|
|
|
|
|
import os |
|
|
import glob |
|
|
import pandas as pd |
|
|
import pyarrow as pa |
|
|
import pyarrow.parquet as pq |
|
|
from tqdm import tqdm |
|
|
import cv2 as cv |
|
|
import argparse |
|
|
|
|
|
|
|
|
def images_to_parquet_sharded(image_dir, output_path, output_prefix="data_shard", shard_size_mb=100): |
|
|
""" |
|
|
Converts a folder of images into multiple Parquet shard files (~shard_size_mb each). |
|
|
|
|
|
Args: |
|
|
image_dir (str): Path to dataset folder. If images are grouped in |
|
|
subfolders, the folder name will be used as label. |
|
|
output_path (str): Path to processed dataset folder. |
|
|
output_prefix (str): Prefix for output parquet files (e.g., "data_shard"). |
|
|
shard_size_mb (int): Approximate shard size in MB. |
|
|
""" |
|
|
shard_size_bytes = shard_size_mb * 1024 * 1024 |
|
|
shard_index = 0 |
|
|
records = [] |
|
|
all_images_count = 0 |
|
|
total_written = 0 |
|
|
|
|
|
image_paths = glob.glob(os.path.join(image_dir, "**", "*.*"), recursive=True) |
|
|
|
|
|
for path in tqdm(image_paths, desc="Packing images"): |
|
|
ext = os.path.splitext(path)[1].lower() |
|
|
if ext not in [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp"]: |
|
|
continue |
|
|
|
|
|
label = os.path.basename(os.path.dirname(path)) |
|
|
|
|
|
img_bytes = cv.imread(path) |
|
|
img_bytes = cv.imencode('.png', img_bytes)[1].tobytes() |
|
|
|
|
|
records.append({"image": img_bytes, "label": label, "filename": os.path.basename(path)}) |
|
|
total_written += len(img_bytes) |
|
|
|
|
|
|
|
|
if total_written >= shard_size_bytes: |
|
|
df = pd.DataFrame(records) |
|
|
table = pa.Table.from_pandas(df) |
|
|
out_path = os.path.join(output_path, f"{output_prefix}-{shard_index:05d}.parquet") |
|
|
pq.write_table(table, out_path) |
|
|
all_images_count += len(records) |
|
|
|
|
|
shard_index += 1 |
|
|
records = [] |
|
|
total_written = 0 |
|
|
|
|
|
|
|
|
|
|
|
if records: |
|
|
df = pd.DataFrame(records) |
|
|
table = pa.Table.from_pandas(df) |
|
|
out_path = os.path.join(output_path, f"{output_prefix}-{shard_index:05d}.parquet") |
|
|
pq.write_table(table, out_path) |
|
|
all_images_count += len(records) |
|
|
|
|
|
print(f"✅ Wrote {all_images_count} images to {output_path}") |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser( |
|
|
description="This script takes an images folder and convert them into parquet files." |
|
|
) |
|
|
|
|
|
|
|
|
parser.add_argument( |
|
|
"--output", |
|
|
"-o", |
|
|
type=str, |
|
|
required=True, |
|
|
help="Output path for the resulting dataset.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--output_prefix", |
|
|
"-op", |
|
|
type=str, |
|
|
required=False, |
|
|
default="data_shard", |
|
|
help="Output prefix for the resulting dataset.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--input", |
|
|
"-i", |
|
|
type=str, |
|
|
required=True, |
|
|
help="Input path for the dataset to convert.", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--parquet_shard_size_mb", |
|
|
"-ps", |
|
|
type=int, |
|
|
default=100, |
|
|
required=False, |
|
|
help="Size of the parquet shard in MB.", |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
images_to_parquet_sharded(args.input, args.output, output_prefix=args.output_prefix, shard_size_mb=args.parquet_shard_size_mb) |
|
|
|