries): if self.trainable_granularity: granularity = infer_granularity(time_series.np_time_stamps) logger.warning(f"Inferred granularity {granularity}") self.granularity = granularity if self.trainable_granularity or self.origin is None: t0, tf = time_series.t0, time_series.tf if isinstance(self.granularity, (int, float)): offset = (tf - t0) % self.granularity else: offset = 0 self.origin = t0 + offset def __call__(self, time_series: TimeSeries) -> TimeSeries: if self.granularity is None: logger.warning( f"Skipping resampling step because granularity is " f"None. Please either specify a granularity or train " f"this transformation on a time series." ) return time_series return time_series.align( alignment_policy=AlignPolicy.FixedGranularity, granularity=self.granularity, origin=self.origin, remove_non_overlapping=self.remove_non_overlapping, aggregation_policy=self.aggregation_policy, missing_value_policy=self.missing_value_policy, ) def to_pd_datetime(timestamp): """ Converts a timestamp (or list/iterable of timestamps) to pandas Datetime, truncated at the millisecond. """ if isinstance(timestamp, pd.DatetimeIndex): return timestamp elif isinstance(timestamp, (int, float)): return pd.to_datetime(int(timestamp * 1000), unit="ms") elif isinstance(timestamp, Iterable) and all(isinstance(t, (int, float)) for t in timestamp): timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms") elif isinstance(timestamp, np.ndarray) and timestamp.dtype in [int, np.float32, np.float64]: timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms") return pd.to_datetime(timestamp) def infer_granularity(time_stamps, return_offset=False): """ Infers the granularity of a list of time stamps. """ # See if pandas can infer the granularity on its own orig_t = to_pd_datetime(time_stamps) if len(orig_t) > 2: freq = pd.infer_freq(orig_t) elif len(orig_t) == 2: freq = orig_t[1] - orig_t[0] else: raise ValueError("Need at least 2 timestamps to infer a granularity.") offset = pd.to_timedelta(0) if freq is not None: freq = pd_to_offset(freq) return (freq, offset) if return_offset else freq # Otherwise, start with the most commonly occurring timedelta dt = pd.to_timedelta(scipy.stats.mode(orig_t[1:] - orig_t[:-1], axis=None)[0].item()) # Check if the data could be sampled at a k-monthly granularity. candidate_freqs = [dt] for k in range(math.ceil(dt / pd.Timedelta(days=31)), math.ceil(dt / pd.Timedelta(days=28))): candidate_freqs.extend([pd_to_offset(f"{k}MS"), pd_to_offset(f"{k}M")]) # Pick the sampling frequency which has the most overlap with the actual timestamps freq2idx = {f: pd.date_range(start=orig_t[0], end=orig_t[-1], freq=f) for f in candidate_freqs} freq2offset = {f: get_date_offset(time_stamps=freq2idx[f], reference=orig_t) for f in candidate_freqs} freq = sorted(freq2idx.keys(), key=lambda f: len((freq2idx[f] + freq2offset[f]).intersection(orig_t)))[-1] return (freq, freq2offset[freq]) if return_offset else freq The provided code snippet includes necessary dependencies for implementing the `train_model` function. Write a Python function `def train_model( model_names: List[str], dataset: BaseDataset, ensemble_type: str, csv: str, config_fname: str, retrain_type: str = "without_retrain", n_retrain: int = 10, load_checkpoint: bool = False, visualize: bool = False, )` to solve the following problem: Trains all the model on the dataset, and evaluates its predictions for every horizon setting on every time series. Here is the function: def train_model( model_names: List[str], dataset: BaseDataset, ensemble_type: str, csv: str, config_fname: str, retrain_type: str = "without_retrain", n_retrain: int = 10, load_checkpoint: bool = False, visualize: bool = False, ): """ Trains all the model on the dataset, and evaluates its predictions for every horizon setting on every time series. """ model_names = [resolve_model_name(m) for m in model_names] dirname = get_dirname(model_names, ensemble_type) dirname = dirname + "_" + retrain_type + str(n_retrain) results_dir = os.path.join(MERLION_ROOT, "results", "forecast", dirname) os.makedirs(results_dir, exist_ok=True) dataset_name = get_dataset_name(dataset) # Determine where to start within the dataset if there is a checkpoint if os.path.isfile(csv) and load_checkpoint: i0 = pd.read_csv(csv).idx.max() else: i0 = -1 os.makedirs(os.path.dirname(csv), exist_ok=True) with open(csv, "w") as f: f.write("idx,name,horizon,retrain_type,n_retrain,RMSE,sMAPE\n") model = None # loop over dataset is_multivariate_data = dataset[0][0].shape[1] > 1 for i, (df, md) in enumerate(tqdm.tqdm(dataset, desc=f"{dataset_name} Dataset")): if i <= i0: continue trainval = md["trainval"] # Resample to an appropriate granularity according to metadata if "granularity" in md: dt = md["granularity"] df = df.resample(dt, closed="right", label="right").mean().interpolate() vals = TimeSeries.from_pd(df) dt = infer_granularity(vals.time_stamps) # Get the train/val split t = trainval.index[np.argmax(~trainval)].value // 1e9 train_vals, test_vals = vals.bisect(t, t_in_left=False) # Compute train_window_len and test_window_len train_start_timestamp = train_vals.univariates[train_vals.names[0]].time_stamps[0] test_start_timestamp = test_vals.univariates[test_vals.names[0]].time_stamps[0] train_window_len = test_start_timestamp - train_start_timestamp train_end_timestamp = train_vals.univariates[train_vals.names[0]].time_stamps[-1] test_end_timestamp = test_vals.univariates[test_vals.names[0]].time_stamps[-1] test_window_len = test_end_timestamp - train_end_timestamp # Get all the horizon conditions we want to evaluate from metadata if any("condition" in k and isinstance(v, list) for k, v in md.items()): conditions = sum([v for k, v in md.items() if "condition" in k and isinstance(v, list)], []) logger.debug("\n" + "=" * 80 + "\n" + df.columns[0] + "\n" + "=" * 80 + "\n") horizons = set() for condition in conditions: horizons.update([v for k, v in condition.items() if "horizon" in k]) # For multivariate data, we use a horizon of 3 elif is_multivariate_data: horizons = [3 * dt] # For univariate data, we predict the entire test data in batch else: horizons = [test_window_len] # loop over horizon conditions for horizon in horizons: horizon = granularity_str_to_seconds(horizon) try: max_forecast_steps = int(math.ceil(horizon / dt.total_seconds())) except: window = TimeSeries.from_pd(test_vals.to_pd()[: to_pd_datetime(train_end_timestamp + horizon)]) max_forecast_steps = len(TemporalResample(granularity=dt)(window)) logger.debug(f"horizon is {pd.Timedelta(seconds=horizon)} and max_forecast_steps is {max_forecast_steps}") if retrain_type == "without_retrain": retrain_freq = None train_window = None n_retrain = 0 elif retrain_type == "sliding_window_retrain": retrain_freq = math.ceil(test_window_len / int(n_retrain)) train_window = train_window_len horizon = min(retrain_freq, horizon) elif retrain_type == "expanding_window_retrain": retrain_freq = math.ceil(test_window_len / int(n_retrain)) train_window = None horizon = min(retrain_freq, horizon) else: raise ValueError( "the retrain_type should be without_retrain, sliding_window_retrain or expanding_window_retrain" ) # Get Model models = [get_model(m, dataset, max_forecast_steps=max_forecast_steps) for m in model_names] if len(models) == 1: model = models[0] else: config = ForecasterEnsembleConfig(combiner=get_combiner(ensemble_type)) model = ForecasterEnsemble(config=config, models=models) evaluator = ForecastEvaluator( model=model, config=ForecastEvaluatorConfig(train_window=train_window, horizon=horizon, retrain_freq=retrain_freq), ) # Get Evaluate Results train_result, test_pred = evaluator.get_predict(train_vals=train_vals, test_vals=test_vals) rmses = evaluator.evaluate(ground_truth=test_vals, predict=test_pred, metric=ForecastMetric.RMSE) smapes = evaluator.evaluate(ground_truth=test_vals, predict=test_pred, metric=ForecastMetric.sMAPE) # Log relevant info to the CSV with open(csv, "a") as f: f.write(f"{i},{df.columns[0]},{horizon},{retrain_type},{n_retrain},{rmses},{smapes}\n") # generate comparison plot if visualize: name = train_vals.names[0] train_time_stamps = train_vals.univariates[name].time_stamps fig_dir = os.path.join(results_dir, dataset_name + "_figs") os.makedirs(fig_dir, exist_ok=True) fig_dataset_dir = os.path.join(fig_dir, df.columns[0]) os.makedirs(fig_dataset_dir, exist_ok=True) if train_result[0] is not None: train_pred = train_result[0] else: train_pred = TimeSeries({name: UnivariateTimeSeries(train_time_stamps, None)}) fig_name = dirname + "_" + retrain_type + str(n_retrain) + "_" + "horizon" + str(int(horizon)) + ".png" plot_unrolled_compare( train_vals, test_vals, train_pred, test_pred, os.path.join(fig_dataset_dir, fig_name), dirname + f"(sMAPE={smapes:.4f})", ) # Log relevant info to the logger logger.debug(f"{dirname} {retrain_type} {n_retrain} sMAPE : {smapes:.4f}\n") # Save full experimental config if model is not None: full_config = dict( model_config=model.config.to_dict(), evaluator_config=evaluator.config.to_dict(), code_version_info=get_code_version_info(), ) with open(config_fname, "w") as f: json.dump(full_config, f, indent=2, sort_keys=True)
Trains all the model on the dataset, and evaluates its predictions for every horizon setting on every time series.
246
import argparse from collections import OrderedDict import glob import json import logging import math import os import re import sys import git from typing import Dict, List import numpy as np import pandas as pd import tqdm from merlion.evaluate.forecast import ForecastEvaluator, ForecastMetric, ForecastEvaluatorConfig from merlion.models.ensemble.combine import CombinerBase, Mean, ModelSelector, MetricWeightedMean from merlion.models.ensemble.forecast import ForecasterEnsembleConfig, ForecasterEnsemble from merlion.models.factory import ModelFactory from merlion.models.forecast.base import ForecasterBase from merlion.transform.resample import TemporalResample, granularity_str_to_seconds from merlion.utils import TimeSeries, UnivariateTimeSeries from merlion.utils.resample import infer_granularity, to_pd_datetime from ts_datasets.base import BaseDataset from ts_datasets.forecast import * import matplotlib.pyplot as plt The provided code snippet includes necessary dependencies for implementing the `join_dfs` function. Write a Python function `def join_dfs(name2df: Dict[str, pd.DataFrame]) -> pd.DataFrame` to solve the following problem: Joins multiple results dataframes into a single dataframe describing the results from all models. Here is the function: def join_dfs(name2df: Dict[str, pd.DataFrame]) -> pd.DataFrame: """ Joins multiple results dataframes into a single dataframe describing the results from all models. """ full_df, lsuffix = None, "" shared_cols = ["idx", "name", "horizon", "retrain_type", "n_retrain"] for name, df in name2df.items(): df.columns = [c if c in shared_cols else f"{c}_{name}" for c in df.columns] if full_df is None: full_df = df else: full_df = full_df.merge(df, how="outer", left_on=shared_cols, right_on=shared_cols) unique_cols = [c for c in full_df.columns if c not in shared_cols] return full_df[shared_cols + unique_cols]
Joins multiple results dataframes into a single dataframe describing the results from all models.
247
import argparse from collections import OrderedDict import glob import json import logging import math import os import re import sys import git from typing import Dict, List import numpy as np import pandas as pd import tqdm from merlion.evaluate.forecast import ForecastEvaluator, ForecastMetric, ForecastEvaluatorConfig from merlion.models.ensemble.combine import CombinerBase, Mean, ModelSelector, MetricWeightedMean from merlion.models.ensemble.forecast import ForecasterEnsembleConfig, ForecasterEnsemble from merlion.models.factory import ModelFactory from merlion.models.forecast.base import ForecasterBase from merlion.transform.resample import TemporalResample, granularity_str_to_seconds from merlion.utils import TimeSeries, UnivariateTimeSeries from merlion.utils.resample import infer_granularity, to_pd_datetime from ts_datasets.base import BaseDataset from ts_datasets.forecast import * import matplotlib.pyplot as plt def summarize_full_df(full_df: pd.DataFrame) -> pd.DataFrame: # Get the names of all algorithms which have full results algs = [col[len("sMAPE") :] for col in full_df.columns if col.startswith("sMAPE") and not full_df[col].isna().any()] summary_df = pd.DataFrame({alg.lstrip("_"): [] for alg in algs}) # Compute pooled (per time series) mean/median sMAPE, RMSE mean_smape, med_smape, mean_rmse, med_rmse = [[] for _ in range(4)] for ts_name in np.unique(full_df.name): ts = full_df[full_df.name == ts_name] # append smape smapes = ts[[f"sMAPE{alg}" for alg in algs]] mean_smape.append(smapes.mean(axis=0).values) med_smape.append(smapes.median(axis=0).values) # append rmse rmses = ts[[f"RMSE{alg}" for alg in algs]] mean_rmse.append(rmses.mean(axis=0).values) med_rmse.append(rmses.median(axis=0).values) # Add mean/median loglifts to the summary dataframe summary_df.loc["mean_sMAPE"] = np.mean(mean_smape, axis=0) summary_df.loc["median_sMAPE"] = np.median(med_smape, axis=0) summary_df.loc["mean_RMSE"] = np.mean(mean_rmse, axis=0) summary_df.loc["median_RMSE"] = np.median(med_rmse, axis=0) return summary_df
null
248
from enum import Enum from functools import partial from typing import List, Union, Tuple import warnings import numpy as np import pandas as pd from merlion.evaluate.base import EvaluatorBase, EvaluatorConfig from merlion.models.forecast.base import ForecasterBase from merlion.utils import TimeSeries, UnivariateTimeSeries from merlion.utils.resample import to_offset class ForecastScoreAccumulator: """ Accumulator which maintains summary statistics describing a forecasting algorithm's performance. Can be used to compute many different forecasting metrics. """ def __init__( self, ground_truth: Union[UnivariateTimeSeries, TimeSeries], predict: Union[UnivariateTimeSeries, TimeSeries], insample: Union[UnivariateTimeSeries, TimeSeries] = None, periodicity: int = 1, ub: TimeSeries = None, lb: TimeSeries = None, target_seq_index: int = None, ): """ :param ground_truth: ground truth time series :param predict: predicted truth time series :param insample (optional): time series used for training model. This value is used for computing MSES, MSIS :param periodicity (optional): periodicity. m=1 indicates the non-seasonal time series, whereas m>1 indicates seasonal time series. This value is used for computing MSES, MSIS. :param ub (optional): upper bound of 95% prediction interval. This value is used for computing MSIS :param lb (optional): lower bound of 95% prediction interval. This value is used for computing MSIS :param target_seq_index (optional): the index of the target sequence, for multivariate. """ ground_truth = TimeSeries.from_pd(ground_truth) predict = TimeSeries.from_pd(predict) insample = TimeSeries.from_pd(insample) t0, tf = predict.t0, predict.tf ground_truth = ground_truth.window(t0, tf, include_tf=True).align() if target_seq_index is not None: ground_truth = ground_truth.univariates[ground_truth.names[target_seq_index]].to_ts() if insample is not None: insample = insample.univariates[insample.names[target_seq_index]].to_ts() else: assert ground_truth.dim == 1 and ( insample is None or insample.dim == 1 ), "Expected to receive either univariate ground truth time series or non-None target_seq_index" self.ground_truth = ground_truth self.predict = predict.align(reference=ground_truth.time_stamps) self.insample = insample self.periodicity = periodicity self.ub = ub self.lb = lb self.target_seq_index = target_seq_index def check_before_eval(self): # Make sure time series is univariate assert self.predict.dim == self.ground_truth.dim == 1 # Make sure the timestamps of preds and targets are identical assert self.predict.time_stamps == self.ground_truth.time_stamps def mae(self): """ Mean Absolute Error (MAE) For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`, it is computed as .. math:: \\frac{1}{T}\\sum_{t=1}^T{(|y_t - \\hat{y}_t|)}. """ self.check_before_eval() predict_values = self.predict.univariates[self.predict.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values return np.mean(np.abs(ground_truth_values - predict_values)) def marre(self): """ Mean Absolute Ranged Relative Error (MARRE) For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`, it is computed as .. math:: 100 \\cdot \\frac{1}{T} \\sum_{t=1}^{T} {\\left| \\frac{y_t - \\hat{y}_t} {\\max_t{y_t} - \\min_t{y_t}} \\right|}. """ self.check_before_eval() predict_values = self.predict.univariates[self.predict.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values assert ground_truth_values.max() > ground_truth_values.min() true_range = ground_truth_values.max() - ground_truth_values.min() return 100.0 * np.mean(np.abs((ground_truth_values - predict_values) / true_range)) def rmse(self): """ Root Mean Squared Error (RMSE) For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`, it is computed as .. math:: \\sqrt{\\frac{1}{T}\\sum_{t=1}^T{(y_t - \\hat{y}_t)^2}}. """ self.check_before_eval() predict_values = self.predict.univariates[self.predict.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values return np.sqrt(np.mean((ground_truth_values - predict_values) ** 2)) def smape(self): """ symmetric Mean Absolute Percentage Error (sMAPE). For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`, it is computed as .. math:: 200 \\cdot \\frac{1}{T} \\sum_{t=1}^{T}{\\frac{\\left| y_t - \\hat{y}_t \\right|}{\\left| y_t \\right| + \\left| \\hat{y}_t \\right|}}. """ self.check_before_eval() predict_values = self.predict.univariates[self.predict.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values errors = np.abs(ground_truth_values - predict_values) scale = np.abs(ground_truth_values) + np.abs(predict_values) # Make sure the divisor is not close to zero at each timestamp if (scale < 1e-8).any(): warnings.warn("Some values very close to 0, sMAPE might not be estimated accurately.") return np.mean(200.0 * errors / (scale + 1e-8)) def rmspe(self): """ Root Mean Squared Percent Error (RMSPE) For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`, it is computed as .. math:: 100 \\cdot \\sqrt{\\frac{1}{T}\\sum_{t=1}^T\\frac{(y_t - \\hat{y}_t)}{y_t}^2}. """ self.check_before_eval() predict_values = self.predict.univariates[self.predict.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values if (ground_truth_values < 1e-8).any(): warnings.warn("Some values very close to 0, RMSPE might not be estimated accurately.") errors = ground_truth_values - predict_values return 100 * np.sqrt(np.mean(np.square(errors / ground_truth_values))) def mase(self): """ Mean Absolute Scaled Error (MASE) For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`. In sample time series :math:`\\hat{x}` of length :math:`N` and periodicity :math:`m` it is computed as .. math:: \\frac{1}{T}\\cdot\\frac{\\sum_{t=1}^{T}\\left| y_t - \\hat{y}_t \\right|}{\\frac{1}{N-m}\\sum_{t=m+1}^{N}\\left| x_t - x_{t-m} \\right|}. """ self.check_before_eval() assert self.insample.dim == 1 insample_values = self.insample.univariates[self.insample.names[0]].np_values predict_values = self.predict.univariates[self.predict.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values errors = np.abs(ground_truth_values - predict_values) scale = np.mean(np.abs(insample_values[self.periodicity :] - insample_values[: -self.periodicity])) # Make sure the divisor is not close to zero at each timestamp if (scale < 1e-8).any(): warnings.warn("Some values very close to 0, MASE might not be estimated accurately.") return np.mean(errors / (scale + 1e-8)) def msis(self): """ Mean Scaled Interval Score (MSIS) This metric evaluates the quality of 95% prediction intervals. For ground truth time series :math:`y` and predicted time series :math:`\\hat{y}` of length :math:`T`, the lower and upper bounds of the prediction intervals :math:`L` and :math:`U`. Given in sample time series :math:`\\hat{x}` of length :math:`N` and periodicity :math:`m`, it is computed as .. math:: \\frac{1}{T}\\cdot\\frac{\\sum_{t=1}^{T} (U_t - L_t) + 100 \\cdot (L_t - y_t)[y_t<L_t] + 100\\cdot(y_t - U_t)[y_t > U_t]}{\\frac{1}{N-m}\\sum_{t=m+1}^{N}\\left| x_t - x_{t-m} \\right|}. """ self.check_before_eval() assert self.insample.dim == 1 assert self.lb is not None and self.ub is not None insample_values = self.insample.univariates[self.insample.names[0]].np_values lb_values = self.lb.univariates[self.lb.names[0]].np_values ub_values = self.ub.univariates[self.ub.names[0]].np_values ground_truth_values = self.ground_truth.univariates[self.ground_truth.names[0]].np_values errors = ( np.sum(ub_values - lb_values) + 100 * np.sum((lb_values - ground_truth_values)[lb_values > ground_truth_values]) + 100 * np.sum((ground_truth_values - ub_values)[ground_truth_values > ub_values]) ) scale = np.mean(np.abs(insample_values[self.periodicity :] - insample_values[: -self.periodicity])) # Make sure the divisor is not close to zero at each timestamp if (scale < 1e-8).any(): warnings.warn("Some values very close to 0, MSIS might not be estimated accurately.") return errors / (scale + 1e-8) / len(ground_truth_values) def accumulate_forecast_score( ground_truth: TimeSeries, predict: TimeSeries, insample: TimeSeries = None, periodicity=1, ub: TimeSeries = None, lb: TimeSeries = None, metric=None, target_seq_index=None, ) -> Union[ForecastScoreAccumulator, float]: acc = ForecastScoreAccumulator( ground_truth=ground_truth, predict=predict, insample=insample, periodicity=periodicity, ub=ub, lb=lb, target_seq_index=target_seq_index, ) return acc if metric is None else metric(acc)
null
249
import bisect import logging import numpy as np from merlion.evaluate.anomaly import TSADMetric from merlion.post_process.base import PostRuleBase from merlion.utils import UnivariateTimeSeries, TimeSeries The provided code snippet includes necessary dependencies for implementing the `get_adaptive_thres` function. Write a Python function `def get_adaptive_thres(x, hist_gap_thres=None, bin_sz=None)` to solve the following problem: Look for gaps in the histogram of anomaly scores (i.e. histogram bins with zero items inside them). Set the detection threshold to the avg bin size s.t. the 2 bins have a gap of hist_gap_thres or more Here is the function: def get_adaptive_thres(x, hist_gap_thres=None, bin_sz=None): """ Look for gaps in the histogram of anomaly scores (i.e. histogram bins with zero items inside them). Set the detection threshold to the avg bin size s.t. the 2 bins have a gap of hist_gap_thres or more """ nbins = x.shape[0] // bin_sz # FIXME hist, bins = np.histogram(x, bins=nbins) idx_list = np.where((hist > 0)[1:] != (hist > 0)[:-1])[0] + 1 for i in list(range((idx_list.shape[0]) - 1)): if bins[idx_list[i + 1]] / bins[idx_list[i]] > hist_gap_thres: thres = (bins[idx_list[i + 1]] + bins[idx_list[i]]) / 2 return x > thres, thres return np.zeros((x.shape[0],)), np.inf
Look for gaps in the histogram of anomaly scores (i.e. histogram bins with zero items inside them). Set the detection threshold to the avg bin size s.t. the 2 bins have a gap of hist_gap_thres or more
250
