Datasets:
Dataset Viewer (First 5GB)
npy
list | __key__
string | __url__
string |
---|---|---|
[[6.2698924247887346e-6,5.705408812675065e-6,5.0466296999307405e-6,4.300461994942353e-6,3.4743613394(...TRUNCATED) |
eeg_02/26719
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[-0.000016612202564059327,-0.00001877918655953867,-0.000020704446470281614,-0.00002235579440890579,(...TRUNCATED) |
eeg_02/12690
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[3.615218764297691e-6,3.3493276794491515e-6,3.118259502710749e-6,2.934381433809135e-6,2.80806077525(...TRUNCATED) |
eeg_02/6173
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[0.00003282853221115399,0.00003317156208597696,0.00003342606330509687,0.00003361711152121902,0.0000(...TRUNCATED) |
eeg_02/5237
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[-4.522365631331061e-6,-4.636741468830915e-6,-4.580474885999787e-6,-4.365757191161649e-6,-4.0079505(...TRUNCATED) |
eeg_02/26718
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[-0.0000228658632037311,-0.00002082041514203485,-0.000018651851713551854,-0.000016378741307012355,-(...TRUNCATED) |
eeg_02/11191
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[0.000025207744994946123,0.000023601972792182575,0.000021986766109610527,0.000020399801603608082,0.(...TRUNCATED) |
eeg_02/9566
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[-8.870131166116828e-6,-9.088157055173532e-6,-9.384705652547114e-6,-9.758254959161324e-6,-0.0000102(...TRUNCATED) |
eeg_02/25034
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[2.0794319857637072e-8,1.3001707022366658e-6,2.4459295727191546e-6,3.41925683637796e-6,4.1870472184(...TRUNCATED) |
eeg_02/16146
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
[[5.5511929741981596e-6,6.641810129248563e-6,7.689199160221044e-6,8.690815744131532e-6,9.64572179349(...TRUNCATED) |
eeg_02/6960
| "hf://datasets/Fudan-fMRI/CineBrain@68595d82959090ced60755fb468f56acdd2d1279/sub-0001/EEG_preprocess(...TRUNCATED) |
End of preview. Expand
in Data Studio
CineBrain: A Large-Scale Multi-Modal Brain Dataset During Naturalistic Audiovisual Narrative Processing
CineBrain is a large-scale multimodal brain dataset comprising fMRI, EEG, and ECG recordings collected while participants watched episodes of The Big Bang Theory.
It supports research on neural decoding, multimodal learning, and modality transfer in naturalistic narrative processing.
π§ Dataset Description
Summary
- Participants: 6 subjects
- Stimuli: 30 episodes of The Big Bang Theory (first 18 minutes per episode)
- Recording time: 6 hours per subject (36 hours total)
- Modalities:
- fMRI: TR = 0.8s
- EEG: 64 channels, 1000 Hz
- ECG: synchronous recording
Supported Tasks
- Multimodal Brain Analysis β Linking audiovisual stimuli and neural responses
- Neural Decoding β Inferring cognitive states from fMRI/EEG
- Cross-Modal Learning β Shared representations across fMRI, EEG, ECG
- Modality Transfer β Predicting fMRI from EEG and EEG from fMRI
π Dataset Structure
Repository Contents
videos.tar
β Video stimuli (8100 clips from 30 episodes)sub-00xx/
β Participant folders with raw + preprocessed fMRI/EEGcaptions-qwen-2.5-vl-7b.json
β Auto-generated video captions
Inside Each Participant Folder
fMRI_raw_data.tar
β raw fMRIfMRI_preprocessed_data.tar
β preprocessed fMRIEEG_preprocessed_data.tar
β preprocessed EEG
Data Statistics
Modality | Sampling | Duration | Size (approx.) |
---|---|---|---|
fMRI | TR=0.8s | 6h/subject | ~12 GB total |
EEG | 1000 Hz, 64 ch | 6h/subject | ~72 GB total |
Video | 30 eps Γ 18 min | 8100 clips | ~2.6 GB |
Data Splits
- Subjects 1, 2, 6 β Episodes 1β20 (5400 clips)
- Subjects 3, 4, 5 β Episodes 1β10 and 21β30 (5400 clips)
Total: 36 hours of brain recordings across all subjects.
π Important Notes
- Data Release: Fully open and downloadable
- Cross-Dataset Correspondence: Subjects 1, 2, 3, 4 in CineBrain map to Subjects 6, 8, 1, 4 in fMRI-Shape and fMRI-Objaverse
π Dataset Creation
Motivation
CineBrain is designed to support naturalistic neuroscience research, with focuses on:
- Narrative comprehension
- Multisensory integration
- Individual variability in brain responses
- Temporal dynamics of engagement
Source Data & Preprocessing
- fMRI: High temporal resolution (TR=0.8s)
- EEG: High sampling rate (1000 Hz)
- Preprocessing: Standard pipelines, artifact removal, QC
β οΈ Ethics: All data anonymized. Please follow ethical guidelines when using human neuroimaging data.
βοΈ Considerations for Use
Social Impact
- Advance understanding of narrative processing
- Support brainβcomputer interface research
- Enable clinical applications for attention/comprehension disorders
Potential Biases
- Demographic bias: Limited participant diversity
- Cultural bias: English-language sitcom
- Selection bias: Likely university volunteers
π Additional Information
- License: Apache-2.0
- Languages: English audiovisual content
Citation
If you find our paper useful for your research and applications, please cite using this BibTeX:
@misc{gao2025cinebrain,
title={CineBrain: A Large-Scale Multi-Modal Brain Dataset During Naturalistic Audiovisual Narrative Processing},
author={Jianxiong Gao and Yichang Liu and Baofeng Yang and Jianfeng Feng and Yanwei Fu},
year={2025},
eprint={2503.06940},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2503.06940},
}
- Downloads last month
- 389