uuid
stringlengths 36
36
| file_name
stringlengths 5
50
| repo_name
stringclasses 110
values | file_path
stringlengths 7
112
| commit_hash
stringclasses 110
values | starcount
int64 0
0
| input
stringlengths 39
33.8k
| category
dict | licenses
sequencelengths 1
2
| github_url
stringlengths 94
193
|
---|---|---|---|---|---|---|---|---|---|
3fed2f1b-c00b-47df-86e8-85fac9efc3b4 | triton_sll.py | pytorch/FBGEMM | fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py | fe980ab54a6e28818d81c8694b6564e7f804418b | 0 | @triton.jit
def jagged_flash_attention_basic_kernel(q_ptr, k_ptr, v_ptr, offset_ptr,
o_ptr, lse_i_ptr, stride_qm, stride_qd, stride_kd, stride_kn, stride_vn,
stride_vd, stride_om, stride_od, max_seq_len, D: tl.constexpr, NEXT_D:
tl.constexpr, use_mask: tl.constexpr, allow_tf32: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_D:
tl.constexpr):
pid_m = tl.program_id(axis=0)
pid_batch = tl.program_id(axis=1)
begin = tl.load(offset_ptr + pid_batch)
end = tl.load(offset_ptr + pid_batch + 1)
seqlen = end - begin
seqlen = tl.minimum(seqlen, max_seq_len)
if pid_m * BLOCK_SIZE_M >= seqlen:
return
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_d = tl.arange(0, BLOCK_SIZE_D)
offs_nextd = tl.arange(0, NEXT_D)
acc = tl.zeros([BLOCK_SIZE_M, NEXT_D], dtype=tl.float32)
m_i = tl.zeros([BLOCK_SIZE_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_SIZE_M], dtype=tl.float32)
for j in range(0, seqlen, BLOCK_SIZE_N):
offs_n = tl.arange(0, BLOCK_SIZE_N) + j
q_ptrs = q_ptr + (offs_m[:, None] * stride_qm + offs_d[None, :] *
stride_qd) + begin * stride_qm
k_ptrs = k_ptr + (offs_d[:, None] * stride_kd + offs_n[None, :] *
stride_kn) + begin * stride_kn
qk = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for d in range(0, D, BLOCK_SIZE_D):
updated_offset = d + offs_d
q = tl.load(q_ptrs, mask=(updated_offset[None, :] < D) & (
offs_m[:, None] < seqlen), other=0.0)
k = tl.load(k_ptrs, mask=(updated_offset[:, None] < D) & (
offs_n[None, :] < seqlen), other=0.0)
qk += tl.dot(q, k, allow_tf32=allow_tf32)
q_ptrs += BLOCK_SIZE_D * stride_qd
k_ptrs += BLOCK_SIZE_D * stride_kd
m_ij = tl.maximum(tl.max(qk, axis=1), m_i)
mn_mask = (offs_m[:, None] < seqlen) & (offs_n[None, :] < seqlen)
p = tl.exp(qk - m_ij[:, None])
p = tl.where(mn_mask, p, 0.0)
l_ij = tl.sum(p, axis=1)
alpha = tl.exp(m_i - m_ij)
l_i = l_i * alpha + l_ij
acc = acc * alpha[:, None]
v_ptrs = v_ptr + (offs_nextd[None, :] * stride_vd + offs_n[:, None] *
stride_vn) + begin * stride_vn
v = tl.load(v_ptrs, mask=(offs_nextd[None, :] < D) & (offs_n[:,
None] < seqlen), other=0.0)
p /= max_seq_len
if use_mask:
attn_mask = offs_m[:, None] - offs_n[None, :]
attn_mask = tl.where(mn_mask, attn_mask, 0.0)
attn_mask = tl.where(attn_mask > 0, 0.0, 1.0)
p = tl.where(attn_mask > 0, p, 0.0)
p = p.to(v_ptr.dtype.element_ty)
acc_j = tl.dot(p, v, allow_tf32=allow_tf32)
acc += acc_j
m_i = m_ij
lse_i = m_i + tl.math.log(l_i)
lse_i_offsets = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
lse_i_ptrs = lse_i_ptr + lse_i_offsets + begin
tl.store(lse_i_ptrs, lse_i, mask=lse_i_offsets < seqlen)
acc = acc / l_i[:, None]
o_ptrs = o_ptr + (offs_m[:, None] * stride_om + offs_nextd[None, :] *
stride_od + begin * stride_om)