import logging import traceback from typing import List, Union import numpy as np import pandas as pd from merlion.models.factory import instantiate_or_copy_model, ModelFactory from merlion.models.anomaly.base import DetectorBase from merlion.models.forecast.base import ForecasterBase from merlion.spark.dataset import TSID_COL_NAME from merlion.utils import TimeSeries, to_pd_datetime logger = logging.getLogger(__name__) def instantiate_or_copy_model(model: Union[dict, ModelBase]): if isinstance(model, ModelBase): return copy.deepcopy(model) elif isinstance(model, dict): try: return ModelFactory.create(**model) except Exception as e: logger.error(f"Invalid `dict` specifying a model config.\n\nGot {model}") raise e else: raise TypeError(f"Expected model to be a `dict` or `ModelBase`. Got {model}") class ForecasterBase(ModelBase): """ Base class for a forecaster model. .. note:: If your model depends on an evenly spaced time series, make sure to 1. Call `ForecasterBase.train_pre_process` in `ForecasterBase.train` 2. Call `ForecasterBase.resample_time_stamps` at the start of `ForecasterBase.forecast` to get a set of resampled time stamps, and call ``time_series.align(reference=time_stamps)`` to align the forecast with the original time stamps. """ config_class = ForecasterConfig target_name = None """ The name of the target univariate to forecast. """ def __init__(self, config: ForecasterConfig): super().__init__(config) self.target_name = None self.exog_dim = None def max_forecast_steps(self): return self.config.max_forecast_steps def target_seq_index(self) -> int: """ :return: the index of the univariate (amongst all univariates in a general multivariate time series) whose value we would like to forecast. """ return self.config.target_seq_index def invert_transform(self): """ :return: Whether to automatically invert the ``transform`` before returning a forecast. """ return self.config.invert_transform and not self.transform.identity_inversion def require_univariate(self) -> bool: """ All forecasters can work on multivariate data, since they only forecast a single target univariate. """ return False def support_multivariate_output(self) -> bool: """ Indicating whether the forecasting model can forecast multivariate output. """ return False def resample_time_stamps(self, time_stamps: Union[int, List[int]], time_series_prev: TimeSeries = None): assert self.timedelta is not None and self.last_train_time is not None, ( "train() must be called before you can call forecast(). " "If you have already called train(), make sure it sets " "self.timedelta and self.last_train_time appropriately." ) # Determine timedelta & initial time of forecast dt, offset = self.timedelta, self.timedelta_offset if time_series_prev is not None and not time_series_prev.is_empty(): t0 = to_pd_datetime(time_series_prev.tf) else: t0 = self.last_train_time # Handle the case where time_stamps is an integer if isinstance(time_stamps, (int, float)): n = int(time_stamps) assert self.max_forecast_steps is None or n <= self.max_forecast_steps resampled = pd.date_range(start=t0, periods=n + 1, freq=dt) + offset resampled = resampled[1:] if resampled[0] == t0 else resampled[:-1] time_stamps = to_timestamp(resampled) elif not self.require_even_sampling: resampled = to_pd_datetime(time_stamps) # Handle the cases where we don't have a max_forecast_steps elif self.max_forecast_steps is None: tf = to_pd_datetime(time_stamps[-1]) resampled = pd.date_range(start=t0, end=tf + 2 * dt, freq=dt) + offset if resampled[0] == t0: resampled = resampled[1:] if len(resampled) > 1 and resampled[-2] >= tf: resampled = resampled[:-1] # Handle the case where we do have a max_forecast_steps else: resampled = pd.date_range(start=t0, periods=self.max_forecast_steps + 1, freq=dt) + offset resampled = resampled[1:] if resampled[0] == t0 else resampled[:-1] resampled = resampled[: 1 + sum(resampled < to_pd_datetime(time_stamps[-1]))] tf = resampled[-1] assert to_pd_datetime(time_stamps[0]) >= t0 and to_pd_datetime(time_stamps[-1]) <= tf, ( f"Expected `time_stamps` to be between {t0} and {tf}, but `time_stamps` ranges " f"from {to_pd_datetime(time_stamps[0])} to {to_pd_datetime(time_stamps[-1])}" ) return to_timestamp(resampled).tolist() def train_pre_process( self, train_data: TimeSeries, exog_data: TimeSeries = None, return_exog=None ) -> Union[TimeSeries, Tuple[TimeSeries, Union[TimeSeries, None]]]: train_data = super().train_pre_process(train_data) if self.dim == 1: self.config.target_seq_index = 0 elif self.target_seq_index is None and not self.support_multivariate_output: raise RuntimeError( f"Attempting to use a forecaster that does not support multivariate outputs " f"on a {train_data.dim}-variable " f"time series, but didn't specify a `target_seq_index` " f"indicating which univariate is the target." ) assert self.support_multivariate_output or (0 <= self.target_seq_index < train_data.dim), ( f"Expected `support_multivariate_output = True`," f"or `target_seq_index` to be between 0 and {train_data.dim}" f"(the dimension of the transformed data), but got {self.target_seq_index} " ) if self.support_multivariate_output and self.target_seq_index is None: self.target_name = str(train_data.names) else: self.target_name = train_data.names[self.target_seq_index] # Handle exogenous data if return_exog is None: return_exog = exog_data is not None if not self.supports_exog: if exog_data is not None: exog_data = None logger.warning(f"Exogenous regressors are not supported for model {type(self).__name__}") if exog_data is not None: self.exog_dim = exog_data.dim self.config.exog_transform.train(exog_data) else: self.exog_dim = None if return_exog and exog_data is not None: exog_data, _ = self.transform_exog_data(exog_data=exog_data, time_stamps=train_data.time_stamps) return (train_data, exog_data) if return_exog else train_data def train( self, train_data: TimeSeries, train_config=None, exog_data: TimeSeries = None ) -> Tuple[TimeSeries, Optional[TimeSeries]]: """ Trains the forecaster on the input time series. :param train_data: a `TimeSeries` of metric values to train the model. :param train_config: Additional training configs, if needed. Only required for some models. :param exog_data: A time series of exogenous variables, sampled at the same time stamps as ``train_data``. Exogenous variables are known a priori, and they are independent of the variable being forecasted. Only supported for models which inherit from `ForecasterExogBase`. :return: the model's prediction on ``train_data``, in the same format as if you called `ForecasterBase.forecast` on the time stamps of ``train_data`` """ if train_config is None: train_config = copy.deepcopy(self._default_train_config) train_data, exog_data = self.train_pre_process(train_data, exog_data=exog_data, return_exog=True) if self._pandas_train: train_data = train_data.to_pd() exog_data = None if exog_data is None else exog_data.to_pd() if exog_data is None: train_result = self._train(train_data=train_data, train_config=train_config) else: train_result = self._train_with_exog(train_data=train_data, train_config=train_config, exog_data=exog_data) return self.train_post_process(train_result) def train_post_process( self, train_result: Tuple[Union[TimeSeries, pd.DataFrame], Optional[Union[TimeSeries, pd.DataFrame]]] ) -> Tuple[TimeSeries, TimeSeries]: """ Converts the train result (forecast & stderr for training data) into TimeSeries objects, and inverts the model's transform if desired. """ return self._process_forecast(*train_result) def transform_exog_data( self, exog_data: TimeSeries, time_stamps: Union[List[int], pd.DatetimeIndex], time_series_prev: TimeSeries = None, ) -> Union[Tuple[TimeSeries, TimeSeries], Tuple[TimeSeries, None], Tuple[None, None]]: if exog_data is not None: logger.warning(f"Exogenous regressors are not supported for model {type(self).__name__}") return None, None def _train(self, train_data: pd.DataFrame, train_config=None) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: raise NotImplementedError def _train_with_exog( self, train_data: pd.DataFrame, train_config=None, exog_data: pd.DataFrame = None ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: return self._train(train_data=train_data, train_config=train_config) def forecast( self, time_stamps: Union[int, List[int]], time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, return_iqr: bool = False, return_prev: bool = False, ) -> Union[Tuple[TimeSeries, Optional[TimeSeries]], Tuple[TimeSeries, TimeSeries, TimeSeries]]: """ Returns the model's forecast on the timestamps given. If ``self.transform`` is specified in the config, the forecast is a forecast of transformed values by default. To invert the transform and forecast the actual values of the time series, specify ``invert_transform = True`` when specifying the config. :param time_stamps: Either a ``list`` of timestamps we wish to forecast for, or the number of steps (``int``) we wish to forecast for. :param time_series_prev: a time series immediately preceding ``time_series``. If given, we use it to initialize the forecaster's state. Otherwise, we assume that ``time_series`` immediately follows the training data. :param exog_data: A time series of exogenous variables. Exogenous variables are known a priori, and they are independent of the variable being forecasted. ``exog_data`` must include data for all of ``time_stamps``; if ``time_series_prev`` is given, it must include data for all of ``time_series_prev.time_stamps`` as well. Optional. Only supported for models which inherit from `ForecasterExogBase`. :param return_iqr: whether to return the inter-quartile range for the forecast. Only supported for models which return error bars. :param return_prev: whether to return the forecast for ``time_series_prev`` (and its stderr or IQR if relevant), in addition to the forecast for ``time_stamps``. Only used if ``time_series_prev`` is provided. :return: ``(forecast, stderr)`` if ``return_iqr`` is false, ``(forecast, lb, ub)`` otherwise. - ``forecast``: the forecast for the timestamps given - ``stderr``: the standard error of each forecast value. May be ``None``. - ``lb``: 25th percentile of forecast values for each timestamp - ``ub``: 75th percentile of forecast values for each timestamp """ # Determine the time stamps to forecast for, and resample them if needed orig_t = None if isinstance(time_stamps, (int, float)) else time_stamps time_stamps = self.resample_time_stamps(time_stamps, time_series_prev) if return_prev and time_series_prev is not None: if orig_t is None: orig_t = time_series_prev.time_stamps + time_stamps else: orig_t = time_series_prev.time_stamps + to_timestamp(orig_t).tolist() # Transform time_series_prev if it is given old_inversion_state = self.transform.inversion_state if time_series_prev is None: time_series_prev_df = None else: time_series_prev = self.transform(time_series_prev) assert time_series_prev.dim == self.dim, ( f"time_series_prev has dimension of {time_series_prev.dim} that is different from " f"training data dimension of {self.dim} for the model" ) time_series_prev_df = time_series_prev.to_pd() # Make the prediction exog_data, exog_data_prev = self.transform_exog_data( exog_data, time_stamps=time_stamps, time_series_prev=time_series_prev ) if exog_data is None: forecast, err = self._forecast( time_stamps=time_stamps, time_series_prev=time_series_prev_df, return_prev=return_prev ) else: forecast, err = self._forecast_with_exog( time_stamps=time_stamps, time_series_prev=time_series_prev_df, return_prev=return_prev, exog_data=exog_data.to_pd(), exog_data_prev=None if exog_data_prev is None else exog_data_prev.to_pd(), ) # Format the return values and reset the transform's inversion state if self.invert_transform and time_series_prev is None: time_series_prev = self.transform(self.train_data) if time_series_prev is not None and self.target_seq_index is not None: time_series_prev = pd.DataFrame(time_series_prev.univariates[time_series_prev.names[self.target_seq_index]]) ret = self._process_forecast(forecast, err, time_series_prev, return_prev=return_prev, return_iqr=return_iqr) self.transform.inversion_state = old_inversion_state return tuple(None if x is None else x.align(reference=orig_t) for x in ret) def _process_forecast(self, forecast, err, time_series_prev=None, return_prev=False, return_iqr=False): forecast = forecast.to_pd() if isinstance(forecast, TimeSeries) else forecast if return_prev and time_series_prev is not None: forecast = pd.concat((time_series_prev, forecast)) # Obtain negative & positive error bars which are appropriately padded if err is not None: err = (err,) if not isinstance(err, tuple) else err assert isinstance(err, tuple) and len(err) in (1, 2) assert all(isinstance(e, (pd.DataFrame, TimeSeries)) for e in err) new_err = [] for e in err: e = e.to_pd() if isinstance(e, TimeSeries) else e n, d = len(forecast) - len(e), e.shape[1] if n > 0: e = pd.concat((pd.DataFrame(np.zeros((n, d)), index=forecast.index[:n], columns=e.columns), e)) e.columns = [f"{c}_err" for c in forecast.columns] new_err.append(e.abs()) e_neg, e_pos = new_err if len(new_err) == 2 else (new_err[0], new_err[0]) else: e_neg = e_pos = None # Compute upper/lower bounds for the (potentially inverted) forecast. # Only do this if returning the IQR or inverting the transform. if (return_iqr or self.invert_transform) and e_neg is not None and e_pos is not None: lb = TimeSeries.from_pd((forecast + e_neg.values * (norm.ppf(0.25) if return_iqr else -1))) ub = TimeSeries.from_pd((forecast + e_pos.values * (norm.ppf(0.75) if return_iqr else 1))) if self.invert_transform: lb = self.transform.invert(lb, retain_inversion_state=True) ub = self.transform.invert(ub, retain_inversion_state=True) else: lb = ub = None # Convert the forecast to TimeSeries and invert the transform on it if desired forecast = TimeSeries.from_pd(forecast) if self.invert_transform: forecast = self.transform.invert(forecast, retain_inversion_state=True) # Return the IQR if desired if return_iqr: if lb is None or ub is None: logger.warning("Model returned err = None, so returning IQR = (None, None)") else: lb, ub = lb.rename(lambda c: f"{c}_lower"), ub.rename(lambda c: f"{c}_upper") return forecast, lb, ub # Otherwise, either compute the stderr from the upper/lower bounds (if relevant), or just use the error if lb is not None and ub is not None: err = TimeSeries.from_pd((ub.to_pd() - lb.to_pd().values).rename(columns=lambda c: f"{c}_err").abs() / 2) elif e_neg is not None and e_pos is not None: err = TimeSeries.from_pd(e_pos if e_neg is e_pos else (e_neg + e_pos) / 2) else: err = None return forecast, err def _forecast( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: raise NotImplementedError def _forecast_with_exog( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False, exog_data: pd.DataFrame = None, exog_data_prev: pd.DataFrame = None, ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: return self._forecast(time_stamps=time_stamps, time_series_prev=time_series_prev, return_prev=return_prev) def batch_forecast( self, time_stamps_list: List[List[int]], time_series_prev_list: List[TimeSeries], return_iqr: bool = False, return_prev: bool = False, ) -> Tuple[ Union[ Tuple[List[TimeSeries], List[Optional[TimeSeries]]], Tuple[List[TimeSeries], List[TimeSeries], List[TimeSeries]], ] ]: """ Returns the model's forecast on a batch of timestamps given. :param time_stamps_list: a list of lists of timestamps we wish to forecast for :param time_series_prev_list: a list of TimeSeries immediately preceding the time stamps in time_stamps_list :param return_iqr: whether to return the inter-quartile range for the forecast. Only supported by models which can return error bars. :param return_prev: whether to return the forecast for ``time_series_prev`` (and its stderr or IQR if relevant), in addition to the forecast for ``time_stamps``. Only used if ``time_series_prev`` is provided. :return: ``(forecast, forecast_stderr)`` if ``return_iqr`` is false, ``(forecast, forecast_lb, forecast_ub)`` otherwise. - ``forecast``: the forecast for the timestamps given - ``forecast_stderr``: the standard error of each forecast value. May be ``None``. - ``forecast_lb``: 25th percentile of forecast values for each timestamp - ``forecast_ub``: 75th percentile of forecast values for each timestamp """ out_list = [] if time_series_prev_list is None: time_series_prev_list = [None for _ in range(len(time_stamps_list))] for time_stamps, time_series_prev in zip(time_stamps_list, time_series_prev_list): out = self.forecast( time_stamps=time_stamps, time_series_prev=time_series_prev, return_iqr=return_iqr, return_prev=return_prev, ) out_list.append(out) return tuple(zip(*out_list)) def get_figure( self, *, time_series: TimeSeries = None, time_stamps: List[int] = None, time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, plot_forecast_uncertainty=False, plot_time_series_prev=False, ) -> Figure: """ :param time_series: the time series over whose timestamps we wish to make a forecast. Exactly one of ``time_series`` or ``time_stamps`` should be provided. :param time_stamps: Either a ``list`` of timestamps we wish to forecast for, or the number of steps (``int``) we wish to forecast for. Exactly one of ``time_series`` or ``time_stamps`` should be provided. :param time_series_prev: a time series immediately preceding ``time_series``. If given, we use it to initialize the forecaster's state. Otherwise, we assume that ``time_series`` immediately follows the training data. :param exog_data: A time series of exogenous variables. Exogenous variables are known a priori, and they are independent of the variable being forecasted. ``exog_data`` must include data for all of ``time_stamps``; if ``time_series_prev`` is given, it must include data for all of ``time_series_prev.time_stamps`` as well. Optional. Only supported for models which inherit from `ForecasterExogBase`. :param plot_forecast_uncertainty: whether to plot uncertainty estimates (the inter-quartile range) for forecast values. Not supported for all models. :param plot_time_series_prev: whether to plot ``time_series_prev`` (and the model's fit for it). Only used if ``time_series_prev`` is given. :return: a `Figure` of the model's forecast. """ assert not ( time_series is None and time_stamps is None ), "Must provide at least one of time_series or time_stamps" if time_stamps is None: if self.invert_transform: time_stamps = time_series.time_stamps y = time_series.univariates[time_series.names[self.target_seq_index]] else: transformed_ts = self.transform(time_series) time_stamps = transformed_ts.time_stamps y = transformed_ts.univariates[transformed_ts.names[self.target_seq_index]] else: y = None # Get forecast + bounds if plotting uncertainty if plot_forecast_uncertainty: yhat, lb, ub = self.forecast( time_stamps, time_series_prev, exog_data=exog_data, return_iqr=True, return_prev=plot_time_series_prev ) yhat, lb, ub = [None if x is None else x.univariates[x.names[0]] for x in [yhat, lb, ub]] # Just get the forecast otherwise else: lb, ub = None, None yhat, err = self.forecast( time_stamps, time_series_prev, exog_data=exog_data, return_iqr=False, return_prev=plot_time_series_prev ) yhat = yhat.univariates[yhat.names[0]] # Set up all the parameters needed to make a figure if time_series_prev is not None and plot_time_series_prev: if not self.invert_transform: time_series_prev = self.transform(time_series_prev) time_series_prev = time_series_prev.univariates[time_series_prev.names[self.target_seq_index]] n_prev = len(time_series_prev) yhat_prev, yhat = yhat[:n_prev], yhat[n_prev:] if lb is not None and ub is not None: lb_prev, lb = lb[:n_prev], lb[n_prev:] ub_prev, ub = ub[:n_prev], ub[n_prev:] else: lb_prev = ub_prev = None else: time_series_prev = None yhat_prev = lb_prev = ub_prev = None # Create the figure return Figure( y=y, yhat=yhat, yhat_lb=lb, yhat_ub=ub, y_prev=time_series_prev, yhat_prev=yhat_prev, yhat_prev_lb=lb_prev, yhat_prev_ub=ub_prev, ) def plot_forecast( self, *, time_series: TimeSeries = None, time_stamps: List[int] = None, time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, plot_forecast_uncertainty=False, plot_time_series_prev=False, figsize=(1000, 600), ax=None, ): """ Plots the forecast for the time series in matplotlib, optionally also plotting the uncertainty of the forecast, as well as the past values (both true and predicted) of the time series. :param time_series: the time series over whose timestamps we wish to make a forecast. Exactly one of ``time_series`` or ``time_stamps`` should be provided. :param time_stamps: Either a ``list`` of timestamps we wish to forecast for, or the number of steps (``int``) we wish to forecast for. Exactly one of ``time_series`` or ``time_stamps`` should be provided. :param time_series_prev: a time series immediately preceding ``time_series``. If given, we use it to initialize the forecaster's state. Otherwise, we assume that ``time_series`` immediately follows the training data. :param exog_data: A time series of exogenous variables. Exogenous variables are known a priori, and they are independent of the variable being forecasted. ``exog_data`` must include data for all of ``time_stamps``; if ``time_series_prev`` is given, it must include data for all of ``time_series_prev.time_stamps`` as well. Optional. Only supported for models which inherit from `ForecasterExogBase`. :param plot_forecast_uncertainty: whether to plot uncertainty estimates (the inter-quartile range) for forecast values. Not supported for all models. :param plot_time_series_prev: whether to plot ``time_series_prev`` (and the model's fit for it). Only used if ``time_series_prev`` is given. :param figsize: figure size in pixels :param ax: matplotlib axis to add this plot to :return: (fig, ax): matplotlib figure & axes the figure was plotted on """ fig = self.get_figure( time_series=time_series, time_stamps=time_stamps, time_series_prev=time_series_prev, exog_data=exog_data, plot_forecast_uncertainty=plot_forecast_uncertainty, plot_time_series_prev=plot_time_series_prev, ) title = f"{type(self).__name__}: Forecast of {self.target_name}" return fig.plot(title=title, metric_name=self.target_name, figsize=figsize, ax=ax) def plot_forecast_plotly( self, *, time_series: TimeSeries = None, time_stamps: List[int] = None, time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, plot_forecast_uncertainty=False, plot_time_series_prev=False, figsize=(1000, 600), ): """ Plots the forecast for the time series in plotly, optionally also plotting the uncertainty of the forecast, as well as the past values (both true and predicted) of the time series. :param time_series: the time series over whose timestamps we wish to make a forecast. Exactly one of ``time_series`` or ``time_stamps`` should be provided. :param time_stamps: Either a ``list`` of timestamps we wish to forecast for, or the number of steps (``int``) we wish to forecast for. Exactly one of ``time_series`` or ``time_stamps`` should be provided. :param time_series_prev: a time series immediately preceding ``time_series``. If given, we use it to initialize the forecaster's state. Otherwise, we assume that ``time_series`` immediately follows the training data. :param exog_data: A time series of exogenous variables. Exogenous variables are known a priori, and they are independent of the variable being forecasted. ``exog_data`` must include data for all of ``time_stamps``; if ``time_series_prev`` is given, it must include data for all of ``time_series_prev.time_stamps`` as well. Optional. Only supported for models which inherit from `ForecasterExogBase`. :param plot_forecast_uncertainty: whether to plot uncertainty estimates (the inter-quartile range) for forecast values. Not supported for all models. :param plot_time_series_prev: whether to plot ``time_series_prev`` (and the model's fit for it). Only used if ``time_series_prev`` is given. :param figsize: figure size in pixels """ fig = self.get_figure( time_series=time_series, time_stamps=time_stamps, time_series_prev=time_series_prev, exog_data=exog_data, plot_forecast_uncertainty=plot_forecast_uncertainty, plot_time_series_prev=plot_time_series_prev, ) title = f"{type(self).__name__}: Forecast of {self.target_name}" return fig.plot_plotly(title=title, metric_name=self.target_name, figsize=figsize) TSID_COL_NAME = "__ts_id" The provided code snippet includes necessary dependencies for implementing the `forecast` function. Write a Python function `def forecast( pdf: pd.DataFrame, index_cols: List[str], time_col: str, target_col: str, time_stamps: Union[List[int], List[str]], model: Union[ForecasterBase, dict], predict_on_train: bool = False, agg_dict: dict = None, ) -> pd.DataFrame` to solve the following problem: Pyspark pandas UDF for performing forecasting. Should be called on a pyspark dataframe grouped by time series ID, i.e. by ``index_cols``. :param pdf: The ``pandas.DataFrame`` containing the training data. Should be a single time series. :param index_cols: The list of column names used to index all the time series in the dataset. Not used for modeling. :param time_col: The name of the column containing the timestamps. :param target_col: The name of the column whose value we wish to forecast. :param time_stamps: The timestamps at which we would like to obtain a forecast. :param model: The model (or model ``dict``) we are using to obtain a forecast. :param predict_on_train: Whether to return the model's prediction on the training data. :param agg_dict: A dictionary used to specify how different data columns should be aggregated. If a non-target data column is not in agg_dict, we do not model it for aggregated time series. :return: A ``pandas.DataFrame`` with the forecast & its standard error (NaN if the model doesn't have error bars). Columns are ``[*index_cols, time_col, target_col, target_col + \"_err\"]``. Here is the function: def forecast( pdf: pd.DataFrame, index_cols: List[str], time_col: str, target_col: str, time_stamps: Union[List[int], List[str]], model: Union[ForecasterBase, dict], predict_on_train: bool = False, agg_dict: dict = None, ) -> pd.DataFrame: """ Pyspark pandas UDF for performing forecasting. Should be called on a pyspark dataframe grouped by time series ID, i.e. by ``index_cols``. :param pdf: The ``pandas.DataFrame`` containing the training data. Should be a single time series. :param index_cols: The list of column names used to index all the time series in the dataset. Not used for modeling. :param time_col: The name of the column containing the timestamps. :param target_col: The name of the column whose value we wish to forecast. :param time_stamps: The timestamps at which we would like to obtain a forecast. :param model: The model (or model ``dict``) we are using to obtain a forecast. :param predict_on_train: Whether to return the model's prediction on the training data. :param agg_dict: A dictionary used to specify how different data columns should be aggregated. If a non-target data column is not in agg_dict, we do not model it for aggregated time series. :return: A ``pandas.DataFrame`` with the forecast & its standard error (NaN if the model doesn't have error bars). Columns are ``[*index_cols, time_col, target_col, target_col + \"_err\"]``. """ # If the time series has been aggregated, drop non-target columns which are not explicitly specified in agg_dict. if TSID_COL_NAME not in index_cols and TSID_COL_NAME in pdf.columns: index_cols = index_cols + [TSID_COL_NAME] if (pdf.loc[:, index_cols] == "__aggregated__").any().any(): data_cols = [c for c in pdf.columns if c not in index_cols + [time_col]] pdf = pdf.drop(columns=[c for c in data_cols if c != target_col and c not in agg_dict]) # Sort the dataframe by time & turn it into a Merlion time series pdf = pdf.sort_values(by=time_col) ts = TimeSeries.from_pd(pdf.drop(columns=index_cols).set_index(time_col)) # Create model model = instantiate_or_copy_model(model or {"name": "DefaultForecaster"}) if not isinstance(model, ForecasterBase): raise TypeError(f"Expected `model` to be an instance of ForecasterBase, but got {model}.") # Train model & run forecast try: train_pred, train_err = model.train(ts) pred, err = model.forecast(time_stamps=time_stamps) except Exception: row0 = pdf.iloc[0] idx = ", ".join(f"{k} = {row0[k]}" for k in index_cols) logger.warning( f"Model {type(model).__name__} threw an exception on ({idx}). Returning the mean training value as a " f"placeholder forecast. {traceback.format_exc()}" ) meanval = pdf.loc[:, target_col].mean().item() train_err, err = None, None train_pred = TimeSeries.from_pd(pd.DataFrame(meanval, index=pdf[time_col], columns=[target_col])) pred = TimeSeries.from_pd(pd.DataFrame(meanval, index=to_pd_datetime(time_stamps), columns=[target_col])) # Concatenate train & test results if predict_on_train is True if predict_on_train: if train_pred is not None and pred is not None: pred = train_pred + pred if train_err is not None and err is not None: err = train_err + err # Combine forecast & stderr into a single dataframe pred = pred.to_pd() dtype = pred.dtypes[0] err = pd.DataFrame(np.full(len(pred), np.nan), index=pred.index, dtype=dtype) if err is None else err.to_pd() pred = pd.DataFrame(pred.iloc[:, 0].rename(target_col)) err = pd.DataFrame(err.iloc[:, 0].rename(f"{target_col}_err")) pred_pdf = pd.concat([pred, err], axis=1) # Turn the time index into a regular column, and add the index columns back to the prediction pred_pdf.index.name = time_col pred_pdf.reset_index(inplace=True) index_pdf = pd.concat([pdf[index_cols].iloc[:1]] * len(pred_pdf), ignore_index=True) return pd.concat((index_pdf, pred_pdf), axis=1)
Pyspark pandas UDF for performing forecasting. Should be called on a pyspark dataframe grouped by time series ID, i.e. by ``index_cols``. :param pdf: The ``pandas.DataFrame`` containing the training data. Should be a single time series. :param index_cols: The list of column names used to index all the time series in the dataset. Not used for modeling. :param time_col: The name of the column containing the timestamps. :param target_col: The name of the column whose value we wish to forecast. :param time_stamps: The timestamps at which we would like to obtain a forecast. :param model: The model (or model ``dict``) we are using to obtain a forecast. :param predict_on_train: Whether to return the model's prediction on the training data. :param agg_dict: A dictionary used to specify how different data columns should be aggregated. If a non-target data column is not in agg_dict, we do not model it for aggregated time series. :return: A ``pandas.DataFrame`` with the forecast & its standard error (NaN if the model doesn't have error bars). Columns are ``[*index_cols, time_col, target_col, target_col + \"_err\"]``.
251
import logging import traceback from typing import List, Union import numpy as np import pandas as pd from merlion.models.factory import instantiate_or_copy_model, ModelFactory from merlion.models.anomaly.base import DetectorBase from merlion.models.forecast.base import ForecasterBase from merlion.spark.dataset import TSID_COL_NAME from merlion.utils import TimeSeries, to_pd_datetime logger = logging.getLogger(__name__) class ModelFactory: def get_model_class(cls, name: str) -> Type[ModelBase]: return dynamic_import(name, import_alias) def create(cls, name, return_unused_kwargs=False, **kwargs) -> Union[ModelBase, Tuple[ModelBase, Dict]]: model_class = cls.get_model_class(name) config, kwargs = model_class.config_class.from_dict(kwargs, return_unused_kwargs=True) # initialize the model signature = inspect.signature(model_class) init_kwargs = {k: v for k, v in kwargs.items() if k in signature.parameters} kwargs = {k: v for k, v in kwargs.items() if k not in init_kwargs} model = model_class(config=config, **init_kwargs) # set model state with remaining kwargs, and return any unused kwargs if desired if return_unused_kwargs: state = {k: v for k, v in kwargs.items() if hasattr(model, k)} model._load_state(state) return model, {k: v for k, v in kwargs.items() if k not in state} model._load_state(kwargs) return model def load(cls, name, model_path, **kwargs) -> ModelBase: if model_path is None: return cls.create(name, **kwargs) else: model_class = cls.get_model_class(name) return model_class.load(model_path, **kwargs) def load_bytes(cls, obj, **kwargs) -> ModelBase: name = dill.loads(obj)[0] model_class = cls.get_model_class(name) return model_class.from_bytes(obj, **kwargs) def instantiate_or_copy_model(model: Union[dict, ModelBase]): if isinstance(model, ModelBase): return copy.deepcopy(model) elif isinstance(model, dict): try: return ModelFactory.create(**model) except Exception as e: logger.error(f"Invalid `dict` specifying a model config.\n\nGot {model}") raise e else: raise TypeError(f"Expected model to be a `dict` or `ModelBase`. Got {model}") class DetectorBase(ModelBase): """ Base class for an anomaly detection model. """ config_class = DetectorConfig def __init__(self, config: DetectorConfig): """ :param config: model configuration """ super().__init__(config) def _default_post_rule_train_config(self): """ :return: the default config to use when training the post-rule. """ from merlion.evaluate.anomaly import TSADMetric t = self.config._default_threshold.alm_threshold # self.calibrator is only None if calibration has been manually disabled # and the anomaly scores are expected to be calibrated by get_anomaly_score(). If # self.config.enable_calibrator, the model will return a calibrated score. if self.calibrator is None or self.config.enable_calibrator or t == 0: q = None # otherwise, choose the quantile corresponding to the given threshold else: q = 2 * norm.cdf(t) - 1 return dict(metric=TSADMetric.F1, unsup_quantile=q) def threshold(self): return self.config.threshold def threshold(self, threshold): self.config.threshold = threshold def calibrator(self): return self.config.calibrator def post_rule(self): return self.config.post_rule def train( self, train_data: TimeSeries, train_config=None, anomaly_labels: TimeSeries = None, post_rule_train_config=None ) -> TimeSeries: """ Trains the anomaly detector (unsupervised) and its post-rule (supervised, if labels are given) on train data. :param train_data: a `TimeSeries` of metric values to train the model. :param train_config: Additional training configs, if needed. Only required for some models. :param anomaly_labels: a `TimeSeries` indicating which timestamps are anomalous. Optional. :param post_rule_train_config: The config to use for training the model's post-rule. The model's default post-rule train config is used if none is supplied here. :return: A `TimeSeries` of the model's anomaly scores on the training data. """ if train_config is None: train_config = copy.deepcopy(self._default_train_config) train_data = self.train_pre_process(train_data) train_data = train_data.to_pd() if self._pandas_train else train_data train_result = call_with_accepted_kwargs( # For ensembles self._train, train_data=train_data, train_config=train_config, anomaly_labels=anomaly_labels ) return self.train_post_process( train_result=train_result, anomaly_labels=anomaly_labels, post_rule_train_config=post_rule_train_config ) def train_post_process( self, train_result: Union[TimeSeries, pd.DataFrame], anomaly_labels=None, post_rule_train_config=None ) -> TimeSeries: """ Converts the train result (anom scores on train data) into a TimeSeries object and trains the post-rule. :param train_result: Raw anomaly scores on the training data. :param anomaly_labels: a `TimeSeries` indicating which timestamps are anomalous. Optional. :param post_rule_train_config: The config to use for training the model's post-rule. The model's default post-rule train config is used if none is supplied here. """ anomaly_scores = UnivariateTimeSeries.from_pd(train_result, name="anom_score").to_ts() if self.post_rule is not None: kwargs = copy.copy(self._default_post_rule_train_config) if post_rule_train_config is not None: kwargs.update(post_rule_train_config) kwargs.update(anomaly_scores=anomaly_scores, anomaly_labels=anomaly_labels) call_with_accepted_kwargs(self.post_rule.train, **kwargs) return anomaly_scores def _train(self, train_data: pd.DataFrame, train_config=None) -> pd.DataFrame: raise NotImplementedError def _get_anomaly_score(self, time_series: pd.DataFrame, time_series_prev: pd.DataFrame = None) -> pd.DataFrame: raise NotImplementedError def get_anomaly_score(self, time_series: TimeSeries, time_series_prev: TimeSeries = None) -> TimeSeries: """ Returns the model's predicted sequence of anomaly scores. :param time_series: the `TimeSeries` we wish to predict anomaly scores for. :param time_series_prev: a `TimeSeries` immediately preceding ``time_series``. If given, we use it to initialize the time series anomaly detection model. Otherwise, we assume that ``time_series`` immediately follows the training data. :return: a univariate `TimeSeries` of anomaly scores """ # Ensure the dimensions are correct assert ( time_series.dim == self.dim ), f"Expected time_series to have dimension {self.dim}, but got {time_series.dim}." if time_series_prev is not None: assert ( time_series_prev.dim == self.dim ), f"Expected time_series_prev to have dimension {self.dim}, but got {time_series_prev.dim}." # Transform the time series time_series, time_series_prev = self.transform_time_series(time_series, time_series_prev) if self.require_univariate: assert time_series.dim == 1, ( f"{type(self).__name__} model only accepts univariate time series, but time series " f"(after transform {self.transform}) has dimension {time_series.dim}." ) time_series = time_series.to_pd() if time_series_prev is not None: time_series_prev = time_series_prev.to_pd() # Get the anomaly scores & ensure the dimensions are correct anom_scores = self._get_anomaly_score(time_series, time_series_prev) assert anom_scores.shape[1] == 1, f"Expected anomaly scores returned by {type(self)} to be univariate." return UnivariateTimeSeries.from_pd(anom_scores, name="anom_score").to_ts() def get_anomaly_label(self, time_series: TimeSeries, time_series_prev: TimeSeries = None) -> TimeSeries: """ Returns the model's predicted sequence of anomaly scores, processed by any relevant post-rules (calibration and/or thresholding). :param time_series: the `TimeSeries` we wish to predict anomaly scores for. :param time_series_prev: a `TimeSeries` immediately preceding ``time_series``. If given, we use it to initialize the time series anomaly detection model. Otherwise, we assume that ``time_series`` immediately follows the training data. :return: a univariate `TimeSeries` of anomaly scores, filtered by the model's post-rule """ scores = self.get_anomaly_score(time_series, time_series_prev) return self.post_rule(scores) if self.post_rule is not None else scores def get_figure( self, time_series: TimeSeries, time_series_prev: TimeSeries = None, *, filter_scores=True, plot_time_series_prev=False, fig: Figure = None, **kwargs, ) -> Figure: """ :param time_series: The `TimeSeries` we wish to plot & predict anomaly scores for. :param time_series_prev: a `TimeSeries` immediately preceding ``time_stamps``. If given, we use it to initialize the time series model. Otherwise, we assume that ``time_stamps`` immediately follows the training data. :param filter_scores: whether to filter the anomaly scores by the post-rule before plotting them. :param plot_time_series_prev: whether to plot ``time_series_prev`` (and the model's fit for it). Only used if ``time_series_prev`` is given. :param fig: a `Figure` we might want to add anomaly scores onto. :return: a `Figure` of the model's anomaly score predictions. """ f = self.get_anomaly_label if filter_scores else self.get_anomaly_score scores = f(time_series, time_series_prev=time_series_prev, **kwargs) scores = scores.univariates[scores.names[0]] # Get the severity level associated with each value & convert things to # numpy arrays as well assert time_series.dim == 1, ( f"Plotting only supported for univariate time series, but got a" f"time series of dimension {time_series.dim}" ) time_series = time_series.univariates[time_series.names[0]] if fig is None: if time_series_prev is not None and plot_time_series_prev: k = time_series_prev.names[0] time_series_prev = time_series_prev.univariates[k] elif not plot_time_series_prev: time_series_prev = None fig = Figure(y=time_series, y_prev=time_series_prev, anom=scores) else: if fig.y is None: fig.y = time_series fig.anom = scores return fig def plot_anomaly( self, time_series: TimeSeries, time_series_prev: TimeSeries = None, *, filter_scores=True, plot_time_series_prev=False, figsize=(1000, 600), ax=None, ): """ Plots the time series in matplotlib as a line graph, with points in the series overlaid as points color-coded to indicate their severity as anomalies. :param time_series: The `TimeSeries` we wish to plot & predict anomaly scores for. :param time_series_prev: a `TimeSeries` immediately preceding ``time_series``. Plotted as context if given. :param filter_scores: whether to filter the anomaly scores by the post-rule before plotting them. :param plot_time_series_prev: whether to plot ``time_series_prev`` (and the model's fit for it). Only used if ``time_series_prev`` is given. :param figsize: figure size in pixels :param ax: matplotlib axes to add this plot to :return: matplotlib figure & axes """ metric_name = time_series.names[0] title = f"{type(self).__name__}: Anomalies in {metric_name}" fig = self.get_figure( time_series=time_series, time_series_prev=time_series_prev, filter_scores=filter_scores, plot_time_series_prev=plot_time_series_prev, ) return fig.plot(title=title, figsize=figsize, ax=ax) def plot_anomaly_plotly( self, time_series: TimeSeries, time_series_prev: TimeSeries = None, *, filter_scores=True, plot_time_series_prev=False, figsize=None, ): """ Plots the time series in plotly as a line graph, with points in the series overlaid as points color-coded to indicate their severity as anomalies. :param time_series: The `TimeSeries` we wish to plot & predict anomaly scores for. :param time_series_prev: a `TimeSeries` immediately preceding ``time_series``. Plotted as context if given. :param filter_scores: whether to filter the anomaly scores by the post-rule before plotting them. :param plot_time_series_prev: whether to plot ``time_series_prev`` (and the model's fit for it). Only used if ``time_series_prev`` is given. :param figsize: figure size in pixels :return: plotly figure """ title = f"{type(self).__name__}: Anomalies in Time Series" f = self.get_anomaly_label if filter_scores else self.get_anomaly_score scores = f(time_series, time_series_prev=time_series_prev) fig = MTSFigure(y=time_series, y_prev=time_series_prev, anom=scores) return fig.plot_plotly(title=title, figsize=figsize) TSID_COL_NAME = "__ts_id" The provided code snippet includes necessary dependencies for implementing the `anomaly` function. Write a Python function `def anomaly( pdf: pd.DataFrame, index_cols: List[str], time_col: str, train_test_split: Union[int, str], model: Union[DetectorBase, dict], predict_on_train: bool = False, ) -> pd.DataFrame` to solve the following problem: Pyspark pandas UDF for performing anomaly detection. Should be called on a pyspark dataframe grouped by time series ID, i.e. by ``index_cols``. :param pdf: The ``pandas.DataFrame`` containing the training and testing data. Should be a single time series. :param index_cols: The list of column names used to index all the time series in the dataset. Not used for modeling. :param time_col: The name of the column containing the timestamps. :param train_test_split: The time at which the testing data starts. :param model: The model (or model ``dict``) we are using to predict anomaly scores. :param predict_on_train: Whether to return the model's prediction on the training data. :return: A ``pandas.DataFrame`` with the anomaly scores on the test data. Columns are ``[*index_cols, time_col, \"anom_score\"]``. Here is the function: def anomaly( pdf: pd.DataFrame, index_cols: List[str], time_col: str, train_test_split: Union[int, str], model: Union[DetectorBase, dict], predict_on_train: bool = False, ) -> pd.DataFrame: """ Pyspark pandas UDF for performing anomaly detection. Should be called on a pyspark dataframe grouped by time series ID, i.e. by ``index_cols``. :param pdf: The ``pandas.DataFrame`` containing the training and testing data. Should be a single time series. :param index_cols: The list of column names used to index all the time series in the dataset. Not used for modeling. :param time_col: The name of the column containing the timestamps. :param train_test_split: The time at which the testing data starts. :param model: The model (or model ``dict``) we are using to predict anomaly scores. :param predict_on_train: Whether to return the model's prediction on the training data. :return: A ``pandas.DataFrame`` with the anomaly scores on the test data. Columns are ``[*index_cols, time_col, \"anom_score\"]``. """ # Sort the dataframe by time & turn it into a Merlion time series if TSID_COL_NAME not in index_cols and TSID_COL_NAME in pdf.columns: index_cols = index_cols + [TSID_COL_NAME] pdf = pdf.sort_values(by=time_col) ts = TimeSeries.from_pd(pdf.drop(columns=index_cols).set_index(time_col)) # Create model model = instantiate_or_copy_model(model or {"name": "DefaultDetector"}) if not isinstance(model, DetectorBase): raise TypeError(f"Expected `model` to be an instance of DetectorBase, but got {model}.") # Train model & run inference exception = False train, test = ts.bisect(train_test_split, t_in_left=False) try: train_pred = model.train(train) train_pred = model.post_rule(train_pred).to_pd() pred = model.get_anomaly_label(test).to_pd() except Exception: exception = True row0 = pdf.iloc[0] idx = ", ".join(f"{k} = {row0[k]}" for k in index_cols) logger.warning( f"Model {type(model).__name__} threw an exception on ({idx}). {traceback.format_exc()}" f"Trying StatThreshold model instead.\n" ) if exception: try: model = ModelFactory.create(name="StatThreshold", target_seq_index=0, threshold=model.threshold) train_pred = model.train(train) train_pred = model.post_rule(train_pred).to_pd() pred = model.get_anomaly_label(test).to_pd() except Exception: logger.warning( f"Model StatThreshold threw an exception on ({idx}).{traceback.format_exc()}" f"Returning anomaly score = 0 as a placeholder.\n" ) train_pred = pd.DataFrame(0, index=to_pd_datetime(train.time_stamps), columns=["anom_score"]) pred = pd.DataFrame(0, index=to_pd_datetime(test.time_stamps), columns=["anom_score"]) if predict_on_train and train_pred is not None: pred = pd.concat((train_pred, pred)) # Turn the time index into a regular column, and add the index columns back to the prediction pred.index.name = time_col pred.reset_index(inplace=True) index_pdf = pd.concat([pdf[index_cols].iloc[:1]] * len(pred), ignore_index=True) return pd.concat((index_pdf, pred), axis=1)
Pyspark pandas UDF for performing anomaly detection. Should be called on a pyspark dataframe grouped by time series ID, i.e. by ``index_cols``. :param pdf: The ``pandas.DataFrame`` containing the training and testing data. Should be a single time series. :param index_cols: The list of column names used to index all the time series in the dataset. Not used for modeling. :param time_col: The name of the column containing the timestamps. :param train_test_split: The time at which the testing data starts. :param model: The model (or model ``dict``) we are using to predict anomaly scores. :param predict_on_train: Whether to return the model's prediction on the training data. :return: A ``pandas.DataFrame`` with the anomaly scores on the test data. Columns are ``[*index_cols, time_col, \"anom_score\"]``.