o_mask = (offs_m[:, None] < seqlen) & (offs_nextd[None, :] < D)
tl.store(o_ptrs, acc, mask=o_mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"BSD",
"MIT"
] | https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/sll/triton_sll.py |
b69d2cf0-95a2-423a-a626-19d6cb20f407 | bnrelu.py | neuro-ml/kerops | kerops/kernels/bnrelu.py | 735336775e825d5cb06b8850d25423661b12d1ac | 0 | @triton.jit
def _ApplyBNReLU_cl3d_backward_impl(Input_ptr, Weight_ptr, Bias_ptr,
Grad_ptr, Outgrad_ptr, Weight_outgrad_ptr, Bias_outgrad_ptr,
numel_no_channels, BLOCK_SIZE: tl.constexpr, num_channels: tl.constexpr,
block_other: tl.constexpr):
pid = tl.program_id(0)
Input_ptr += pid * BLOCK_SIZE
Grad_ptr += pid * BLOCK_SIZE
Outgrad_ptr += pid * BLOCK_SIZE
channels_offset = tl.arange(0, num_channels)
other_offset = tl.arange(0, block_other)
offset = channels_offset[None, :] + other_offset[:, None] * num_channels
mask = (other_offset < numel_no_channels - pid * block_other)[:, None]
weight = tl.load(Weight_ptr + channels_offset[None, :])
bias = tl.load(Bias_ptr + channels_offset[None, :])
input = tl.load(Input_ptr + offset, mask=mask, other=0).to(tl.float32)
grad = tl.load(Grad_ptr + offset, mask=mask, other=0).to(tl.float32)
grad = grad * (input * weight > -bias)
b_grad = tl.sum(grad, axis=0)
w_grad = tl.sum(input * grad, axis=0)
x_grad = weight * grad
tl.store(Outgrad_ptr + offset, x_grad, mask=mask)
tl.atomic_add(Bias_outgrad_ptr + channels_offset, b_grad)
tl.atomic_add(Weight_outgrad_ptr + channels_offset, w_grad)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Normalization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/bnrelu.py |
5322126e-9117-4fd6-bd2b-3de14befa10d | argmax.py | daemyung/practice-triton | argmax.py | 27f727726f1507c8380a1c11751d851c7c4a07ce | 0 | @triton.jit
def argmax_kernel(output_ptr, input_ptr, num_batches, size, block_size: tl.
constexpr):
batch = tl.program_id(0)
output_block_ptr = tl.make_block_ptr(output_ptr, shape=(num_batches,),
strides=(1,), offsets=(batch,), block_shape=(1,), order=(0,))
input_block_ptr = tl.make_block_ptr(input_ptr, shape=(num_batches, size
), strides=(size, 1), offsets=(batch, 0), block_shape=(1,
block_size), order=(1, 0))
input = tl.load(input_block_ptr, boundary_check=(1,))
condition = tl.arange(0, block_size) < size
input = tl.where(condition, input, float('-inf'))
output = tl.argmax(input, 1)
tl.store(output_block_ptr, output.to(tl.int64))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Top-K Selection"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/daemyung/practice-triton/blob/27f727726f1507c8380a1c11751d851c7c4a07ce/argmax.py |
fd103ed2-89cc-476f-a89e-f223e86b5d3b | GELUglu.py | huyz2023/2by4-pretrain | sparse/GELUglu.py | 9e330125dea71e5a3dee235f4efb8869f9e4cdd0 | 0 | @triton.jit
def _gelu_glu_bwd_kernel(grad_output_ptr, grad_input_ptr, input_ptr,
grad_output_row_stride, grad_input_row_stride, input_row_stride,
grad_output_col_stride, grad_input_col_stride, input_col_stride,
grad_output_page_stride, grad_input_page_stride, input_page_stride,
n_pages, BLOCK_SIZE: tl.constexpr):
row_idx = tl.program_id(0)
col_idx = tl.program_id(1)
grad_output = tl.load(grad_output_ptr + row_idx *
grad_output_row_stride + col_idx * grad_output_col_stride + tl.