252
import logging import traceback from typing import List, Union import numpy as np import pandas as pd from merlion.models.factory import instantiate_or_copy_model, ModelFactory from merlion.models.anomaly.base import DetectorBase from merlion.models.forecast.base import ForecasterBase from merlion.spark.dataset import TSID_COL_NAME from merlion.utils import TimeSeries, to_pd_datetime TSID_COL_NAME = "__ts_id" The provided code snippet includes necessary dependencies for implementing the `reconciliation` function. Write a Python function `def reconciliation(pdf: pd.DataFrame, hier_matrix: np.ndarray, target_col: str)` to solve the following problem: Pyspark pandas UDF for computing the minimum-trace hierarchical time series reconciliation, as described by `Wickramasuriya et al. 2018 <https://robjhyndman.com/papers/mint.pdf>`__. Should be called on a pyspark dataframe grouped by timestamp. Pyspark implementation of `merlion.utils.hts.minT_reconciliation`. :param pdf: A ``pandas.DataFrame`` containing forecasted values & standard errors from ``m`` time series at a single timestamp. Each time series should be indexed by `TSID_COL_NAME`. The first ``n`` time series (in order of ID) orrespond to leaves of the hierarchy, while the remaining ``m - n`` are weighted sums of the first ``n``. This dataframe can be produced by calling `forecast` on the dataframe produced by `merlion.spark.dataset.create_hier_dataset`. :param hier_matrix: A ``m``-by-``n`` matrix describing how the hierarchy is aggregated. The value of the ``k``-th time series is ``np.dot(hier_matrix[k], pdf[:n])``. This matrix can be produced by `merlion.spark.dataset.create_hier_dataset`. :param target_col: The name of the column whose value we wish to forecast. :return: A ``pandas.DataFrame`` which replaces the original forecasts & errors with reconciled forecasts & errors. .. note:: Time series series reconciliation is skipped if the given timestamp has missing values for any of the time series. This can happen for training timestamps if the training time series has missing data and `forecast` is called with ``predict_on_train=true``. Here is the function: def reconciliation(pdf: pd.DataFrame, hier_matrix: np.ndarray, target_col: str): """ Pyspark pandas UDF for computing the minimum-trace hierarchical time series reconciliation, as described by `Wickramasuriya et al. 2018 <https://robjhyndman.com/papers/mint.pdf>`__. Should be called on a pyspark dataframe grouped by timestamp. Pyspark implementation of `merlion.utils.hts.minT_reconciliation`. :param pdf: A ``pandas.DataFrame`` containing forecasted values & standard errors from ``m`` time series at a single timestamp. Each time series should be indexed by `TSID_COL_NAME`. The first ``n`` time series (in order of ID) orrespond to leaves of the hierarchy, while the remaining ``m - n`` are weighted sums of the first ``n``. This dataframe can be produced by calling `forecast` on the dataframe produced by `merlion.spark.dataset.create_hier_dataset`. :param hier_matrix: A ``m``-by-``n`` matrix describing how the hierarchy is aggregated. The value of the ``k``-th time series is ``np.dot(hier_matrix[k], pdf[:n])``. This matrix can be produced by `merlion.spark.dataset.create_hier_dataset`. :param target_col: The name of the column whose value we wish to forecast. :return: A ``pandas.DataFrame`` which replaces the original forecasts & errors with reconciled forecasts & errors. .. note:: Time series series reconciliation is skipped if the given timestamp has missing values for any of the time series. This can happen for training timestamps if the training time series has missing data and `forecast` is called with ``predict_on_train=true``. """ # Get shape params & sort the data (for this timestamp) by time series ID. m, n = hier_matrix.shape assert len(pdf) <= m >= n if len(pdf) < m: return pdf assert (hier_matrix[:n] == np.eye(n)).all() pdf = pdf.sort_values(by=TSID_COL_NAME) # Compute the error weight matrix W (m by m) errname = f"{target_col}_err" coefs = hier_matrix.sum(axis=1) errs = pdf[errname].values if errname in pdf.columns else np.full(m, np.nan) nan_errs = np.isnan(errs) if nan_errs.all(): W = np.diag(coefs) else: if nan_errs.any(): errs[nan_errs] = np.nanmean(errs / coefs) * coefs[nan_errs] W = np.diag(errs) # Create other supplementary matrices J = np.concatenate((np.eye(n), np.zeros((n, m - n))), axis=1) U = np.concatenate((-hier_matrix[n:], np.eye(m - n)), axis=1) # U.T from the paper # Compute projection matrix to compute coherent leaf forecasts inv = np.linalg.pinv(U @ W @ U.T) # (m-n) by (m-n) P = J - ((J @ W) @ U.T) @ (inv @ U) # n by m # Compute reconciled forecasts & errors rec = hier_matrix @ (P @ pdf[target_col].values) if nan_errs.all(): rec_errs = errs else: # P * W.diagonal() is a faster way to compute P @ W, since W is diagonal rec_errs = hier_matrix @ (P * W.diagonal()) # m by m # np.sum(rec_errs ** 2, axis=1) is a faster way to compute (rec_errs @ rec_errs.T).diagonal() rec_errs = np.sqrt(np.sum(rec_errs**2, axis=1)) # Replace original forecasts & errors with reconciled ones reconciled = pd.DataFrame(np.stack([rec, rec_errs], axis=1), index=pdf.index, columns=[target_col, errname]) df = pd.concat((pdf.drop(columns=[target_col, errname]), reconciled), axis=1) return df
Pyspark pandas UDF for computing the minimum-trace hierarchical time series reconciliation, as described by `Wickramasuriya et al. 2018 <https://robjhyndman.com/papers/mint.pdf>`__. Should be called on a pyspark dataframe grouped by timestamp. Pyspark implementation of `merlion.utils.hts.minT_reconciliation`. :param pdf: A ``pandas.DataFrame`` containing forecasted values & standard errors from ``m`` time series at a single timestamp. Each time series should be indexed by `TSID_COL_NAME`. The first ``n`` time series (in order of ID) orrespond to leaves of the hierarchy, while the remaining ``m - n`` are weighted sums of the first ``n``. This dataframe can be produced by calling `forecast` on the dataframe produced by `merlion.spark.dataset.create_hier_dataset`. :param hier_matrix: A ``m``-by-``n`` matrix describing how the hierarchy is aggregated. The value of the ``k``-th time series is ``np.dot(hier_matrix[k], pdf[:n])``. This matrix can be produced by `merlion.spark.dataset.create_hier_dataset`. :param target_col: The name of the column whose value we wish to forecast. :return: A ``pandas.DataFrame`` which replaces the original forecasts & errors with reconciled forecasts & errors. .. note:: Time series series reconciliation is skipped if the given timestamp has missing values for any of the time series. This can happen for training timestamps if the training time series has missing data and `forecast` is called with ``predict_on_train=true``.
253
from typing import Dict, List, Tuple import numpy as np import pandas as pd try: import pyspark.sql import pyspark.sql.functions as F from pyspark.sql.types import DateType, StringType, StructType except ImportError as e: err = ( "Try installing Merlion with optional dependencies using `pip install salesforce-merlion[spark]` or " "`pip install `salesforce-merlion[all]`" ) raise ImportError(str(e) + ". " + err) def add_tsid_column( spark: pyspark.sql.SparkSession, df: pyspark.sql.DataFrame, index_cols: List[str] ) -> pyspark.sql.DataFrame: """ Adds the column `TSID_COL_NAME` to the dataframe, which assigns an integer ID to each time series in the dataset. :param spark: The current SparkSession. :param df: A pyspark dataframe containing all the data. :param index_cols: The columns used to index the various time series in the dataset. :return: The pyspark dataframe with an additional column `TSID_COL_NAME` added as the last column. """ if TSID_COL_NAME in df.schema.fieldNames(): return df # If no index columns are specified, we are only dealing with a single time series if index_cols is None or len(index_cols) == 0: return df.join(spark.createDataFrame(pd.DataFrame([0], columns=[TSID_COL_NAME]))) # Compute time series IDs. Time series with any null indexes come last b/c these are aggregated time series. ts_index = df.groupBy(index_cols).count().drop("count").toPandas() null_rows = ts_index.isna().any(axis=1) ts_index = pd.concat( ( ts_index[~null_rows].sort_values(by=index_cols, axis=0, ascending=True), ts_index[null_rows].sort_values(by=index_cols, axis=0, ascending=True), ), axis=0, ) ts_index[TSID_COL_NAME] = np.arange(len(ts_index)) # Add the time series ID column to the overall dataframe ts_index = spark.createDataFrame(ts_index) for i, col in enumerate(index_cols): pred = df[col].eqNullSafe(ts_index[col]) condition = pred if i == 0 else condition & pred df = df.join(ts_index, on=condition) for col in index_cols: df = df.drop(ts_index[col]) return df The provided code snippet includes necessary dependencies for implementing the `read_dataset` function. Write a Python function `def read_dataset( spark: pyspark.sql.SparkSession, path: str, file_format: str = "csv", time_col: str = None, index_cols: List[str] = None, data_cols: List[str] = None, ) -> pyspark.sql.DataFrame` to solve the following problem: Reads a time series dataset as a pyspark Dataframe. :param spark: The current SparkSession. :param path: The path at which the dataset is stored. :param file_format: The file format the dataset is stored in. :param time_col: The name of the column which specifies timestamp. If ``None`` is provided, it is assumed to be the first column which is not an index column or pre-specified data column. :param index_cols: The columns used to index the various time series in the dataset. If ``None`` is provided, we assume the entire dataset is just a single time series. :param data_cols: The columns we will use for downstream time series tasks. If ``None`` is provided, we use all columns that are not a time or index column. :return: A pyspark dataframe with columns ``[time_col, *index_cols, *data_cols, TSID_COL_NAME]`` (in that order). Here is the function: def read_dataset( spark: pyspark.sql.SparkSession, path: str, file_format: str = "csv", time_col: str = None, index_cols: List[str] = None, data_cols: List[str] = None, ) -> pyspark.sql.DataFrame: """ Reads a time series dataset as a pyspark Dataframe. :param spark: The current SparkSession. :param path: The path at which the dataset is stored. :param file_format: The file format the dataset is stored in. :param time_col: The name of the column which specifies timestamp. If ``None`` is provided, it is assumed to be the first column which is not an index column or pre-specified data column. :param index_cols: The columns used to index the various time series in the dataset. If ``None`` is provided, we assume the entire dataset is just a single time series. :param data_cols: The columns we will use for downstream time series tasks. If ``None`` is provided, we use all columns that are not a time or index column. :return: A pyspark dataframe with columns ``[time_col, *index_cols, *data_cols, TSID_COL_NAME]`` (in that order). """ # Read the dataset into a pyspark dataframe df = spark.read.format(file_format).load(path, inferSchema=True, header=True) # Only keep the index column, data columns, and time column index_cols = index_cols or [] if time_col is None: time_col = [c for c in df.schema.fieldNames() if c not in index_cols + (data_cols or [])][0] # Use all non-index non-time columns as data columns data columns are not given if data_cols is None or len(data_cols) == 0: data_cols = [c for c in df.schema.fieldNames() if c not in index_cols + [time_col]] assert all(col in data_cols and col not in index_cols + [time_col] for col in data_cols) # Get the columns in the right order, convert index columns to string, and get data columns in the right order. # Index cols are string because we indicate aggregation with a reserved "__aggregated__" string df = df.select( F.col(time_col).cast(DateType()).alias(time_col), *[F.col(c).cast(StringType()).alias(c) for c in index_cols], *data_cols, ) # add TSID_COL_NAME to the end before returning return add_tsid_column(spark=spark, df=df, index_cols=index_cols)
Reads a time series dataset as a pyspark Dataframe. :param spark: The current SparkSession. :param path: The path at which the dataset is stored. :param file_format: The file format the dataset is stored in. :param time_col: The name of the column which specifies timestamp. If ``None`` is provided, it is assumed to be the first column which is not an index column or pre-specified data column. :param index_cols: The columns used to index the various time series in the dataset. If ``None`` is provided, we assume the entire dataset is just a single time series. :param data_cols: The columns we will use for downstream time series tasks. If ``None`` is provided, we use all columns that are not a time or index column. :return: A pyspark dataframe with columns ``[time_col, *index_cols, *data_cols, TSID_COL_NAME]`` (in that order).
254
from typing import Dict, List, Tuple import numpy as np import pandas as pd try: import pyspark.sql import pyspark.sql.functions as F from pyspark.sql.types import DateType, StringType, StructType except ImportError as e: err = ( "Try installing Merlion with optional dependencies using `pip install salesforce-merlion[spark]` or " "`pip install `salesforce-merlion[all]`" ) raise ImportError(str(e) + ". " + err) TSID_COL_NAME = "__ts_id" The provided code snippet includes necessary dependencies for implementing the `write_dataset` function. Write a Python function `def write_dataset(df: pyspark.sql.DataFrame, time_col: str, path: str, file_format: str = "csv")` to solve the following problem: Writes the dataset at the specified path. :param df: The dataframe to save. The dataframe must have a column `TSID_COL_NAME` indexing the time series in the dataset (this column is automatically added by `read_dataset`). :param time_col: The name of the column which specifies timestamp. :param path: The path to save the dataset at. :param file_format: The file format in which to save the dataset. Here is the function: def write_dataset(df: pyspark.sql.DataFrame, time_col: str, path: str, file_format: str = "csv"): """ Writes the dataset at the specified path. :param df: The dataframe to save. The dataframe must have a column `TSID_COL_NAME` indexing the time series in the dataset (this column is automatically added by `read_dataset`). :param time_col: The name of the column which specifies timestamp. :param path: The path to save the dataset at. :param file_format: The file format in which to save the dataset. """ df = df.sort([TSID_COL_NAME, time_col]).drop(TSID_COL_NAME) df.write.format(file_format).save(path, header=True, mode="overwrite")
Writes the dataset at the specified path. :param df: The dataframe to save. The dataframe must have a column `TSID_COL_NAME` indexing the time series in the dataset (this column is automatically added by `read_dataset`). :param time_col: The name of the column which specifies timestamp. :param path: The path to save the dataset at. :param file_format: The file format in which to save the dataset.
255
from typing import Dict, List, Tuple import numpy as np import pandas as pd try: import pyspark.sql import pyspark.sql.functions as F from pyspark.sql.types import DateType, StringType, StructType except ImportError as e: err = ( "Try installing Merlion with optional dependencies using `pip install salesforce-merlion[spark]` or " "`pip install `salesforce-merlion[all]`" ) raise ImportError(str(e) + ". " + err) TSID_COL_NAME = "__ts_id" The provided code snippet includes necessary dependencies for implementing the `create_hier_dataset` function. Write a Python function `def create_hier_dataset( spark: pyspark.sql.SparkSession, df: pyspark.sql.DataFrame, time_col: str = None, index_cols: List[str] = None, agg_dict: Dict = None, ) -> Tuple[pyspark.sql.DataFrame, np.ndarray]` to solve the following problem: Aggregates the time series in the dataset & appends them to the original dataset. :param spark: The current SparkSession. :param df: A pyspark dataframe containing all the data. The dataframe must have a column `TSID_COL_NAME` indexing the time series in the dataset (this column is automatically added by `read_dataset`). :param time_col: The name of the column which specifies timestamp. If ``None`` is provided, it is assumed to be the first column which is not an index column or pre-specified data column. :param index_cols: The columns used to index the various time series in the dataset. If ``None`` is provided, we assume the entire dataset is just a single time series. These columns define the levels of the hierarchy. For example, if each time series represents sales and we have ``index_cols = ["store", "item"]``, we will first aggregate sales for all items sold at a particular store; then we will aggregate sales for all items at all stores. :param agg_dict: A dictionary used to specify how different data columns should be aggregated. If a data column is not in the dict, we aggregate using sum by default. :return: The dataset with additional time series corresponding to each level of the hierarchy, as well as a matrix specifying how the hierarchy is constructed. Here is the function: def create_hier_dataset( spark: pyspark.sql.SparkSession, df: pyspark.sql.DataFrame, time_col: str = None, index_cols: List[str] = None, agg_dict: Dict = None, ) -> Tuple[pyspark.sql.DataFrame, np.ndarray]: """ Aggregates the time series in the dataset & appends them to the original dataset. :param spark: The current SparkSession. :param df: A pyspark dataframe containing all the data. The dataframe must have a column `TSID_COL_NAME` indexing the time series in the dataset (this column is automatically added by `read_dataset`). :param time_col: The name of the column which specifies timestamp. If ``None`` is provided, it is assumed to be the first column which is not an index column or pre-specified data column. :param index_cols: The columns used to index the various time series in the dataset. If ``None`` is provided, we assume the entire dataset is just a single time series. These columns define the levels of the hierarchy. For example, if each time series represents sales and we have ``index_cols = ["store", "item"]``, we will first aggregate sales for all items sold at a particular store; then we will aggregate sales for all items at all stores. :param agg_dict: A dictionary used to specify how different data columns should be aggregated. If a data column is not in the dict, we aggregate using sum by default. :return: The dataset with additional time series corresponding to each level of the hierarchy, as well as a matrix specifying how the hierarchy is constructed. """ # Determine which columns are index vs. data columns index_cols = [] if index_cols is None else index_cols index_cols = [c for c in index_cols if c != TSID_COL_NAME] extended_index_cols = index_cols + [TSID_COL_NAME] if time_col is None: non_index_cols = [c for c in df.schema.fieldNames() if c not in extended_index_cols] time_col = non_index_cols[0] data_cols = non_index_cols[1:] else: data_cols = [c for c in df.schema.fieldNames() if c not in extended_index_cols + [time_col]] # Create a pandas index for all the time series ts_index = df.groupBy(extended_index_cols).count().drop("count").toPandas() ts_index = ts_index.set_index(index_cols).sort_index() index_schema = StructType([df.schema[c] for c in extended_index_cols]) n = len(ts_index) # Add all higher levels of the hierarchy full_df = df hier_vecs = [] # Compose the aggregation portions of the SQL select statements below df.createOrReplaceTempView("df") agg_dict = {} if agg_dict is None else agg_dict data_col_sql = [f"{agg_dict.get(c, 'sum').upper()}(`{c}`) AS `{c}`" for c in data_cols] for k in range(len(index_cols)): # Aggregate values of data columns over the last k+1 index column values. gb_cols = index_cols[: -(k + 1)] gb_col_sql = [f"`{c}`" for c in [time_col] + gb_cols] agg = spark.sql(f"SELECT {','.join(gb_col_sql + data_col_sql)} FROM df GROUP BY {','.join(gb_col_sql)};") # Add back dummy NA values for the index columns we aggregated over, add a time series ID column, # concatenate the aggregated time series to the full dataframe, and compute the hierarchy vector. # For the top level of the hierarchy, this is easy as we just sum everything if len(gb_cols) == 0: dummy = [["__aggregated__"] * len(index_cols) + [n + len(hier_vecs)]] full_df = full_df.unionByName(agg.join(spark.createDataFrame(dummy, schema=index_schema))) hier_vecs.append(np.ones(n)) continue # For lower levels of the hierarchy, we determine the membership of each grouping to create # the appropriate dummy entries and hierarchy vectors. dummy = [] for i, (group, group_idxs) in enumerate(ts_index.groupby(gb_cols).groups.items()): group = [group] if len(gb_cols) == 1 else list(group) locs = [ts_index.index.get_loc(j) for j in group_idxs] dummy.append(group + ["__aggregated__"] * (k + 1) + [n + len(hier_vecs)]) x = np.zeros(n) x[locs] = 1 hier_vecs.append(x) dummy = spark.createDataFrame(dummy, schema=index_schema) full_df = full_df.unionByName(agg.join(dummy, on=gb_cols)) # Create the full hierarchy matrix, and return it along with the updated dataframe hier_matrix = np.concatenate([np.eye(n), np.stack(hier_vecs)]) return full_df, hier_matrix
Aggregates the time series in the dataset & appends them to the original dataset. :param spark: The current SparkSession. :param df: A pyspark dataframe containing all the data. The dataframe must have a column `TSID_COL_NAME` indexing the time series in the dataset (this column is automatically added by `read_dataset`). :param time_col: The name of the column which specifies timestamp. If ``None`` is provided, it is assumed to be the first column which is not an index column or pre-specified data column. :param index_cols: The columns used to index the various time series in the dataset. If ``None`` is provided, we assume the entire dataset is just a single time series. These columns define the levels of the hierarchy. For example, if each time series represents sales and we have ``index_cols = ["store", "item"]``, we will first aggregate sales for all items sold at a particular store; then we will aggregate sales for all items at all stores. :param agg_dict: A dictionary used to specify how different data columns should be aggregated. If a data column is not in the dict, we aggregate using sum by default. :return: The dataset with additional time series corresponding to each level of the hierarchy, as well as a matrix specifying how the hierarchy is constructed.
256
import logging from typing import Dict from copy import copy from matplotlib.colors import to_rgb from matplotlib.dates import AutoDateLocator, AutoDateFormatter import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly import plotly.graph_objects as go from plotly.subplots import make_subplots from merlion.utils import TimeSeries, UnivariateTimeSeries The provided code snippet includes necessary dependencies for implementing the `plot_anoms` function. Write a Python function `def plot_anoms(ax: plt.Axes, anomaly_labels: TimeSeries)` to solve the following problem: Plots anomalies as pink windows on the matplotlib ``Axes`` object ``ax``. Here is the function: def plot_anoms(ax: plt.Axes, anomaly_labels: TimeSeries): """ Plots anomalies as pink windows on the matplotlib ``Axes`` object ``ax``. """ if anomaly_labels is None: return ax anomaly_labels = anomaly_labels.to_pd() t, y = anomaly_labels.index, anomaly_labels.values splits = np.where(y[1:] != y[:-1])[0] + 1 splits = np.concatenate(([0], splits, [len(y) - 1])) for k in range(len(splits) - 1): if y[splits[k]]: # If splits[k] is anomalous ax.axvspan(t[splits[k]], t[splits[k + 1]], color="#e07070", alpha=0.5) return ax
Plots anomalies as pink windows on the matplotlib ``Axes`` object ``ax``.
257
import logging from typing import Dict from copy import copy from matplotlib.colors import to_rgb from matplotlib.dates import AutoDateLocator, AutoDateFormatter import matplotlib.pyplot as plt import numpy as np import pandas as pd import plotly import plotly.graph_objects as go from plotly.subplots import make_subplots from merlion.utils import TimeSeries, UnivariateTimeSeries The provided code snippet includes necessary dependencies for implementing the `plot_anoms_plotly` function. Write a Python function `def plot_anoms_plotly(fig, anomaly_labels: TimeSeries)` to solve the following problem: Plots anomalies as pink windows on the plotly ``Figure`` object ``fig``. Here is the function: def plot_anoms_plotly(fig, anomaly_labels: TimeSeries): """ Plots anomalies as pink windows on the plotly ``Figure`` object ``fig``. """ if anomaly_labels is None: return fig anomaly_labels = anomaly_labels.to_pd() t, y = anomaly_labels.index, anomaly_labels.values splits = np.where(y[1:] != y[:-1])[0] + 1 splits = np.concatenate(([0], splits, [len(y) - 1])) for k in range(len(splits) - 1): if y[splits[k]]: # If splits[k] is anomalous fig.add_vrect(t[splits[k]], t[splits[k + 1]], line_width=0, fillcolor="#e07070", opacity=0.4) return fig
Plots anomalies as pink windows on the plotly ``Figure`` object ``fig``.
258
import json import logging import os import traceback import numpy as np import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.pages.data import create_stats_table, create_metric_stats_table from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.data import DataAnalyzer file_manager = FileManager() def upload_file(filenames, contents): name = None if filenames is not None and contents is not None: for name, data in zip(filenames, contents): file_manager.save_file(name, data) options = [] files = file_manager.uploaded_files() for filename in files: options.append({"label": filename, "value": filename}) return options, name
null
259
import json import logging import os import traceback import numpy as np import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.pages.data import create_stats_table, create_metric_stats_table from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.data import DataAnalyzer logger = logging.getLogger(__name__) file_manager = FileManager() class DefaultEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.bool_): return str(obj) if isinstance(obj, np.integer): return int(obj) if isinstance(obj, np.floating): return float(obj) if isinstance(obj, np.ndarray): return obj.tolist() return super().default(obj) Output("select-file", "options"), Output("select-file", "value"), [Input("upload-data", "filename"), Input("upload-data", "contents")], def create_stats_table(data_stats=None): if data_stats is None or len(data_stats) == 0: data = [{"Stats": "", "Value": ""}] else: data = [{"Stats": key, "Value": value} for key, value in data_stats["@global"].items()] table = dash_table.DataTable( id="data-stats", data=data, columns=[{"id": "Stats", "name": "Stats"}, {"id": "Value", "name": "Value"}], editable=False, style_header_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_cell_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_header=dict(backgroundColor=TABLE_HEADER_COLOR, color="white"), style_data=dict(backgroundColor=TABLE_DATA_COLOR), ) return table class DataAnalyzer(DataMixin): def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_stats(df): stats = { "@global": OrderedDict( { "NO. of Variables": len(df.columns), "Time Series Length": len(df), "Has NaNs": bool(df.isnull().values.any()), } ), "@columns": list(df.columns), } for col in df.columns: stats[col] = df[col].describe().to_dict(into=OrderedDict) return stats def get_data_table(df): return data_table(df) def get_data_figure(df): if df is None: return create_empty_figure() else: return plot_timeseries(df) def click_run(btn_click, modal_close, filename, data): ctx = dash.callback_context stats = json.loads(data) if data is not None else {} stats_table = create_stats_table() data_table = DataAnalyzer.get_data_table(df=None) data_figure = DataAnalyzer.get_data_figure(df=None) modal_is_open = False modal_content = "" prop_id = ctx.triggered_id if prop_id == "data-btn" and btn_click > 0: try: assert filename, "Please select a file to load." file_path = os.path.join(file_manager.data_directory, filename) df = DataAnalyzer().load_data(file_path) stats = DataAnalyzer.get_stats(df) stats_table = create_stats_table(stats) data_table = DataAnalyzer.get_data_table(df) data_figure = DataAnalyzer.get_data_figure(df) except Exception: error = traceback.format_exc() modal_is_open = True modal_content = error logger.error(error) return stats_table, json.dumps(stats, cls=DefaultEncoder), data_table, data_figure, modal_is_open, modal_content
null
260
import json import logging import os import traceback import numpy as np import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.pages.data import create_stats_table, create_metric_stats_table from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.data import DataAnalyzer def update_metric_dropdown(n_clicks, data): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "select-column-parent": stats = json.loads(data) options += [{"label": s, "value": s} for s in stats.keys() if s.find("@") == -1] return options
null
261
import json import logging import os import traceback import numpy as np import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.pages.data import create_stats_table, create_metric_stats_table from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.data import DataAnalyzer def create_metric_stats_table(metric_stats=None, column=None): def update_metric_table(column, data): ctx = dash.callback_context metric_stats_table = create_metric_stats_table() prop_id = ctx.triggered_id if prop_id == "select-column": stats = json.loads(data) metric_stats_table = create_metric_stats_table(stats, column) return metric_stats_table
null
262
import json import logging import os import traceback import numpy as np import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.pages.data import create_stats_table, create_metric_stats_table from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.data import DataAnalyzer file_manager = FileManager() def select_download_parent(n_clicks): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "data-download-parent": models = file_manager.get_model_list() options += [{"label": s, "value": s} for s in models] return options
null
263
import json import logging import os import traceback import numpy as np import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.pages.data import create_stats_table, create_metric_stats_table from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.data import DataAnalyzer logger = logging.getLogger(__name__) file_manager = FileManager() def click_run(btn_click, modal_close, model): ctx = dash.callback_context modal_is_open = False modal_content = "" data = None prop_id = ctx.triggered_id if prop_id == "data-download-btn" and btn_click > 0: try: assert model, "Please select the model to download." path = file_manager.get_model_download_path(model) data = dcc.send_file(path) except Exception: error = traceback.format_exc() modal_is_open = True modal_content = error logger.error(error) return data, modal_is_open, modal_content
null
264
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() def update_select_file_dropdown(n_clicks, filename, target, features, exog): options = [] ctx = dash.callback_context if ctx.triggered: prop_ids = {p["prop_id"].split(".")[0]: p["value"] for p in ctx.triggered} if "forecasting-select-file-parent" in prop_ids: files = file_manager.uploaded_files() for f in files: options.append({"label": f, "value": f}) if "forecasting-select-file" in prop_ids: target, features, exog = None, None, None return options, target, features, exog
null
265
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() def update_select_test_file_dropdown(n_clicks): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "forecasting-select-test-file-parent": files = file_manager.uploaded_files() for filename in files: options.append({"label": filename, "value": filename}) return options
null
266
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() class ForecastModel(ModelMixin, DataMixin): algorithms = [ "DefaultForecaster", "Arima", "LGBMForecaster", "ETS", "AutoETS", "Prophet", "AutoProphet", "Sarima", "VectorAR", "RandomForestForecaster", "ExtraTreesForecaster", ] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(): return ForecastModel.algorithms def _compute_metrics(evaluator, ts, predictions): return { m: round(evaluator.evaluate(ground_truth=ts, predict=predictions, metric=ForecastMetric[m]), 5) for m in ["MAE", "MARRE", "RMSE", "sMAPE", "RMSPE"] } def train(self, algorithm, train_df, test_df, target_column, feature_columns, exog_columns, params, set_progress): if target_column not in train_df: target_column = int(target_column) assert target_column in train_df, f"The target variable {target_column} is not in the time series." try: feature_columns = [int(c) if c not in train_df else c for c in feature_columns] except ValueError: feature_columns = [] try: exog_columns = [int(c) if c not in train_df else c for c in exog_columns] except ValueError: exog_columns = [] for exog_column in exog_columns: assert exog_column in train_df, f"Exogenous variable {exog_column} is not in the time series." # Re-arrange dataframe so that the target column is first, and exogenous columns are last columns = [target_column] + feature_columns + exog_columns train_df = train_df.loc[:, columns] test_df = test_df.loc[:, columns] # Get the target_seq_index & initialize the model params["target_seq_index"] = columns.index(target_column) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) # Handle exogenous regressors if they are supported by the model if model.supports_exog and len(exog_columns) > 0: exog_ts = TimeSeries.from_pd(pd.concat((train_df.loc[:, exog_columns], test_df.loc[:, exog_columns]))) train_df = train_df.loc[:, [target_column] + feature_columns] test_df = test_df.loc[:, [target_column] + feature_columns] else: exog_ts = None self.logger.info(f"Training the forecasting model: {algorithm}...") set_progress(("2", "10")) train_ts = TimeSeries.from_pd(train_df) predictions = model.train(train_ts, exog_data=exog_ts) if isinstance(predictions, tuple): predictions = predictions[0] self.logger.info("Computing training performance metrics...") set_progress(("6", "10")) evaluator = ForecastEvaluator(model, config=ForecastEvaluator.config_class()) train_metrics = ForecastModel._compute_metrics(evaluator, train_ts, predictions) set_progress(("7", "10")) test_ts = TimeSeries.from_pd(test_df) if "max_forecast_steps" in params and params["max_forecast_steps"] is not None: n = min(len(test_ts) - 1, int(params["max_forecast_steps"])) test_ts, _ = test_ts.bisect(t=test_ts.time_stamps[n]) self.logger.info("Computing test performance metrics...") test_pred, test_err = model.forecast(time_stamps=test_ts.time_stamps, exog_data=exog_ts) test_metrics = ForecastModel._compute_metrics(evaluator, test_ts, test_pred) set_progress(("8", "10")) self.logger.info("Plotting forecasting results...") figure = model.plot_forecast_plotly( time_series=test_ts, time_series_prev=train_ts, exog_data=exog_ts, plot_forecast_uncertainty=True ) figure.update_layout(width=None, height=500) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def select_target(n_clicks, filename, feat_names, exog_names): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "forecasting-select-target-parent": if filename is not None: file_path = os.path.join(file_manager.data_directory, filename) df = ForecastModel().load_data(file_path, nrows=2) forbidden = (feat_names or []) + (exog_names or []) options += [{"label": s, "value": s} for s in df.columns if s not in forbidden] return options
null
267
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() class ForecastModel(ModelMixin, DataMixin): algorithms = [ "DefaultForecaster", "Arima", "LGBMForecaster", "ETS", "AutoETS", "Prophet", "AutoProphet", "Sarima", "VectorAR", "RandomForestForecaster", "ExtraTreesForecaster", ] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(): return ForecastModel.algorithms def _compute_metrics(evaluator, ts, predictions): return { m: round(evaluator.evaluate(ground_truth=ts, predict=predictions, metric=ForecastMetric[m]), 5) for m in ["MAE", "MARRE", "RMSE", "sMAPE", "RMSPE"] } def train(self, algorithm, train_df, test_df, target_column, feature_columns, exog_columns, params, set_progress): if target_column not in train_df: target_column = int(target_column) assert target_column in train_df, f"The target variable {target_column} is not in the time series." try: feature_columns = [int(c) if c not in train_df else c for c in feature_columns] except ValueError: feature_columns = [] try: exog_columns = [int(c) if c not in train_df else c for c in exog_columns] except ValueError: exog_columns = [] for exog_column in exog_columns: assert exog_column in train_df, f"Exogenous variable {exog_column} is not in the time series." # Re-arrange dataframe so that the target column is first, and exogenous columns are last columns = [target_column] + feature_columns + exog_columns train_df = train_df.loc[:, columns] test_df = test_df.loc[:, columns] # Get the target_seq_index & initialize the model params["target_seq_index"] = columns.index(target_column) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) # Handle exogenous regressors if they are supported by the model if model.supports_exog and len(exog_columns) > 0: exog_ts = TimeSeries.from_pd(pd.concat((train_df.loc[:, exog_columns], test_df.loc[:, exog_columns]))) train_df = train_df.loc[:, [target_column] + feature_columns] test_df = test_df.loc[:, [target_column] + feature_columns] else: exog_ts = None self.logger.info(f"Training the forecasting model: {algorithm}...") set_progress(("2", "10")) train_ts = TimeSeries.from_pd(train_df) predictions = model.train(train_ts, exog_data=exog_ts) if isinstance(predictions, tuple): predictions = predictions[0] self.logger.info("Computing training performance metrics...") set_progress(("6", "10")) evaluator = ForecastEvaluator(model, config=ForecastEvaluator.config_class()) train_metrics = ForecastModel._compute_metrics(evaluator, train_ts, predictions) set_progress(("7", "10")) test_ts = TimeSeries.from_pd(test_df) if "max_forecast_steps" in params and params["max_forecast_steps"] is not None: n = min(len(test_ts) - 1, int(params["max_forecast_steps"])) test_ts, _ = test_ts.bisect(t=test_ts.time_stamps[n]) self.logger.info("Computing test performance metrics...") test_pred, test_err = model.forecast(time_stamps=test_ts.time_stamps, exog_data=exog_ts) test_metrics = ForecastModel._compute_metrics(evaluator, test_ts, test_pred) set_progress(("8", "10")) self.logger.info("Plotting forecasting results...") figure = model.plot_forecast_plotly( time_series=test_ts, time_series_prev=train_ts, exog_data=exog_ts, plot_forecast_uncertainty=True ) figure.update_layout(width=None, height=500) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def select_features(n_clicks, filename, target_name, exog_names): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "forecasting-select-features-parent": if filename is not None and target_name is not None: file_path = os.path.join(file_manager.data_directory, filename) df = ForecastModel().load_data(file_path, nrows=2) options += [{"label": s, "value": s} for s in df.columns if s not in [target_name] + (exog_names or [])] return options
null
268
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() class ForecastModel(ModelMixin, DataMixin): def __init__(self): def get_available_algorithms(): def _compute_metrics(evaluator, ts, predictions): def train(self, algorithm, train_df, test_df, target_column, feature_columns, exog_columns, params, set_progress): def select_exog(n_clicks, filename, target_name, feat_names): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "forecasting-select-exog-parent": if filename is not None and target_name is not None: file_path = os.path.join(file_manager.data_directory, filename) df = ForecastModel().load_data(file_path, nrows=2) options += [{"label": s, "value": s} for s in df.columns if s not in [target_name] + (feat_names or [])] return options
null
269
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure class ForecastModel(ModelMixin, DataMixin): algorithms = [ "DefaultForecaster", "Arima", "LGBMForecaster", "ETS", "AutoETS", "Prophet", "AutoProphet", "Sarima", "VectorAR", "RandomForestForecaster", "ExtraTreesForecaster", ] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(): return ForecastModel.algorithms def _compute_metrics(evaluator, ts, predictions): return { m: round(evaluator.evaluate(ground_truth=ts, predict=predictions, metric=ForecastMetric[m]), 5) for m in ["MAE", "MARRE", "RMSE", "sMAPE", "RMSPE"] } def train(self, algorithm, train_df, test_df, target_column, feature_columns, exog_columns, params, set_progress): if target_column not in train_df: target_column = int(target_column) assert target_column in train_df, f"The target variable {target_column} is not in the time series." try: feature_columns = [int(c) if c not in train_df else c for c in feature_columns] except ValueError: feature_columns = [] try: exog_columns = [int(c) if c not in train_df else c for c in exog_columns] except ValueError: exog_columns = [] for exog_column in exog_columns: assert exog_column in train_df, f"Exogenous variable {exog_column} is not in the time series." # Re-arrange dataframe so that the target column is first, and exogenous columns are last columns = [target_column] + feature_columns + exog_columns train_df = train_df.loc[:, columns] test_df = test_df.loc[:, columns] # Get the target_seq_index & initialize the model params["target_seq_index"] = columns.index(target_column) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) # Handle exogenous regressors if they are supported by the model if model.supports_exog and len(exog_columns) > 0: exog_ts = TimeSeries.from_pd(pd.concat((train_df.loc[:, exog_columns], test_df.loc[:, exog_columns]))) train_df = train_df.loc[:, [target_column] + feature_columns] test_df = test_df.loc[:, [target_column] + feature_columns] else: exog_ts = None self.logger.info(f"Training the forecasting model: {algorithm}...") set_progress(("2", "10")) train_ts = TimeSeries.from_pd(train_df) predictions = model.train(train_ts, exog_data=exog_ts) if isinstance(predictions, tuple): predictions = predictions[0] self.logger.info("Computing training performance metrics...") set_progress(("6", "10")) evaluator = ForecastEvaluator(model, config=ForecastEvaluator.config_class()) train_metrics = ForecastModel._compute_metrics(evaluator, train_ts, predictions) set_progress(("7", "10")) test_ts = TimeSeries.from_pd(test_df) if "max_forecast_steps" in params and params["max_forecast_steps"] is not None: n = min(len(test_ts) - 1, int(params["max_forecast_steps"])) test_ts, _ = test_ts.bisect(t=test_ts.time_stamps[n]) self.logger.info("Computing test performance metrics...") test_pred, test_err = model.forecast(time_stamps=test_ts.time_stamps, exog_data=exog_ts) test_metrics = ForecastModel._compute_metrics(evaluator, test_ts, test_pred) set_progress(("8", "10")) self.logger.info("Plotting forecasting results...") figure = model.plot_forecast_plotly( time_series=test_ts, time_series_prev=train_ts, exog_data=exog_ts, plot_forecast_uncertainty=True ) figure.update_layout(width=None, height=500) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def select_algorithm_parent(n_clicks, selected_target): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "forecasting-select-algorithm-parent": algorithms = ForecastModel.get_available_algorithms() options += [{"label": s, "value": s} for s in algorithms] return options
null
270
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure class ForecastModel(ModelMixin, DataMixin): algorithms = [ "DefaultForecaster", "Arima", "LGBMForecaster", "ETS", "AutoETS", "Prophet", "AutoProphet", "Sarima", "VectorAR", "RandomForestForecaster", "ExtraTreesForecaster", ] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(): return ForecastModel.algorithms def _compute_metrics(evaluator, ts, predictions): return { m: round(evaluator.evaluate(ground_truth=ts, predict=predictions, metric=ForecastMetric[m]), 5) for m in ["MAE", "MARRE", "RMSE", "sMAPE", "RMSPE"] } def train(self, algorithm, train_df, test_df, target_column, feature_columns, exog_columns, params, set_progress): if target_column not in train_df: target_column = int(target_column) assert target_column in train_df, f"The target variable {target_column} is not in the time series." try: feature_columns = [int(c) if c not in train_df else c for c in feature_columns] except ValueError: feature_columns = [] try: exog_columns = [int(c) if c not in train_df else c for c in exog_columns] except ValueError: exog_columns = [] for exog_column in exog_columns: assert exog_column in train_df, f"Exogenous variable {exog_column} is not in the time series." # Re-arrange dataframe so that the target column is first, and exogenous columns are last columns = [target_column] + feature_columns + exog_columns train_df = train_df.loc[:, columns] test_df = test_df.loc[:, columns] # Get the target_seq_index & initialize the model params["target_seq_index"] = columns.index(target_column) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) # Handle exogenous regressors if they are supported by the model if model.supports_exog and len(exog_columns) > 0: exog_ts = TimeSeries.from_pd(pd.concat((train_df.loc[:, exog_columns], test_df.loc[:, exog_columns]))) train_df = train_df.loc[:, [target_column] + feature_columns] test_df = test_df.loc[:, [target_column] + feature_columns] else: exog_ts = None self.logger.info(f"Training the forecasting model: {algorithm}...") set_progress(("2", "10")) train_ts = TimeSeries.from_pd(train_df) predictions = model.train(train_ts, exog_data=exog_ts) if isinstance(predictions, tuple): predictions = predictions[0] self.logger.info("Computing training performance metrics...") set_progress(("6", "10")) evaluator = ForecastEvaluator(model, config=ForecastEvaluator.config_class()) train_metrics = ForecastModel._compute_metrics(evaluator, train_ts, predictions) set_progress(("7", "10")) test_ts = TimeSeries.from_pd(test_df) if "max_forecast_steps" in params and params["max_forecast_steps"] is not None: n = min(len(test_ts) - 1, int(params["max_forecast_steps"])) test_ts, _ = test_ts.bisect(t=test_ts.time_stamps[n]) self.logger.info("Computing test performance metrics...") test_pred, test_err = model.forecast(time_stamps=test_ts.time_stamps, exog_data=exog_ts) test_metrics = ForecastModel._compute_metrics(evaluator, test_ts, test_pred) set_progress(("8", "10")) self.logger.info("Plotting forecasting results...") figure = model.plot_forecast_plotly( time_series=test_ts, time_series_prev=train_ts, exog_data=exog_ts, plot_forecast_uncertainty=True ) figure.update_layout(width=None, height=500) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def create_param_table(params=None, height=100): if params is None or len(params) == 0: data = [{"Parameter": "", "Value": ""}] else: data = [{"Parameter": key, "Value": str(value["default"])} for key, value in params.items()] table = dash_table.DataTable( data=data, columns=[{"id": "Parameter", "name": "Parameter"}, {"id": "Value", "name": "Value"}], editable=True, style_header_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_cell_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_table={"overflowX": "scroll", "overflowY": "scroll", "height": height}, style_header=dict(backgroundColor=TABLE_HEADER_COLOR, color="white"), style_data=dict(backgroundColor=TABLE_DATA_COLOR), ) return table def select_algorithm(algorithm): param_table = create_param_table() ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "forecasting-select-algorithm": param_info = ForecastModel.get_parameter_info(algorithm) param_table = create_param_table(param_info) return param_table
null
271
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure logger = logging.getLogger(__name__) file_manager = FileManager() class ForecastModel(ModelMixin, DataMixin): def __init__(self): def get_available_algorithms(): def _compute_metrics(evaluator, ts, predictions): def train(self, algorithm, train_df, test_df, target_column, feature_columns, exog_columns, params, set_progress): def create_metric_table(metrics=None): def create_empty_figure(): def click_train_test( set_progress, n_clicks, modal_close, filename, target_col, feature_cols, exog_cols, algorithm, table, train_percentage, test_filename, file_mode, ): ctx = dash.callback_context modal_is_open = False modal_content = "" train_metric_table = create_metric_table() test_metric_table = create_metric_table() figure = create_empty_figure() set_progress(("0", "10")) try: if ctx.triggered and n_clicks > 0: prop_id = ctx.triggered_id if prop_id == "forecasting-train-btn": assert filename, "The training data file is empty!" assert target_col, "Please select a target variable/metric for forecasting." assert algorithm, "Please select a forecasting algorithm." feature_cols = feature_cols or [] exog_cols = exog_cols or [] df = ForecastModel().load_data(os.path.join(file_manager.data_directory, filename)) assert len(df) > 20, f"The input time series length ({len(df)}) is too small." if file_mode == "single": n = int(int(train_percentage) * len(df) / 100) train_df, test_df = df.iloc[:n], df.iloc[n:] else: assert test_filename, "The test file is empty!" test_df = ForecastModel().load_data(os.path.join(file_manager.data_directory, test_filename)) train_df = df params = ForecastModel.parse_parameters( param_info=ForecastModel.get_parameter_info(algorithm), params={p["Parameter"]: p["Value"] for p in table["props"]["data"] if p["Parameter"]}, ) model, train_metrics, test_metrics, figure = ForecastModel().train( algorithm, train_df, test_df, target_col, feature_cols, exog_cols, params, set_progress ) ForecastModel.save_model(file_manager.model_directory, model, algorithm) train_metric_table = create_metric_table(train_metrics) test_metric_table = create_metric_table(test_metrics) figure = dcc.Graph(figure=figure) except Exception: error = traceback.format_exc() modal_is_open = True modal_content = error logger.error(error) return train_metric_table, test_metric_table, figure, modal_is_open, modal_content
null
272
import logging import os import traceback import dash from dash import Input, Output, State, dcc, callback from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.forecast import ForecastModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure def set_file_mode(value): if value == "single": return True, False else: return False, True