arange(0, BLOCK_SIZE // 2) * grad_output_page_stride, mask=tl.
arange(0, BLOCK_SIZE // 2) < n_pages // 2, other=-float('inf'))
x = tl.load(input_ptr + row_idx * input_row_stride + col_idx *
input_col_stride + tl.arange(0, BLOCK_SIZE // 2) *
input_page_stride, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages //
2, other=-float('inf'))
gate = tl.load(input_ptr + row_idx * input_row_stride + col_idx *
input_col_stride + (tl.arange(0, BLOCK_SIZE // 2) + n_pages // 2) *
input_page_stride, mask=tl.arange(0, BLOCK_SIZE // 2) < n_pages //
2, other=-float('inf'))
gate_cube = gate * gate * gate
beta = 0.7978845608028654
kappa = 0.044715
inner = beta * (gate + kappa * gate_cube)
inner_tanh = tanh(inner)
gate_gelu = 0.5 * gate * (inner_tanh + 1)
grad_x = grad_output * gate_gelu
grad_gelu = grad_output * x
grad_gate = grad_gelu * (0.5 * (1 + inner_tanh) + 0.5 * gate * (1 -
inner_tanh * inner_tanh) * beta * (1 + kappa * 3 * gate * gate))
tl.store(grad_input_ptr + row_idx * grad_input_row_stride + col_idx *
grad_input_col_stride + tl.arange(0, BLOCK_SIZE // 2) *
grad_input_page_stride, grad_x, mask=tl.arange(0, BLOCK_SIZE // 2) <
n_pages // 2)
tl.store(grad_input_ptr + row_idx * grad_input_row_stride + col_idx *
grad_input_col_stride + (tl.arange(0, BLOCK_SIZE // 2) + n_pages //
2) * grad_input_page_stride, grad_gate, mask=tl.arange(0,
BLOCK_SIZE // 2) < n_pages // 2)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/GELUglu.py |
b78a037f-d294-4568-94ea-bab6c450fa01 | associative_rnn_scan.py | TushaarGVS/linear-rnn | linear_rnn/triton/associative_rnn_scan.py | 48320589b73154484be7d09a144923a2b9e56b85 | 0 | @triton.jit
def _associative_rnn_scan_bwd_kernel():
pass
| {
"Data Type": [],
"Functionality": [],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"Apache"
] | https://github.com/TushaarGVS/linear-rnn/blob/48320589b73154484be7d09a144923a2b9e56b85/linear_rnn/triton/associative_rnn_scan.py |
fd49ac89-d287-4343-b1e7-e546da6abbf4 | triton_jagged_tensor_ops.py | pytorch/FBGEMM | fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py | fe980ab54a6e28818d81c8694b6564e7f804418b | 0 | @triton.jit
def tensor_elementwise_mul(x, y):
return x * y
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"BSD",
"MIT"
] | https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/jagged/triton_jagged_tensor_ops.py |
b2943844-2b11-4fe4-b90a-1c6e1ebcd741 | triton_kernels.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/triton_kernels.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def _triton_first_order_fwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl.
tensor, sph_1_0_ptr: tl.tensor, sph_1_1_ptr: tl.tensor, sph_1_2_ptr: tl
.tensor, BLOCK_SIZE: tl.constexpr, vector_length: tl.constexpr):
"""
First order spherical harmonics in Triton.