null
273
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() def update_select_file_dropdown(n_clicks, filename, features, label): options = [] ctx = dash.callback_context if ctx.triggered: prop_ids = {p["prop_id"].split(".")[0]: p["value"] for p in ctx.triggered} if "anomaly-select-file-parent" in prop_ids: files = file_manager.uploaded_files() for f in files: options.append({"label": f, "value": f}) if "anomaly-select-file" in prop_ids: features, label = None, None return options, features, label
null
274
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() def update_select_test_file_dropdown(n_clicks): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-test-file-parent": files = file_manager.uploaded_files() for filename in files: options.append({"label": filename, "value": filename}) return options
null
275
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() class AnomalyModel(ModelMixin, DataMixin): def __init__(self): def get_available_algorithms(num_input_metrics): def get_available_thresholds(): def get_threshold_info(threshold): def _compute_metrics(labels, predictions): def _plot_anomalies(model, ts, scores, labels=None): def _check(df, columns, label_column, is_train): def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): def test(self, model, df, columns, label_column, threshold_params, set_progress): def select_features(n_clicks, train_file, test_file, label_name): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-features-parent": file_path = None if train_file: file_path = os.path.join(file_manager.data_directory, train_file) elif test_file: file_path = os.path.join(file_manager.data_directory, test_file) if file_path: df = AnomalyModel().load_data(file_path, nrows=2) options += [{"label": s, "value": s} for s in df.columns if s != label_name] return options
null
276
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure file_manager = FileManager() class AnomalyModel(ModelMixin, DataMixin): univariate_algorithms = [ "DefaultDetector", "ArimaDetector", "DynamicBaseline", "IsolationForest", "ETSDetector", "MSESDetector", "ProphetDetector", "RandomCutForest", "SarimaDetector", "WindStats", "SpectralResidual", "ZMS", "DeepPointAnomalyDetector", ] multivariate_algorithms = ["IsolationForest", "AutoEncoder", "VAE", "DAGMM", "LSTMED"] thresholds = ["Threshold", "AggregateAlarms"] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(num_input_metrics): if num_input_metrics <= 0: return [] elif num_input_metrics == 1: return AnomalyModel.univariate_algorithms else: return AnomalyModel.multivariate_algorithms def get_available_thresholds(): return AnomalyModel.thresholds def get_threshold_info(threshold): module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, threshold) param_info = AnomalyModel._param_info(model_class.__init__) if not param_info["alm_threshold"]["default"]: param_info["alm_threshold"]["default"] = 3.0 return param_info def _compute_metrics(labels, predictions): metrics = {} for metric in [TSADMetric.Precision, TSADMetric.Recall, TSADMetric.F1, TSADMetric.MeanTimeToDetect]: m = metric.value(ground_truth=labels, predict=predictions) metrics[metric.name] = round(m, 5) if metric.name != "MeanTimeToDetect" else str(m) return metrics def _plot_anomalies(model, ts, scores, labels=None): title = f"{type(model).__name__}: Anomalies in Time Series" fig = MTSFigure(y=ts, y_prev=None, anom=scores) return plot_anoms_plotly(fig=fig.plot_plotly(title=title), anomaly_labels=labels) def _check(df, columns, label_column, is_train): kind = "train" if is_train else "test" if label_column and label_column not in df: label_column = int(label_column) assert label_column in df, f"The label column {label_column} is not in the {kind} time series." for i in range(len(columns)): if columns[i] not in df: columns[i] = int(columns[i]) assert columns[i] in df, f"The variable {columns[i]} is not in the time {kind} series." return columns, label_column def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): columns, label_column = AnomalyModel._check(train_df, columns, label_column, is_train=True) columns, label_column = AnomalyModel._check(test_df, columns, label_column, is_train=False) if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) params["threshold"] = model_class(**thres_params) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) train_ts, train_labels = TimeSeries.from_pd(train_df[columns]), None test_ts, test_labels = TimeSeries.from_pd(test_df[columns]), None if label_column is not None and label_column != "": train_labels = TimeSeries.from_pd(train_df[label_column]) test_labels = TimeSeries.from_pd(test_df[label_column]) self.logger.info(f"Training the anomaly detector: {algorithm}...") set_progress(("2", "10")) scores = model.train(train_data=train_ts) set_progress(("6", "10")) self.logger.info("Computing training performance metrics...") train_pred = model.post_rule(scores) if model.post_rule is not None else scores train_metrics = AnomalyModel._compute_metrics(train_labels, train_pred) if train_labels is not None else None set_progress(("7", "10")) self.logger.info("Getting test-time results...") test_pred = model.get_anomaly_label(test_ts) test_metrics = AnomalyModel._compute_metrics(test_labels, test_pred) if test_labels is not None else None set_progress(("9", "10")) self.logger.info("Plotting anomaly scores...") figure = AnomalyModel._plot_anomalies(model, test_ts, test_pred, test_labels) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def test(self, model, df, columns, label_column, threshold_params, set_progress): columns, label_column = AnomalyModel._check(df, columns, label_column, is_train=False) threshold = None if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) threshold = model_class(**thres_params) if threshold is not None: model.threshold = threshold self.logger.info(f"Detecting anomalies...") set_progress(("2", "10")) test_ts, label_ts = TimeSeries.from_pd(df[columns]), None if label_column is not None and label_column != "": label_ts = TimeSeries.from_pd(df[[label_column]]) predictions = model.get_anomaly_label(time_series=test_ts) set_progress(("7", "10")) self.logger.info("Computing test performance metrics...") metrics = AnomalyModel._compute_metrics(label_ts, predictions) if label_ts is not None else None set_progress(("8", "10")) self.logger.info("Plotting anomaly labels...") figure = AnomalyModel._plot_anomalies(model, test_ts, predictions, label_ts) self.logger.info("Finished.") set_progress(("10", "10")) return metrics, figure def select_label(n_clicks, train_file, test_file, features): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-label-parent": file_path = None if train_file: file_path = os.path.join(file_manager.data_directory, train_file) elif test_file: file_path = os.path.join(file_manager.data_directory, test_file) if file_path: df = AnomalyModel().load_data(file_path, nrows=2) options += [{"label": s, "value": s} for s in df.columns if s not in (features or [])] return options
null
277
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure class AnomalyModel(ModelMixin, DataMixin): univariate_algorithms = [ "DefaultDetector", "ArimaDetector", "DynamicBaseline", "IsolationForest", "ETSDetector", "MSESDetector", "ProphetDetector", "RandomCutForest", "SarimaDetector", "WindStats", "SpectralResidual", "ZMS", "DeepPointAnomalyDetector", ] multivariate_algorithms = ["IsolationForest", "AutoEncoder", "VAE", "DAGMM", "LSTMED"] thresholds = ["Threshold", "AggregateAlarms"] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(num_input_metrics): if num_input_metrics <= 0: return [] elif num_input_metrics == 1: return AnomalyModel.univariate_algorithms else: return AnomalyModel.multivariate_algorithms def get_available_thresholds(): return AnomalyModel.thresholds def get_threshold_info(threshold): module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, threshold) param_info = AnomalyModel._param_info(model_class.__init__) if not param_info["alm_threshold"]["default"]: param_info["alm_threshold"]["default"] = 3.0 return param_info def _compute_metrics(labels, predictions): metrics = {} for metric in [TSADMetric.Precision, TSADMetric.Recall, TSADMetric.F1, TSADMetric.MeanTimeToDetect]: m = metric.value(ground_truth=labels, predict=predictions) metrics[metric.name] = round(m, 5) if metric.name != "MeanTimeToDetect" else str(m) return metrics def _plot_anomalies(model, ts, scores, labels=None): title = f"{type(model).__name__}: Anomalies in Time Series" fig = MTSFigure(y=ts, y_prev=None, anom=scores) return plot_anoms_plotly(fig=fig.plot_plotly(title=title), anomaly_labels=labels) def _check(df, columns, label_column, is_train): kind = "train" if is_train else "test" if label_column and label_column not in df: label_column = int(label_column) assert label_column in df, f"The label column {label_column} is not in the {kind} time series." for i in range(len(columns)): if columns[i] not in df: columns[i] = int(columns[i]) assert columns[i] in df, f"The variable {columns[i]} is not in the time {kind} series." return columns, label_column def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): columns, label_column = AnomalyModel._check(train_df, columns, label_column, is_train=True) columns, label_column = AnomalyModel._check(test_df, columns, label_column, is_train=False) if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) params["threshold"] = model_class(**thres_params) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) train_ts, train_labels = TimeSeries.from_pd(train_df[columns]), None test_ts, test_labels = TimeSeries.from_pd(test_df[columns]), None if label_column is not None and label_column != "": train_labels = TimeSeries.from_pd(train_df[label_column]) test_labels = TimeSeries.from_pd(test_df[label_column]) self.logger.info(f"Training the anomaly detector: {algorithm}...") set_progress(("2", "10")) scores = model.train(train_data=train_ts) set_progress(("6", "10")) self.logger.info("Computing training performance metrics...") train_pred = model.post_rule(scores) if model.post_rule is not None else scores train_metrics = AnomalyModel._compute_metrics(train_labels, train_pred) if train_labels is not None else None set_progress(("7", "10")) self.logger.info("Getting test-time results...") test_pred = model.get_anomaly_label(test_ts) test_metrics = AnomalyModel._compute_metrics(test_labels, test_pred) if test_labels is not None else None set_progress(("9", "10")) self.logger.info("Plotting anomaly scores...") figure = AnomalyModel._plot_anomalies(model, test_ts, test_pred, test_labels) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def test(self, model, df, columns, label_column, threshold_params, set_progress): columns, label_column = AnomalyModel._check(df, columns, label_column, is_train=False) threshold = None if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) threshold = model_class(**thres_params) if threshold is not None: model.threshold = threshold self.logger.info(f"Detecting anomalies...") set_progress(("2", "10")) test_ts, label_ts = TimeSeries.from_pd(df[columns]), None if label_column is not None and label_column != "": label_ts = TimeSeries.from_pd(df[[label_column]]) predictions = model.get_anomaly_label(time_series=test_ts) set_progress(("7", "10")) self.logger.info("Computing test performance metrics...") metrics = AnomalyModel._compute_metrics(label_ts, predictions) if label_ts is not None else None set_progress(("8", "10")) self.logger.info("Plotting anomaly labels...") figure = AnomalyModel._plot_anomalies(model, test_ts, predictions, label_ts) self.logger.info("Finished.") set_progress(("10", "10")) return metrics, figure def select_algorithm_parent(n_clicks, selected_metrics): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-algorithm-parent": algorithms = AnomalyModel.get_available_algorithms(len(selected_metrics)) options += [{"label": s, "value": s} for s in algorithms] return options
null
278
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure class AnomalyModel(ModelMixin, DataMixin): univariate_algorithms = [ "DefaultDetector", "ArimaDetector", "DynamicBaseline", "IsolationForest", "ETSDetector", "MSESDetector", "ProphetDetector", "RandomCutForest", "SarimaDetector", "WindStats", "SpectralResidual", "ZMS", "DeepPointAnomalyDetector", ] multivariate_algorithms = ["IsolationForest", "AutoEncoder", "VAE", "DAGMM", "LSTMED"] thresholds = ["Threshold", "AggregateAlarms"] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(num_input_metrics): if num_input_metrics <= 0: return [] elif num_input_metrics == 1: return AnomalyModel.univariate_algorithms else: return AnomalyModel.multivariate_algorithms def get_available_thresholds(): return AnomalyModel.thresholds def get_threshold_info(threshold): module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, threshold) param_info = AnomalyModel._param_info(model_class.__init__) if not param_info["alm_threshold"]["default"]: param_info["alm_threshold"]["default"] = 3.0 return param_info def _compute_metrics(labels, predictions): metrics = {} for metric in [TSADMetric.Precision, TSADMetric.Recall, TSADMetric.F1, TSADMetric.MeanTimeToDetect]: m = metric.value(ground_truth=labels, predict=predictions) metrics[metric.name] = round(m, 5) if metric.name != "MeanTimeToDetect" else str(m) return metrics def _plot_anomalies(model, ts, scores, labels=None): title = f"{type(model).__name__}: Anomalies in Time Series" fig = MTSFigure(y=ts, y_prev=None, anom=scores) return plot_anoms_plotly(fig=fig.plot_plotly(title=title), anomaly_labels=labels) def _check(df, columns, label_column, is_train): kind = "train" if is_train else "test" if label_column and label_column not in df: label_column = int(label_column) assert label_column in df, f"The label column {label_column} is not in the {kind} time series." for i in range(len(columns)): if columns[i] not in df: columns[i] = int(columns[i]) assert columns[i] in df, f"The variable {columns[i]} is not in the time {kind} series." return columns, label_column def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): columns, label_column = AnomalyModel._check(train_df, columns, label_column, is_train=True) columns, label_column = AnomalyModel._check(test_df, columns, label_column, is_train=False) if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) params["threshold"] = model_class(**thres_params) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) train_ts, train_labels = TimeSeries.from_pd(train_df[columns]), None test_ts, test_labels = TimeSeries.from_pd(test_df[columns]), None if label_column is not None and label_column != "": train_labels = TimeSeries.from_pd(train_df[label_column]) test_labels = TimeSeries.from_pd(test_df[label_column]) self.logger.info(f"Training the anomaly detector: {algorithm}...") set_progress(("2", "10")) scores = model.train(train_data=train_ts) set_progress(("6", "10")) self.logger.info("Computing training performance metrics...") train_pred = model.post_rule(scores) if model.post_rule is not None else scores train_metrics = AnomalyModel._compute_metrics(train_labels, train_pred) if train_labels is not None else None set_progress(("7", "10")) self.logger.info("Getting test-time results...") test_pred = model.get_anomaly_label(test_ts) test_metrics = AnomalyModel._compute_metrics(test_labels, test_pred) if test_labels is not None else None set_progress(("9", "10")) self.logger.info("Plotting anomaly scores...") figure = AnomalyModel._plot_anomalies(model, test_ts, test_pred, test_labels) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def test(self, model, df, columns, label_column, threshold_params, set_progress): columns, label_column = AnomalyModel._check(df, columns, label_column, is_train=False) threshold = None if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) threshold = model_class(**thres_params) if threshold is not None: model.threshold = threshold self.logger.info(f"Detecting anomalies...") set_progress(("2", "10")) test_ts, label_ts = TimeSeries.from_pd(df[columns]), None if label_column is not None and label_column != "": label_ts = TimeSeries.from_pd(df[[label_column]]) predictions = model.get_anomaly_label(time_series=test_ts) set_progress(("7", "10")) self.logger.info("Computing test performance metrics...") metrics = AnomalyModel._compute_metrics(label_ts, predictions) if label_ts is not None else None set_progress(("8", "10")) self.logger.info("Plotting anomaly labels...") figure = AnomalyModel._plot_anomalies(model, test_ts, predictions, label_ts) self.logger.info("Finished.") set_progress(("10", "10")) return metrics, figure def create_param_table(params=None, height=100): if params is None or len(params) == 0: data = [{"Parameter": "", "Value": ""}] else: data = [{"Parameter": key, "Value": str(value["default"])} for key, value in params.items()] table = dash_table.DataTable( data=data, columns=[{"id": "Parameter", "name": "Parameter"}, {"id": "Value", "name": "Value"}], editable=True, style_header_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_cell_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_table={"overflowX": "scroll", "overflowY": "scroll", "height": height}, style_header=dict(backgroundColor=TABLE_HEADER_COLOR, color="white"), style_data=dict(backgroundColor=TABLE_DATA_COLOR), ) return table def select_algorithm(algorithm): param_table = create_param_table() ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-algorithm": param_info = AnomalyModel.get_parameter_info(algorithm) param_table = create_param_table(param_info) return param_table
null
279
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure class AnomalyModel(ModelMixin, DataMixin): univariate_algorithms = [ "DefaultDetector", "ArimaDetector", "DynamicBaseline", "IsolationForest", "ETSDetector", "MSESDetector", "ProphetDetector", "RandomCutForest", "SarimaDetector", "WindStats", "SpectralResidual", "ZMS", "DeepPointAnomalyDetector", ] multivariate_algorithms = ["IsolationForest", "AutoEncoder", "VAE", "DAGMM", "LSTMED"] thresholds = ["Threshold", "AggregateAlarms"] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(num_input_metrics): if num_input_metrics <= 0: return [] elif num_input_metrics == 1: return AnomalyModel.univariate_algorithms else: return AnomalyModel.multivariate_algorithms def get_available_thresholds(): return AnomalyModel.thresholds def get_threshold_info(threshold): module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, threshold) param_info = AnomalyModel._param_info(model_class.__init__) if not param_info["alm_threshold"]["default"]: param_info["alm_threshold"]["default"] = 3.0 return param_info def _compute_metrics(labels, predictions): metrics = {} for metric in [TSADMetric.Precision, TSADMetric.Recall, TSADMetric.F1, TSADMetric.MeanTimeToDetect]: m = metric.value(ground_truth=labels, predict=predictions) metrics[metric.name] = round(m, 5) if metric.name != "MeanTimeToDetect" else str(m) return metrics def _plot_anomalies(model, ts, scores, labels=None): title = f"{type(model).__name__}: Anomalies in Time Series" fig = MTSFigure(y=ts, y_prev=None, anom=scores) return plot_anoms_plotly(fig=fig.plot_plotly(title=title), anomaly_labels=labels) def _check(df, columns, label_column, is_train): kind = "train" if is_train else "test" if label_column and label_column not in df: label_column = int(label_column) assert label_column in df, f"The label column {label_column} is not in the {kind} time series." for i in range(len(columns)): if columns[i] not in df: columns[i] = int(columns[i]) assert columns[i] in df, f"The variable {columns[i]} is not in the time {kind} series." return columns, label_column def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): columns, label_column = AnomalyModel._check(train_df, columns, label_column, is_train=True) columns, label_column = AnomalyModel._check(test_df, columns, label_column, is_train=False) if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) params["threshold"] = model_class(**thres_params) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) train_ts, train_labels = TimeSeries.from_pd(train_df[columns]), None test_ts, test_labels = TimeSeries.from_pd(test_df[columns]), None if label_column is not None and label_column != "": train_labels = TimeSeries.from_pd(train_df[label_column]) test_labels = TimeSeries.from_pd(test_df[label_column]) self.logger.info(f"Training the anomaly detector: {algorithm}...") set_progress(("2", "10")) scores = model.train(train_data=train_ts) set_progress(("6", "10")) self.logger.info("Computing training performance metrics...") train_pred = model.post_rule(scores) if model.post_rule is not None else scores train_metrics = AnomalyModel._compute_metrics(train_labels, train_pred) if train_labels is not None else None set_progress(("7", "10")) self.logger.info("Getting test-time results...") test_pred = model.get_anomaly_label(test_ts) test_metrics = AnomalyModel._compute_metrics(test_labels, test_pred) if test_labels is not None else None set_progress(("9", "10")) self.logger.info("Plotting anomaly scores...") figure = AnomalyModel._plot_anomalies(model, test_ts, test_pred, test_labels) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def test(self, model, df, columns, label_column, threshold_params, set_progress): columns, label_column = AnomalyModel._check(df, columns, label_column, is_train=False) threshold = None if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) threshold = model_class(**thres_params) if threshold is not None: model.threshold = threshold self.logger.info(f"Detecting anomalies...") set_progress(("2", "10")) test_ts, label_ts = TimeSeries.from_pd(df[columns]), None if label_column is not None and label_column != "": label_ts = TimeSeries.from_pd(df[[label_column]]) predictions = model.get_anomaly_label(time_series=test_ts) set_progress(("7", "10")) self.logger.info("Computing test performance metrics...") metrics = AnomalyModel._compute_metrics(label_ts, predictions) if label_ts is not None else None set_progress(("8", "10")) self.logger.info("Plotting anomaly labels...") figure = AnomalyModel._plot_anomalies(model, test_ts, predictions, label_ts) self.logger.info("Finished.") set_progress(("10", "10")) return metrics, figure def select_threshold_parent(n_clicks): options = [] ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-threshold-parent": algorithms = AnomalyModel.get_available_thresholds() options += [{"label": s, "value": s} for s in algorithms] return options
null
280
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure class AnomalyModel(ModelMixin, DataMixin): univariate_algorithms = [ "DefaultDetector", "ArimaDetector", "DynamicBaseline", "IsolationForest", "ETSDetector", "MSESDetector", "ProphetDetector", "RandomCutForest", "SarimaDetector", "WindStats", "SpectralResidual", "ZMS", "DeepPointAnomalyDetector", ] multivariate_algorithms = ["IsolationForest", "AutoEncoder", "VAE", "DAGMM", "LSTMED"] thresholds = ["Threshold", "AggregateAlarms"] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(num_input_metrics): if num_input_metrics <= 0: return [] elif num_input_metrics == 1: return AnomalyModel.univariate_algorithms else: return AnomalyModel.multivariate_algorithms def get_available_thresholds(): return AnomalyModel.thresholds def get_threshold_info(threshold): module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, threshold) param_info = AnomalyModel._param_info(model_class.__init__) if not param_info["alm_threshold"]["default"]: param_info["alm_threshold"]["default"] = 3.0 return param_info def _compute_metrics(labels, predictions): metrics = {} for metric in [TSADMetric.Precision, TSADMetric.Recall, TSADMetric.F1, TSADMetric.MeanTimeToDetect]: m = metric.value(ground_truth=labels, predict=predictions) metrics[metric.name] = round(m, 5) if metric.name != "MeanTimeToDetect" else str(m) return metrics def _plot_anomalies(model, ts, scores, labels=None): title = f"{type(model).__name__}: Anomalies in Time Series" fig = MTSFigure(y=ts, y_prev=None, anom=scores) return plot_anoms_plotly(fig=fig.plot_plotly(title=title), anomaly_labels=labels) def _check(df, columns, label_column, is_train): kind = "train" if is_train else "test" if label_column and label_column not in df: label_column = int(label_column) assert label_column in df, f"The label column {label_column} is not in the {kind} time series." for i in range(len(columns)): if columns[i] not in df: columns[i] = int(columns[i]) assert columns[i] in df, f"The variable {columns[i]} is not in the time {kind} series." return columns, label_column def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): columns, label_column = AnomalyModel._check(train_df, columns, label_column, is_train=True) columns, label_column = AnomalyModel._check(test_df, columns, label_column, is_train=False) if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) params["threshold"] = model_class(**thres_params) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) train_ts, train_labels = TimeSeries.from_pd(train_df[columns]), None test_ts, test_labels = TimeSeries.from_pd(test_df[columns]), None if label_column is not None and label_column != "": train_labels = TimeSeries.from_pd(train_df[label_column]) test_labels = TimeSeries.from_pd(test_df[label_column]) self.logger.info(f"Training the anomaly detector: {algorithm}...") set_progress(("2", "10")) scores = model.train(train_data=train_ts) set_progress(("6", "10")) self.logger.info("Computing training performance metrics...") train_pred = model.post_rule(scores) if model.post_rule is not None else scores train_metrics = AnomalyModel._compute_metrics(train_labels, train_pred) if train_labels is not None else None set_progress(("7", "10")) self.logger.info("Getting test-time results...") test_pred = model.get_anomaly_label(test_ts) test_metrics = AnomalyModel._compute_metrics(test_labels, test_pred) if test_labels is not None else None set_progress(("9", "10")) self.logger.info("Plotting anomaly scores...") figure = AnomalyModel._plot_anomalies(model, test_ts, test_pred, test_labels) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def test(self, model, df, columns, label_column, threshold_params, set_progress): columns, label_column = AnomalyModel._check(df, columns, label_column, is_train=False) threshold = None if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) threshold = model_class(**thres_params) if threshold is not None: model.threshold = threshold self.logger.info(f"Detecting anomalies...") set_progress(("2", "10")) test_ts, label_ts = TimeSeries.from_pd(df[columns]), None if label_column is not None and label_column != "": label_ts = TimeSeries.from_pd(df[[label_column]]) predictions = model.get_anomaly_label(time_series=test_ts) set_progress(("7", "10")) self.logger.info("Computing test performance metrics...") metrics = AnomalyModel._compute_metrics(label_ts, predictions) if label_ts is not None else None set_progress(("8", "10")) self.logger.info("Plotting anomaly labels...") figure = AnomalyModel._plot_anomalies(model, test_ts, predictions, label_ts) self.logger.info("Finished.") set_progress(("10", "10")) return metrics, figure def create_param_table(params=None, height=100): if params is None or len(params) == 0: data = [{"Parameter": "", "Value": ""}] else: data = [{"Parameter": key, "Value": str(value["default"])} for key, value in params.items()] table = dash_table.DataTable( data=data, columns=[{"id": "Parameter", "name": "Parameter"}, {"id": "Value", "name": "Value"}], editable=True, style_header_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_cell_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_table={"overflowX": "scroll", "overflowY": "scroll", "height": height}, style_header=dict(backgroundColor=TABLE_HEADER_COLOR, color="white"), style_data=dict(backgroundColor=TABLE_DATA_COLOR), ) return table def select_threshold(threshold): param_table = create_param_table(height=80) ctx = dash.callback_context prop_id = ctx.triggered_id if prop_id == "anomaly-select-threshold" and threshold: param_info = AnomalyModel.get_threshold_info(threshold) param_table = create_param_table(param_info, height=80) return param_table
null
281
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure logger = logging.getLogger(__name__) file_manager = FileManager() class AnomalyModel(ModelMixin, DataMixin): univariate_algorithms = [ "DefaultDetector", "ArimaDetector", "DynamicBaseline", "IsolationForest", "ETSDetector", "MSESDetector", "ProphetDetector", "RandomCutForest", "SarimaDetector", "WindStats", "SpectralResidual", "ZMS", "DeepPointAnomalyDetector", ] multivariate_algorithms = ["IsolationForest", "AutoEncoder", "VAE", "DAGMM", "LSTMED"] thresholds = ["Threshold", "AggregateAlarms"] def __init__(self): self.logger = logging.getLogger(__name__) self.logger.setLevel(logging.DEBUG) self.logger.addHandler(dash_logger) def get_available_algorithms(num_input_metrics): if num_input_metrics <= 0: return [] elif num_input_metrics == 1: return AnomalyModel.univariate_algorithms else: return AnomalyModel.multivariate_algorithms def get_available_thresholds(): return AnomalyModel.thresholds def get_threshold_info(threshold): module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, threshold) param_info = AnomalyModel._param_info(model_class.__init__) if not param_info["alm_threshold"]["default"]: param_info["alm_threshold"]["default"] = 3.0 return param_info def _compute_metrics(labels, predictions): metrics = {} for metric in [TSADMetric.Precision, TSADMetric.Recall, TSADMetric.F1, TSADMetric.MeanTimeToDetect]: m = metric.value(ground_truth=labels, predict=predictions) metrics[metric.name] = round(m, 5) if metric.name != "MeanTimeToDetect" else str(m) return metrics def _plot_anomalies(model, ts, scores, labels=None): title = f"{type(model).__name__}: Anomalies in Time Series" fig = MTSFigure(y=ts, y_prev=None, anom=scores) return plot_anoms_plotly(fig=fig.plot_plotly(title=title), anomaly_labels=labels) def _check(df, columns, label_column, is_train): kind = "train" if is_train else "test" if label_column and label_column not in df: label_column = int(label_column) assert label_column in df, f"The label column {label_column} is not in the {kind} time series." for i in range(len(columns)): if columns[i] not in df: columns[i] = int(columns[i]) assert columns[i] in df, f"The variable {columns[i]} is not in the time {kind} series." return columns, label_column def train(self, algorithm, train_df, test_df, columns, label_column, params, threshold_params, set_progress): columns, label_column = AnomalyModel._check(train_df, columns, label_column, is_train=True) columns, label_column = AnomalyModel._check(test_df, columns, label_column, is_train=False) if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) params["threshold"] = model_class(**thres_params) model_class = ModelFactory.get_model_class(algorithm) model = model_class(model_class.config_class(**params)) train_ts, train_labels = TimeSeries.from_pd(train_df[columns]), None test_ts, test_labels = TimeSeries.from_pd(test_df[columns]), None if label_column is not None and label_column != "": train_labels = TimeSeries.from_pd(train_df[label_column]) test_labels = TimeSeries.from_pd(test_df[label_column]) self.logger.info(f"Training the anomaly detector: {algorithm}...") set_progress(("2", "10")) scores = model.train(train_data=train_ts) set_progress(("6", "10")) self.logger.info("Computing training performance metrics...") train_pred = model.post_rule(scores) if model.post_rule is not None else scores train_metrics = AnomalyModel._compute_metrics(train_labels, train_pred) if train_labels is not None else None set_progress(("7", "10")) self.logger.info("Getting test-time results...") test_pred = model.get_anomaly_label(test_ts) test_metrics = AnomalyModel._compute_metrics(test_labels, test_pred) if test_labels is not None else None set_progress(("9", "10")) self.logger.info("Plotting anomaly scores...") figure = AnomalyModel._plot_anomalies(model, test_ts, test_pred, test_labels) self.logger.info("Finished.") set_progress(("10", "10")) return model, train_metrics, test_metrics, figure def test(self, model, df, columns, label_column, threshold_params, set_progress): columns, label_column = AnomalyModel._check(df, columns, label_column, is_train=False) threshold = None if threshold_params is not None: thres_class, thres_params = threshold_params module = importlib.import_module("merlion.post_process.threshold") model_class = getattr(module, thres_class) threshold = model_class(**thres_params) if threshold is not None: model.threshold = threshold self.logger.info(f"Detecting anomalies...") set_progress(("2", "10")) test_ts, label_ts = TimeSeries.from_pd(df[columns]), None if label_column is not None and label_column != "": label_ts = TimeSeries.from_pd(df[[label_column]]) predictions = model.get_anomaly_label(time_series=test_ts) set_progress(("7", "10")) self.logger.info("Computing test performance metrics...") metrics = AnomalyModel._compute_metrics(label_ts, predictions) if label_ts is not None else None set_progress(("8", "10")) self.logger.info("Plotting anomaly labels...") figure = AnomalyModel._plot_anomalies(model, test_ts, predictions, label_ts) self.logger.info("Finished.") set_progress(("10", "10")) return metrics, figure def create_metric_table(metrics=None): if metrics is None or len(metrics) == 0: data, columns = {}, [] for i in range(4): data[f"Metric {i}"] = "-" columns.append({"id": f"Metric {i}", "name": f"Metric {i}"}) else: data = metrics columns = [{"id": key, "name": key} for key in metrics.keys()] if not isinstance(data, list): data = [data] table = dash_table.DataTable( data=data, columns=columns, editable=False, style_header_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_cell_conditional=[{"textAlign": "center", "font-family": "Salesforce Sans"}], style_table={"overflowX": "scroll"}, style_header=dict(backgroundColor=TABLE_HEADER_COLOR, color="white"), style_data=dict(backgroundColor=TABLE_DATA_COLOR), ) return table def create_empty_figure(): return plot_timeseries(pd.DataFrame(index=pd.DatetimeIndex([]))) def click_train_test( set_progress, train_clicks, test_clicks, modal_close, train_filename, test_filename, columns, algorithm, label_column, param_table, threshold_class, threshold_table, train_percentage, train_metrics, file_mode, ): ctx = dash.callback_context modal_is_open = False modal_content = "" train_metric_table = create_metric_table() test_metric_table = create_metric_table() figure = create_empty_figure() set_progress((str(0), str(10))) try: if ctx.triggered: prop_id = ctx.triggered_id if prop_id == "anomaly-train-btn" and train_clicks > 0: assert train_filename, "The training file is empty!" assert columns, "Please select variables/metrics for analysis." assert algorithm, "Please select a anomaly detector to train." df = AnomalyModel().load_data(os.path.join(file_manager.data_directory, train_filename)) if file_mode == "single": n = int(int(train_percentage) * len(df) / 100) train_df = df.iloc[:n] test_df = df.iloc[n:] else: assert test_filename, "The test file is empty!" train_df = df test_df = AnomalyModel().load_data(os.path.join(file_manager.data_directory, test_filename)) alg_params = AnomalyModel.parse_parameters( param_info=AnomalyModel.get_parameter_info(algorithm), params={p["Parameter"]: p["Value"] for p in param_table["props"]["data"]}, ) if threshold_class: threshold_params = ( threshold_class, AnomalyModel.parse_parameters( param_info=AnomalyModel.get_threshold_info(threshold_class), params={p["Parameter"]: p["Value"] for p in threshold_table["props"]["data"]}, ), ) else: threshold_params = None model, train_metrics, test_metrics, figure = AnomalyModel().train( algorithm, train_df, test_df, columns, label_column, alg_params, threshold_params, set_progress ) AnomalyModel.save_model(file_manager.model_directory, model, algorithm) if train_metrics is not None: train_metric_table = create_metric_table(train_metrics) if test_metrics is not None: test_metric_table = create_metric_table(test_metrics) figure = dcc.Graph(figure=figure) elif prop_id == "anomaly-test-btn" and test_clicks > 0: assert columns, "Please select variables/metrics for analysis." assert algorithm, "Please select a trained anomaly detector." if file_mode == "single": df = AnomalyModel().load_data(os.path.join(file_manager.data_directory, train_filename)) n = int(int(train_percentage) * len(df) / 100) df = df.iloc[n:] else: assert test_filename, "The test file is empty!" df = AnomalyModel().load_data(os.path.join(file_manager.data_directory, test_filename)) model = AnomalyModel.load_model(file_manager.model_directory, algorithm) if threshold_class: threshold_params = ( threshold_class, AnomalyModel.parse_parameters( param_info=AnomalyModel.get_threshold_info(threshold_class), params={p["Parameter"]: p["Value"] for p in threshold_table["props"]["data"]}, ), ) else: threshold_params = None train_metrics = train_metrics[0] if isinstance(train_metrics, list) else train_metrics train_metric_table = create_metric_table(train_metrics["props"]["data"][0]) metrics, figure = AnomalyModel().test(model, df, columns, label_column, threshold_params, set_progress) if metrics is not None: test_metric_table = create_metric_table(metrics) figure = dcc.Graph(figure=figure) except Exception: error = traceback.format_exc() modal_is_open = True modal_content = error logger.error(error) return train_metric_table, test_metric_table, figure, modal_is_open, modal_content
null
282
import logging import os import traceback import dash from dash import Input, Output, State, callback, dcc from merlion.dashboard.utils.file_manager import FileManager from merlion.dashboard.models.anomaly import AnomalyModel from merlion.dashboard.pages.utils import create_param_table, create_metric_table, create_empty_figure def set_file_mode(value): if value == "single": return True, False else: return False, True
null
283
import dash import dash_bootstrap_components as dbc from dash import dcc from dash import html from dash.dependencies import Input, Output, State import logging from merlion.dashboard.utils.layout import create_banner, create_layout from merlion.dashboard.pages.data import create_data_layout from merlion.dashboard.pages.forecast import create_forecasting_layout from merlion.dashboard.pages.anomaly import create_anomaly_layout from merlion.dashboard.callbacks import data from merlion.dashboard.callbacks import forecast from merlion.dashboard.callbacks import anomaly app = dash.Dash( __name__, meta_tags=[{"name": "viewport", "content": "width=device-width, initial-scale=1"}], external_stylesheets=[dbc.themes.BOOTSTRAP], title="Merlion Dashboard", ) app.config["suppress_callback_exceptions"] = True app.layout = html.Div( [ dcc.Location(id="url", refresh=False), html.Div(id="page-content"), dcc.Store(id="data-state"), dcc.Store(id="anomaly-state"), dcc.Store(id="forecasting-state"), ] ) def create_banner(app): return html.Div( id="banner", className="banner", children=[ html.Img(src=app.get_asset_url("merlion_small.svg")), html.Plaintext(" Powered by Salesforce AI Research"), ], ) def create_layout() -> html.Div: children, values = [], [] # Data analysis tab children.append( dcc.Tab(label="File Manager", value="file-manager", style=tab_style, selected_style=tab_selected_style) ) values.append("file-manager") # Anomaly detection tab children.append( dcc.Tab(label="Anomaly Detection", value="anomaly", style=tab_style, selected_style=tab_selected_style) ) values.append("anomaly") # Forecasting tab children.append( dcc.Tab(label="Forecasting", value="forecasting", style=tab_style, selected_style=tab_selected_style) ) values.append("forecasting") layout = html.Div( id="app-content", children=[dcc.Tabs(id="tabs", value=values[0] if values else "none", children=children), html.Div(id="plots")], ) return layout def _display_page(pathname): return html.Div(id="app-container", children=[create_banner(app), html.Br(), create_layout()])
null
284
import dash import dash_bootstrap_components as dbc from dash import dcc from dash import html from dash.dependencies import Input, Output, State import logging from merlion.dashboard.utils.layout import create_banner, create_layout from merlion.dashboard.pages.data import create_data_layout from merlion.dashboard.pages.forecast import create_forecasting_layout from merlion.dashboard.pages.anomaly import create_anomaly_layout from merlion.dashboard.callbacks import data from merlion.dashboard.callbacks import forecast from merlion.dashboard.callbacks import anomaly def create_data_layout() -> html.Div: return html.Div( id="data_views", children=[ # Left column html.Div(id="left-column-data", className="three columns", children=[create_control_panel()]), # Right column html.Div(className="nine columns", children=create_right_column()), ], ) def create_forecasting_layout() -> html.Div: return html.Div( id="forecasting_views", children=[ # Left column html.Div(id="left-column-data", className="three columns", children=[create_control_panel()]), # Right column html.Div(className="nine columns", children=create_right_column()), ], ) def create_anomaly_layout() -> html.Div: return html.Div( id="anomaly_views", children=[ # Left column html.Div(id="left-column-data", className="three columns", children=[create_control_panel()]), # Right column html.Div(className="nine columns", children=create_right_column()), ], ) def _click_tab(tab, data_state, anomaly_state, forecasting_state): if tab == "file-manager": return create_data_layout() elif tab == "forecasting": return create_forecasting_layout() elif tab == "anomaly": return create_anomaly_layout()
null
285
import plotly import plotly.graph_objects as go from plotly.subplots import make_subplots from dash import dash_table, dcc from merlion.dashboard.settings import * def data_table(df, n=1000, page_size=10): if df is not None: df = df.head(n) columns = [{"name": "Index", "id": "Index"}] + [{"name": c, "id": c} for c in df.columns] data = [] for i in range(df.shape[0]): d = {c: v for c, v in zip(df.columns, df.values[i])} d.update({"Index": df.index[i]}) data.append(d) table = dash_table.DataTable( id="table", columns=columns, data=data, style_cell_conditional=[{"textAlign": "center"}], style_table={"overflowX": "scroll"}, editable=False, column_selectable="single", page_action="native", page_size=page_size, page_current=0, style_header=dict(backgroundColor=TABLE_HEADER_COLOR), style_data=dict(backgroundColor=TABLE_DATA_COLOR), ) return table else: return dash_table.DataTable()
null
286
from abc import abstractmethod from collections import OrderedDict import copy import logging from typing import List, Optional, Union import numpy as np from merlion.evaluate.anomaly import TSADMetric from merlion.evaluate.forecast import ForecastMetric from merlion.utils import UnivariateTimeSeries, TimeSeries from merlion.utils.misc import AutodocABCMeta The provided code snippet includes necessary dependencies for implementing the `_align_outputs` function. Write a Python function `def _align_outputs(all_model_outs: List[TimeSeries], target: TimeSeries) -> List[Optional[TimeSeries]]` to solve the following problem: Aligns the outputs of each model to the time series ``target``. Here is the function: def _align_outputs(all_model_outs: List[TimeSeries], target: TimeSeries) -> List[Optional[TimeSeries]]: """ Aligns the outputs of each model to the time series ``target``. """ if all(out is None for out in all_model_outs): return [None for _ in all_model_outs] if target is None: time_stamps = np.unique(np.concatenate([out.to_pd().index for out in all_model_outs if out is not None])) else: t0 = min(min(v.index[0] for v in out.univariates) for out in all_model_outs if out is not None) tf = max(max(v.index[-1] for v in out.univariates) for out in all_model_outs if out is not None) time_stamps = target.to_pd()[t0:tf].index return [None if out is None else out.align(reference=time_stamps) for out in all_model_outs]
Aligns the outputs of each model to the time series ``target``.
287
import copy import inspect import logging from typing import Any, Dict, List, Union import pandas as pd from merlion.models.base import Config, ModelBase from merlion.models.factory import ModelFactory from merlion.models.anomaly.base import DetectorBase, DetectorConfig from merlion.models.forecast.base import ForecasterBase, ForecasterConfig, ForecasterExogBase, ForecasterExogConfig from merlion.models.anomaly.forecast_based.base import ForecastingDetectorBase from merlion.transform.base import Identity from merlion.transform.resample import TemporalResample from merlion.transform.sequence import TransformSequence from merlion.utils import TimeSeries from merlion.utils.misc import AutodocABCMeta, call_with_accepted_kwargs _DETECTOR_MEMBERS = dict(inspect.getmembers(DetectorConfig)).keys() class DetectorBase(ModelBase): def __init__(self, config: DetectorConfig): def _default_post_rule_train_config(self): def threshold(self): def threshold(self, threshold): def calibrator(self): def post_rule(self): def train( self, train_data: TimeSeries, train_config=None, anomaly_labels: TimeSeries = None, post_rule_train_config=None ) -> TimeSeries: def train_post_process( self, train_result: Union[TimeSeries, pd.DataFrame], anomaly_labels=None, post_rule_train_config=None ) -> TimeSeries: def _train(self, train_data: pd.DataFrame, train_config=None) -> pd.DataFrame: def _get_anomaly_score(self, time_series: pd.DataFrame, time_series_prev: pd.DataFrame = None) -> pd.DataFrame: def get_anomaly_score(self, time_series: TimeSeries, time_series_prev: TimeSeries = None) -> TimeSeries: def get_anomaly_label(self, time_series: TimeSeries, time_series_prev: TimeSeries = None) -> TimeSeries: def get_figure( self, time_series: TimeSeries, time_series_prev: TimeSeries = None, *, filter_scores=True, plot_time_series_prev=False, fig: Figure = None, **kwargs, ) -> Figure: def plot_anomaly( self, time_series: TimeSeries, time_series_prev: TimeSeries = None, *, filter_scores=True, plot_time_series_prev=False, figsize=(1000, 600), ax=None, ): def plot_anomaly_plotly( self, time_series: TimeSeries, time_series_prev: TimeSeries = None, *, filter_scores=True, plot_time_series_prev=False, figsize=None, ): def _is_detector_attr(base_model, attr): return isinstance(base_model, DetectorBase) and attr in _DETECTOR_MEMBERS
null
288
import copy import inspect import logging from typing import Any, Dict, List, Union import pandas as pd from merlion.models.base import Config, ModelBase from merlion.models.factory import ModelFactory from merlion.models.anomaly.base import DetectorBase, DetectorConfig from merlion.models.forecast.base import ForecasterBase, ForecasterConfig, ForecasterExogBase, ForecasterExogConfig from merlion.models.anomaly.forecast_based.base import ForecastingDetectorBase from merlion.transform.base import Identity from merlion.transform.resample import TemporalResample from merlion.transform.sequence import TransformSequence from merlion.utils import TimeSeries from merlion.utils.misc import AutodocABCMeta, call_with_accepted_kwargs _FORECASTER_MEMBERS = dict(inspect.getmembers(ForecasterConfig)).keys() _FORECASTER_EXOG_MEMBERS = dict(inspect.getmembers(ForecasterExogConfig)).keys() class ForecasterBase(ModelBase): def __init__(self, config: ForecasterConfig): def max_forecast_steps(self): def target_seq_index(self) -> int: def invert_transform(self): def require_univariate(self) -> bool: def support_multivariate_output(self) -> bool: def resample_time_stamps(self, time_stamps: Union[int, List[int]], time_series_prev: TimeSeries = None): def train_pre_process( self, train_data: TimeSeries, exog_data: TimeSeries = None, return_exog=None ) -> Union[TimeSeries, Tuple[TimeSeries, Union[TimeSeries, None]]]: def train( self, train_data: TimeSeries, train_config=None, exog_data: TimeSeries = None ) -> Tuple[TimeSeries, Optional[TimeSeries]]: def train_post_process( self, train_result: Tuple[Union[TimeSeries, pd.DataFrame], Optional[Union[TimeSeries, pd.DataFrame]]] ) -> Tuple[TimeSeries, TimeSeries]: def transform_exog_data( self, exog_data: TimeSeries, time_stamps: Union[List[int], pd.DatetimeIndex], time_series_prev: TimeSeries = None, ) -> Union[Tuple[TimeSeries, TimeSeries], Tuple[TimeSeries, None], Tuple[None, None]]: def _train(self, train_data: pd.DataFrame, train_config=None) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def _train_with_exog( self, train_data: pd.DataFrame, train_config=None, exog_data: pd.DataFrame = None ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def forecast( self, time_stamps: Union[int, List[int]], time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, return_iqr: bool = False, return_prev: bool = False, ) -> Union[Tuple[TimeSeries, Optional[TimeSeries]], Tuple[TimeSeries, TimeSeries, TimeSeries]]: def _process_forecast(self, forecast, err, time_series_prev=None, return_prev=False, return_iqr=False): def _forecast( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def _forecast_with_exog( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False, exog_data: pd.DataFrame = None, exog_data_prev: pd.DataFrame = None, ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def batch_forecast( self, time_stamps_list: List[List[int]], time_series_prev_list: List[TimeSeries], return_iqr: bool = False, return_prev: bool = False, ) -> Tuple[ Union[ Tuple[List[TimeSeries], List[Optional[TimeSeries]]], Tuple[List[TimeSeries], List[TimeSeries], List[TimeSeries]], ] ]: def get_figure( self, *, time_series: TimeSeries = None, time_stamps: List[int] = None, time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, plot_forecast_uncertainty=False, plot_time_series_prev=False, ) -> Figure: def plot_forecast( self, *, time_series: TimeSeries = None, time_stamps: List[int] = None, time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, plot_forecast_uncertainty=False, plot_time_series_prev=False, figsize=(1000, 600), ax=None, ): def plot_forecast_plotly( self, *, time_series: TimeSeries = None, time_stamps: List[int] = None, time_series_prev: TimeSeries = None, exog_data: TimeSeries = None, plot_forecast_uncertainty=False, plot_time_series_prev=False, figsize=(1000, 600), ): class ForecasterExogBase(ForecasterBase): def supports_exog(self): def exog_transform(self): def exog_aggregation_policy(self): def exog_missing_value_policy(self): def transform_exog_data( self, exog_data: TimeSeries, time_stamps: Union[List[int], pd.DatetimeIndex], time_series_prev: TimeSeries = None, ) -> Union[Tuple[TimeSeries, TimeSeries], Tuple[TimeSeries, None], Tuple[None, None]]: def _train_with_exog( self, train_data: pd.DataFrame, train_config=None, exog_data: pd.DataFrame = None ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def _train(self, train_data: pd.DataFrame, train_config=None) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def _forecast_with_exog( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False, exog_data: pd.DataFrame = None, exog_data_prev: pd.DataFrame = None, ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def _forecast( self, time_stamps: List[int], time_series_prev: pd.DataFrame = None, return_prev=False ) -> Tuple[pd.DataFrame, Optional[pd.DataFrame]]: def _is_forecaster_attr(base_model, attr): is_member = isinstance(base_model, ForecasterBase) and attr in _FORECASTER_MEMBERS return is_member or (isinstance(base_model, ForecasterExogBase) and attr in _FORECASTER_EXOG_MEMBERS)
null
289
from typing import Sequence import numpy as np import pandas as pd try: import torch import torch.nn as nn from torch.utils.data import DataLoader except ImportError as e: err = ( "Try installing Merlion with optional dependencies using `pip install salesforce-merlion[deep-learning]` or " "`pip install `salesforce-merlion[all]`" ) raise ImportError(str(e) + ". " + err) from merlion.models.base import NormalizingConfig from merlion.models.anomaly.base import DetectorBase, DetectorConfig from merlion.post_process.threshold import AggregateAlarms from merlion.utils.misc import ProgressBar, initializer from merlion.models.utils.rolling_window_dataset import RollingWindowDataset The provided code snippet includes necessary dependencies for implementing the `build_hidden_layers` function. Write a Python function `def build_hidden_layers(input_size, hidden_sizes, dropout_rate, activation)` to solve the following problem: :meta private: Here is the function: def build_hidden_layers(input_size, hidden_sizes, dropout_rate, activation): """ :meta private: """ hidden_layers = [] for i in range(len(hidden_sizes)): s = input_size if i == 0 else hidden_sizes[i - 1] hidden_layers.append(nn.Linear(s, hidden_sizes[i])) hidden_layers.append(activation()) hidden_layers.append(nn.Dropout(dropout_rate)) return torch.nn.Sequential(*hidden_layers)
:meta private:
290
import logging import math import numpy as np import pandas as pd from merlion.models.anomaly.base import DetectorConfig, DetectorBase from merlion.post_process.threshold import AdaptiveAggregateAlarms from merlion.transform.moving_average import DifferenceTransform from merlion.utils import UnivariateTimeSeries, TimeSeries, to_timestamp The provided code snippet includes necessary dependencies for implementing the `param_init` function. Write a Python function `def param_init(module, init="ortho")` to solve the following problem: MLP parameter initialization function :meta private: Here is the function: def param_init(module, init="ortho"): """ MLP parameter initialization function :meta private: """ for m in module.modules(): if isinstance(m, nn.Conv2d): # or isinstance(m, nn.Linear): # print('Update init of ', m) if init == "he": n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif init == "ortho": nn.init.orthogonal_(m.weight) if isinstance(m, nn.Linear): nn.init.normal_(m.weight, mean=0, std=0.0001) # n = m.weight.size(1) # m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): # print('Update init of ', m) m.weight.data.fill_(1) m.bias.data.zero_()
MLP parameter initialization function :meta private:
291
import logging import math import numpy as np import pandas as pd try: import torch import torch.nn as nn import torch.utils.data as data except ImportError as e: err = ( "Try installing Merlion with optional dependencies using `pip install salesforce-merlion[deep-learning]` or " "`pip install `salesforce-merlion[all]`" ) raise ImportError(str(e) + ". " + err) from merlion.models.anomaly.base import DetectorConfig, DetectorBase from merlion.post_process.threshold import AdaptiveAggregateAlarms from merlion.transform.moving_average import DifferenceTransform from merlion.utils import UnivariateTimeSeries, TimeSeries, to_timestamp class MLPNet(nn.Module): """ MLP network architecture :meta private: """ def __init__(self, dim_inp=None, dim_out=None, nhiddens=(400, 400, 400), bn=True): super().__init__() self.dim_inp = dim_inp self.layers = nn.ModuleList([]) for i in range(len(nhiddens)): if i == 0: layer = nn.Linear(dim_inp, nhiddens[i], bias=False) else: layer = nn.Linear(nhiddens[i - 1], nhiddens[i], bias=False) self.layers.append(layer) bn_layer = nn.BatchNorm1d(nhiddens[i]) if bn else nn.Sequential() relu_layer = nn.ReLU(inplace=True) self.layers.extend([bn_layer, relu_layer]) fc = nn.Linear(nhiddens[-1], dim_out, bias=True) self.layers.append(fc) self.net = nn.Sequential(*self.layers) self.nhiddens = nhiddens param_init(self) def forward(self, x, logit=False): x = x.view(-1, self.dim_inp) x = self.net(x) # out = torch.nn.Softmax(dim=1)(x) # if logit: # return x return x The provided code snippet includes necessary dependencies for implementing the `get_dnn_loss_as_anomaly_score` function. Write a Python function `def get_dnn_loss_as_anomaly_score(tensor_x, tensor_y, use_cuda=True)` to solve the following problem: train an MLP using Adam optimizer for 20 iteration on the training data provided :meta private: Here is the function: def get_dnn_loss_as_anomaly_score(tensor_x, tensor_y, use_cuda=True): """ train an MLP using Adam optimizer for 20 iteration on the training data provided :meta private: """ BS = tensor_x.size(0) LR = 0.001 max_epochs = 20 model = MLPNet(dim_inp=1, dim_out=tensor_y.size(1), nhiddens=[400, 400, 400], bn=True) if use_cuda: model = model.cuda() epoch = 0 # optimizer = torch.optim.SGD(model.parameters(), lr=LR, momentum=0.9, weight_decay=0) optimizer = torch.optim.Adam(model.parameters(), lr=LR, weight_decay=1e-3) my_dataset = data.TensorDataset(tensor_x, tensor_y) # create your datset my_dataloader = data.DataLoader(my_dataset, batch_size=BS, shuffle=False, num_workers=0, pin_memory=True) # with tqdm.tqdm(total=max_epochs) as pbar: while epoch < max_epochs: # pbar.update(1) epoch += 1 for x, y in my_dataloader: if use_cuda: x, y = x.cuda(), y.cuda() y_ = model(x) loss = ((y - y_) ** 2).sum(1).mean() optimizer.zero_grad() loss.backward() optimizer.step() for x, y in my_dataloader: if use_cuda: x, y = x.cuda(), y.cuda() y_ = model(x) loss = ((y - y_) ** 2).sum(1).view(-1) return loss.data.view(-1).cpu().numpy()
train an MLP using Adam optimizer for 20 iteration on the training data provided :meta private:
292
import logging import math import numpy as np import pandas as pd from merlion.models.anomaly.base import DetectorConfig, DetectorBase from merlion.post_process.threshold import AdaptiveAggregateAlarms from merlion.transform.moving_average import DifferenceTransform from merlion.utils import UnivariateTimeSeries, TimeSeries, to_timestamp The provided code snippet includes necessary dependencies for implementing the `normalize_data` function. Write a Python function `def normalize_data(x)` to solve the following problem: normalize data to have 0 mean and unit variance :meta private: Here is the function: def normalize_data(x): """ normalize data to have 0 mean and unit variance :meta private: """ mn = np.mean(x, axis=0, keepdims=True) sd = np.std(x, axis=0, keepdims=True) return (x - mn) / (sd + 1e-7)
normalize data to have 0 mean and unit variance :meta private:
293
import functools import logging import time import warnings import numpy as np from numpy.linalg import LinAlgError import statsmodels.api as sm logger = logging.getLogger(__name__) def _model_name(model_spec): """ Return model name """ p, d, q = model_spec.order P, D, Q, m = model_spec.seasonal_order return " SARIMA({p},{d},{q})({P},{D},{Q})[{m}] {constant_trend}".format( p=p, d=d, q=q, P=P, D=D, Q=Q, m=m, constant_trend=" with constant" if model_spec.trend is not None else "without constant", ) def _root_test(model_fit, ic): """ Check the roots of the sarima model, and set IC to inf if the roots are near non-invertible. """ # This is identical to the implementation of pmdarima and forecast max_invroot = 0 p, d, q = model_fit.model.order P, D, Q, m = model_fit.model.seasonal_order if p + P > 0: max_invroot = max(0, *np.abs(1 / model_fit.arroots)) if q + Q > 0 and np.isfinite(ic): max_invroot = max(0, *np.abs(1 / model_fit.maroots)) if max_invroot > 1 - 1e-2: ic = np.inf logger.debug( "Near non-invertible roots for order " "(%i, %i, %i)(%i, %i, %i, %i); setting score to inf (at " "least one inverse root too close to the border of the " "unit circle: %.3f)" % (p, d, q, P, D, Q, m, max_invroot) ) return ic The provided code snippet includes necessary dependencies for implementing the `_fit_sarima_model` function. Write a Python function `def _fit_sarima_model(y, order, seasonal_order, trend, method, maxiter, information_criterion, exog=None, **kwargs)` to solve the following problem: Train a sarima model with the given time-series and hyperparamteres tuple. Return the trained model, training time and information criterion Here is the function: def _fit_sarima_model(y, order, seasonal_order, trend, method, maxiter, information_criterion, exog=None, **kwargs): """ Train a sarima model with the given time-series and hyperparamteres tuple. Return the trained model, training time and information criterion """ start = time.time() ic = np.inf model_fit = None with warnings.catch_warnings(): warnings.simplefilter("ignore") model_spec = sm.tsa.SARIMAX( endog=y, exog=exog, order=order, seasonal_order=seasonal_order, trend=trend, validate_specification=False, enforce_stationarity=False, enforce_invertibility=False, **kwargs, ) try: model_fit = model_spec.fit(method=method, maxiter=maxiter, disp=0) except (LinAlgError, ValueError) as v: logger.warning(f"Caught exception {type(v).__name__}: {str(v)}") else: ic = model_fit.info_criteria(information_criterion) ic = _root_test(model_fit, ic) fit_time = time.time() - start logger.debug( "{model} : {ic_name}={ic:.3f}, Time={time:.2f} sec".format( model=_model_name(model_spec), ic_name=information_criterion.upper(), ic=ic, time=fit_time ) ) return model_fit, fit_time, ic
Train a sarima model with the given time-series and hyperparamteres tuple. Return the trained model, training time and information criterion
294
import functools import logging import time import warnings import numpy as np from numpy.linalg import LinAlgError import statsmodels.api as sm logger = logging.getLogger(__name__) def _model_name(model_spec): """ Return model name """ p, d, q = model_spec.order P, D, Q, m = model_spec.seasonal_order return " SARIMA({p},{d},{q})({P},{D},{Q})[{m}] {constant_trend}".format( p=p, d=d, q=q, P=P, D=D, Q=Q, m=m, constant_trend=" with constant" if model_spec.trend is not None else "without constant", ) def _root_test(model_fit, ic): """ Check the roots of the sarima model, and set IC to inf if the roots are near non-invertible. """ # This is identical to the implementation of pmdarima and forecast max_invroot = 0 p, d, q = model_fit.model.order P, D, Q, m = model_fit.model.seasonal_order if p + P > 0: max_invroot = max(0, *np.abs(1 / model_fit.arroots)) if q + Q > 0 and np.isfinite(ic): max_invroot = max(0, *np.abs(1 / model_fit.maroots)) if max_invroot > 1 - 1e-2: ic = np.inf logger.debug( "Near non-invertible roots for order " "(%i, %i, %i)(%i, %i, %i, %i); setting score to inf (at " "least one inverse root too close to the border of the " "unit circle: %.3f)" % (p, d, q, P, D, Q, m, max_invroot) ) return ic The provided code snippet includes necessary dependencies for implementing the `_refit_sarima_model` function. Write a Python function `def _refit_sarima_model(model_fitted, approx_ic, method, inititer, maxiter, information_criterion)` to solve the following problem: Re-train the the approximated sarima model which is used in approximation mode. Take the approximated model as initialization, fine tune with (maxiter - initier) rounds or multiple rounds until no improvement about information criterion Return the trained model Here is the function: def _refit_sarima_model(model_fitted, approx_ic, method, inititer, maxiter, information_criterion): """ Re-train the the approximated sarima model which is used in approximation mode. Take the approximated model as initialization, fine tune with (maxiter - initier) rounds or multiple rounds until no improvement about information criterion Return the trained model """ start = time.time() with warnings.catch_warnings(): warnings.simplefilter("ignore") best_fit = model_fitted ic = approx_ic logger.debug( "Initial Model: {model} Iter={iter:d}, {ic_name}={ic:.3f}".format( model=_model_name(model_fitted.model), iter=inititer, ic_name=information_criterion.upper(), ic=ic ) ) for cur_iter in range(inititer + 1, maxiter + 1): try: model_fitted = model_fitted.model.fit( method=method, maxiter=1, disp=0, start_params=model_fitted.params ) except (LinAlgError, ValueError) as v: logger.warning(f"Caught exception {type(v).__name__}: {str(v)}") else: cur_ic = model_fitted.info_criteria(information_criterion) cur_ic = _root_test(model_fitted, cur_ic) if cur_ic > ic or np.isinf(cur_ic): break else: ic = cur_ic best_fit = model_fitted fit_time = time.time() - start logger.debug( "{model} : Iter={iter:d}, {ic_name}={ic:.3f}, Time={time:.2f} sec".format( model=_model_name(model_fitted.model), iter=cur_iter, ic_name=information_criterion.upper(), ic=ic, time=fit_time, ) ) return best_fit
Re-train the the approximated sarima model which is used in approximation mode. Take the approximated model as initialization, fine tune with (maxiter - initier) rounds or multiple rounds until no improvement about information criterion Return the trained model
295
import functools import logging import time import warnings import numpy as np from numpy.linalg import LinAlgError import statsmodels.api as sm logger = logging.getLogger(__name__) def _model_name(model_spec): """ Return model name """ p, d, q = model_spec.order P, D, Q, m = model_spec.seasonal_order return " SARIMA({p},{d},{q})({P},{D},{Q})[{m}] {constant_trend}".format( p=p, d=d, q=q, P=P, D=D, Q=Q, m=m, constant_trend=" with constant" if model_spec.trend is not None else "without constant", ) def _root_test(model_fit, ic): """ Check the roots of the sarima model, and set IC to inf if the roots are near non-invertible. """ # This is identical to the implementation of pmdarima and forecast max_invroot = 0 p, d, q = model_fit.model.order P, D, Q, m = model_fit.model.seasonal_order if p + P > 0: max_invroot = max(0, *np.abs(1 / model_fit.arroots)) if q + Q > 0 and np.isfinite(ic): max_invroot = max(0, *np.abs(1 / model_fit.maroots)) if max_invroot > 1 - 1e-2: ic = np.inf logger.debug( "Near non-invertible roots for order " "(%i, %i, %i)(%i, %i, %i, %i); setting score to inf (at " "least one inverse root too close to the border of the " "unit circle: %.3f)" % (p, d, q, P, D, Q, m, max_invroot) ) return ic The provided code snippet includes necessary dependencies for implementing the `detect_maxiter_sarima_model` function. Write a Python function `def detect_maxiter_sarima_model(y, d, D, m, method, information_criterion, exog=None, **kwargs)` to solve the following problem: run a zero model with SARIMA(2; d; 2)(1; D; 1) / ARIMA(2; d; 2) determine the optimal maxiter Here is the function: def detect_maxiter_sarima_model(y, d, D, m, method, information_criterion, exog=None, **kwargs): """ run a zero model with SARIMA(2; d; 2)(1; D; 1) / ARIMA(2; d; 2) determine the optimal maxiter """ logger.debug("Automatically detect the maxiter") order = (2, d, 2) if m == 1: seasonal_order = (0, 0, 0, 0) else: seasonal_order = (1, D, 1, m) # default setting of maxiter is 10 start = time.time() fit_time = np.nan maxiter = 10 ic = np.inf model_spec = sm.tsa.SARIMAX( endog=y, exog=exog, order=order, seasonal_order=seasonal_order, trend="c", validate_specification=False, enforce_stationarity=False, enforce_invertibility=False, ) with warnings.catch_warnings(): warnings.simplefilter("ignore") try: model_fit = model_spec.fit(method=method, maxiter=maxiter, disp=0) except (LinAlgError, ValueError) as v: logger.warning(f"Caught exception {type(v).__name__}: {str(v)}") return maxiter else: ic = model_fit.info_criteria(information_criterion) ic = _root_test(model_fit, ic) for cur_iter in range(maxiter + 1, 51): try: model_fit = model_fit.model.fit(method=method, maxiter=1, disp=0, start_params=model_fit.params) except (LinAlgError, ValueError) as v: logger.warning(f"Caught exception {type(v).__name__}: {str(v)}") else: cur_ic = model_fit.info_criteria(information_criterion) cur_ic = _root_test(model_fit, cur_ic) if cur_ic > ic or np.isinf(cur_ic): break else: ic = cur_ic maxiter = cur_iter logger.debug( "Zero model: {model} Iter={iter:d}, {ic_name}={ic:.3f}".format( model=_model_name(model_fit.model), iter=maxiter, ic_name=information_criterion.upper(), ic=ic, ) ) fit_time = time.time() - start logger.debug( "Zero model: {model} Iter={iter:d}, {ic_name}={ic:.3f}, Time={time:.2f} sec".format( model=_model_name(model_fit.model), iter=maxiter, ic_name=information_criterion.upper(), ic=ic, time=fit_time, ) ) logger.info(f"Automatically detect the maxiter is {maxiter}") return maxiter
run a zero model with SARIMA(2; d; 2)(1; D; 1) / ARIMA(2; d; 2) determine the optimal maxiter
296
import functools import logging import time import warnings import numpy as np from numpy.linalg import LinAlgError import statsmodels.api as sm def diff(x, lag=1, differences=1): """ Return suitably lagged and iterated differences from the given 1D or 2D array x """ n = x.shape[0] if any(v < 1 for v in (lag, differences)): raise ValueError("lag and differences must be positive (> 0) integers") if lag >= n: raise ValueError("lag should be smaller than the length of array") if differences >= n: raise ValueError("differences should be smaller than the length of array") res = x for i in range(differences): if res.ndim == 1: # compute the lag for vector res = res[lag : res.shape[0]] - res[: res.shape[0] - lag] else: res = res[lag : res.shape[0], :] - res[: res.shape[0] - lag, :] return res def seas_seasonalstationaritytest(x, m): """ Estimate the strength of seasonal component. The idea can be found in https://otexts.com/fpp2/seasonal-strength.html R implementation uses mstl instead of stl to deal with multiple seasonality """ stlfit = sm.tsa.STL(x, m).fit() vare = np.nanvar(stlfit.resid) season = max(0, min(1, 1 - vare / np.nanvar(stlfit.resid + stlfit.seasonal))) return season > 0.64 The provided code snippet includes necessary dependencies for implementing the `nsdiffs` function. Write a Python function `def nsdiffs(x, m, max_D=1, test="seas")` to solve the following problem: Estimate the seasonal differencing order D with statistical test Parameters: x : the time series to difference m : the number of seasonal periods max_D : the maximal number of seasonal differencing order allowed test: the type of test of seasonality to use to detect seasonal periodicity Here is the function: def nsdiffs(x, m, max_D=1, test="seas"): """ Estimate the seasonal differencing order D with statistical test Parameters: x : the time series to difference m : the number of seasonal periods max_D : the maximal number of seasonal differencing order allowed test: the type of test of seasonality to use to detect seasonal periodicity """ D = 0 if max_D <= 0: raise ValueError("max_D must be a positive integer") if np.max(x) == np.min(x) or m < 2: return D if test == "seas": dodiff = seas_seasonalstationaritytest(x, m) while dodiff and D < max_D: D += 1 x = diff(x, lag=m) if np.max(x) == np.min(x): return D if len(x) >= 2 * m and D < max_D: dodiff = seas_seasonalstationaritytest(x, m) else: dodiff = False return D
Estimate the seasonal differencing order D with statistical test Parameters: x : the time series to difference m : the number of seasonal periods max_D : the maximal number of seasonal differencing order allowed test: the type of test of seasonality to use to detect seasonal periodicity
297
import functools import logging import time import warnings import numpy as np from numpy.linalg import LinAlgError import statsmodels.api as sm def diff(x, lag=1, differences=1): """ Return suitably lagged and iterated differences from the given 1D or 2D array x """ n = x.shape[0] if any(v < 1 for v in (lag, differences)): raise ValueError("lag and differences must be positive (> 0) integers") if lag >= n: raise ValueError("lag should be smaller than the length of array") if differences >= n: raise ValueError("differences should be smaller than the length of array") res = x for i in range(differences): if res.ndim == 1: # compute the lag for vector res = res[lag : res.shape[0]] - res[: res.shape[0] - lag] else: res = res[lag : res.shape[0], :] - res[: res.shape[0] - lag, :] return res def KPSS_stationaritytest(xx, alpha=0.05): """ The KPSS test is used with the null hypothesis that x has a stationary root against a unit-root alternative The KPSS test is used with the null hypothesis that x has a stationary root against a unit-root alternative. Then the test returns the least number of differences required to pass the test at the level alpha """ with warnings.catch_warnings(): warnings.simplefilter("ignore") results = sm.tsa.stattools.kpss(xx, regression="c", nlags=round(3 * np.sqrt(len(xx)) / 13)) yout = results[1] return yout, yout < alpha The provided code snippet includes necessary dependencies for implementing the `ndiffs` function. Write a Python function `def ndiffs(x, alpha=0.05, max_d=2, test="kpss")` to solve the following problem: Estimate the differencing order d with statistical test Parameters: x : the time series to difference alpha : level of the test, possible values range from 0.01 to 0.1 max_d : the maximal number of differencing order allowed test: the type of test of seasonality to use to detect seasonal periodicity Here is the function: def ndiffs(x, alpha=0.05, max_d=2, test="kpss"): """ Estimate the differencing order d with statistical test Parameters: x : the time series to difference alpha : level of the test, possible values range from 0.01 to 0.1 max_d : the maximal number of differencing order allowed test: the type of test of seasonality to use to detect seasonal periodicity """ d = 0 if max_d <= 0: raise ValueError("max_d must be a positive integer") if alpha < 0.01: warnings.warn("Specified alpha value is less than the minimum, setting alpha=0.01") alpha = 0.01 if alpha > 0.1: warnings.warn("Specified alpha value is larger than the maximum, setting alpha=0.1") alpha = 0.1 if np.max(x) == np.min(x): return d if test == "kpss": pval, dodiff = KPSS_stationaritytest(x, alpha) if np.isnan(pval): return 0 while dodiff and d < max_d: d += 1 x = diff(x) if np.max(x) == np.min(x): return d pval, dodiff = KPSS_stationaritytest(x, alpha) if np.isnan(pval): return d - 1 return d
Estimate the differencing order d with statistical test Parameters: x : the time series to difference alpha : level of the test, possible values range from 0.01 to 0.1 max_d : the maximal number of differencing order allowed test: the type of test of seasonality to use to detect seasonal periodicity
298
from typing import List import numpy as np import pandas as pd from pandas.tseries import offsets from pandas.tseries.frequencies import to_offset def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]: """ :param freq_str: Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc. :return: a list of time features that will be appropriate for the given frequency string. """ features_by_offsets = { offsets.YearEnd: [], offsets.QuarterEnd: [MonthOfYear], offsets.MonthEnd: [MonthOfYear], offsets.Week: [DayOfMonth, WeekOfYear], offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear], offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear], offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear], offsets.Minute: [ MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], offsets.Second: [ SecondOfMinute, MinuteOfHour, HourOfDay, DayOfWeek, DayOfMonth, DayOfYear, ], } offset = to_offset(freq_str) for offset_type, feature_classes in features_by_offsets.items(): if isinstance(offset, offset_type): return [cls() for cls in feature_classes] supported_freq_msg = f""" Unsupported frequency {freq_str} The following frequencies are supported: Y - yearly alias: A M - monthly W - weekly D - daily B - business days H - hourly T - minutely alias: min S - secondly """ raise RuntimeError(supported_freq_msg) The provided code snippet includes necessary dependencies for implementing the `get_time_features` function. Write a Python function `def get_time_features(dates: pd.DatetimeIndex, ts_encoding: str = "h")` to solve the following problem: Convert pandas Datetime to numerical vectors that can be used for training Here is the function: def get_time_features(dates: pd.DatetimeIndex, ts_encoding: str = "h"): """ Convert pandas Datetime to numerical vectors that can be used for training """ features = np.vstack([feat(dates) for feat in time_features_from_frequency_str(ts_encoding)]) return features.transpose(1, 0)
Convert pandas Datetime to numerical vectors that can be used for training
299
import os import math import numpy as np try: import torch import torch.nn as nn import torch.fft as fft import torch.nn.functional as F from einops import rearrange, reduce, repeat except ImportError as e: err = ( "Try installing Merlion with optional dependencies using `pip install salesforce-merlion[deep-learning]` or " "`pip install `salesforce-merlion[all]`" ) raise ImportError(str(e) + ". " + err) from math import sqrt from scipy.fftpack import next_fast_len def conv1d_fft(f, g, dim=-1): N = f.size(dim) M = g.size(dim) fast_len = next_fast_len(N + M - 1) F_f = fft.rfft(f, fast_len, dim=dim) F_g = fft.rfft(g, fast_len, dim=dim) F_fg = F_f * F_g.conj() out = fft.irfft(F_fg, fast_len, dim=dim) out = out.roll((-1,), dims=(dim,)) idx = torch.as_tensor(range(fast_len - N, fast_len)).to(out.device) out = out.index_select(dim, idx) return out
null