Computationally not that intensive, as we're just applying
a sqrt 3 to the coordinates, but also good for validating
the kernel performs as intended.
Parameters
----------
x_ptr, y_ptr, z_ptr : tl.tensor
Pointers to the coordinate tensors.
sph_1_0_ptr, sph_1_1_ptr, sph_1_2_ptr : tl.tensor
Points to tensors to write outputs to. Assumed to
be the same length as the input tensors.
block_size : tl.constexpr
Vector length of contiguous elements to load into memory
within a given block.
vector_length : tl.constexpr
The maximum/total length of the vectors, assumed to
be the same for every one. This is used to calculate
the mask to keep operations within bounds.
"""
sqrt_3 = 3 ** 0.5
block_id = tl.program_id(0)
offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id
x_row_start = x_ptr + offset
y_row_start = y_ptr + offset
z_row_start = z_ptr + offset
x = tl.load(x_row_start, mask=offset < vector_length)
y = tl.load(y_row_start, mask=offset < vector_length)
z = tl.load(z_row_start, mask=offset < vector_length)
sph_1_0 = sqrt_3 * x
sph_1_1 = sqrt_3 * y
sph_1_2 = sqrt_3 * z
sph_1_0_start = sph_1_0_ptr + offset
sph_1_1_start = sph_1_1_ptr + offset
sph_1_2_start = sph_1_2_ptr + offset
tl.store(sph_1_0_start, sph_1_0, mask=offset < vector_length)
tl.store(sph_1_1_start, sph_1_1, mask=offset < vector_length)
tl.store(sph_1_2_start, sph_1_2, mask=offset < vector_length)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py |
6b382133-1769-4334-a6ac-ea7373510dc5 | GELUglu.py | huyz2023/2by4-pretrain | sparse/GELUglu.py | 9e330125dea71e5a3dee235f4efb8869f9e4cdd0 | 0 | @triton.jit
def tanh(x):
tanh_neg = (tl.math.exp(x * 2) - 1) / (tl.math.exp(x * 2) + 1)
tanh_pos = (1 - tl.math.exp(-2 * x)) / (1 + tl.math.exp(-2 * x))
tanh = tl.where(x > 0, tanh_pos, tanh_neg)
return tanh
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"BSD"
] | https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/GELUglu.py |
fe78e351-fd17-4f43-a401-eb4f64797791 | triton_fused_attn_ad.py | LouChao98/vqtree | ops/triton_fused_attn_ad.py | 27a53274df7a804bce27dffcce5f5be73f64b6f3 | 0 | @triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[
'BLOCK_M'] == 0, 'TOTAL_SLOTS': lambda args: sum(args['CODEBOOK_SIZE'] **
i for i in range(1, args['CODEBOOK_NUM'] + 1))})
@triton.jit
def _fwd_kernel(Q, CODEBOOK_K, CODEBOOK_V, KCNT, VCNT, Out, softmax_scale,
stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn,
stride_vb, stride_vh, stride_vn, stride_ob, stride_oh, stride_om,
nheads, seqlen_q, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, CODEBOOK_SIZE:
tl.constexpr, CODEBOOK_NUM: tl.constexpr, TOTAL_SLOTS: tl.constexpr,
IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.
constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
start_m = tl.program_id(0)
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_HEADDIM)
Q_block_ptr = tl.make_block_ptr(base=Q + (off_b * stride_qb + off_h *
stride_qh), shape=(seqlen_q, BLOCK_HEADDIM), strides=(stride_qm, 1),
offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_HEADDIM
), order=(1, 0))
K_block_ptr = tl.make_block_ptr(base=K + (off_b * stride_kb + off_h *
stride_kh), shape=(TOTAL_SLOTS, BLOCK_HEADDIM), strides=(stride_kn,
1), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0))
V_block_ptr = tl.make_block_ptr(base=V + (off_b * stride_vb + off_h *
stride_vh), shape=(TOTAL_SLOTS, BLOCK_HEADDIM), strides=(stride_vn,
1), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_HEADDIM), order=(1, 0))
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
if EVEN_M:
q = tl.load(Q_block_ptr)
else:
q = tl.load(Q_block_ptr, boundary_check=(0,), padding_option='zero')
offset = 0
for level_idx in range(1, CODEBOOK_NUM + 1):
K_inner_block_ptr = K_block_ptr
V_inner_block_ptr = V_block_ptr
z_value = tl.zeros([BLOCK_M], dtype=tl.float32) + NEGINF
z_idx = tl.zeros([BLOCK_M], dtype=tl.int32)
for start_n in range(0, CODEBOOK_SIZE, BLOCK_N):
k = tl.load(K_inner_block_ptr)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, tl.trans(k))
qk_max = tl.max(qk, 1)
m_ij = tl.maximum(qk_max * softmax_scale, lse_i)
p = tl.exp(qk * softmax_scale - m_ij[:, None])
l_ij = tl.sum(p, 1)
qk_max_indices = tl.argmax(qk, 1) + start_n
update_codebook = z_value < qk_max
z_idx = tl.where(update_codebook, qk_max_indices, z_idx)
z_value = tl.where()
acc_o_scale = tl.exp(m_i - m_ij)
acc_o = acc_o * acc_o_scale[:, None]
v = tl.load(V_inner_block_ptr)
p = p.to(v.dtype)
acc_o += tl.dot(p, v)
m_i = m_ij
l_i_new = tl.exp(lse_i - m_ij) + l_ij
lse_i = m_ij + tl.log(l_i_new)
K_inner_block_ptr = tl.advance(K_inner_block_ptr, (BLOCK_N, 0))
V_inner_block_ptr = tl.advance(V_inner_block_ptr, (BLOCK_N, 0))
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) *
BLOCK_M, seqlen_k)
for start_n in range(0, end_n, BLOCK_N):
start_n = tl.multiple_of(start_n, BLOCK_N)
if EVEN_N & EVEN_M:
k = tl.load(K_block_ptr)
else:
k = tl.load(K_block_ptr, boundary_check=(0,), padding_option='zero'
)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, tl.trans(k))
if not EVEN_N:
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, NEGINF)
if IS_CAUSAL:
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :],
0, NEGINF)
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
p = tl.exp(qk * softmax_scale - m_ij[:, None])
l_ij = tl.sum(p, 1)
acc_o_scale = tl.exp(m_i - m_ij)
acc_o = acc_o * acc_o_scale[:, None]
if EVEN_N & EVEN_M:
v = tl.load(V_block_ptr)
else:
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero'
)
p = p.to(v.dtype)
acc_o += tl.dot(p, v)
m_i = m_ij
l_i_new = tl.exp(lse_i - m_ij) + l_ij
lse_i = m_ij + tl.log(l_i_new)
K_block_ptr = tl.advance(K_block_ptr, (BLOCK_N, 0))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
o_scale = tl.exp(m_i - lse_i)
acc_o = acc_o * o_scale[:, None]
start_m = tl.program_id(0)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:,
None] * stride_om + offs_d[None, :])
if EVEN_M:
tl.store(out_ptrs, acc_o)
else:
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Softmax",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/LouChao98/vqtree/blob/27a53274df7a804bce27dffcce5f5be73f64b6f3/ops/triton_fused_attn_ad.py |
5dee5ab7-230c-4c73-b3fd-4aa6aef7426c | wy_fast.py | sustcsonglin/flash-linear-attention | fla/ops/delta_rule/wy_fast.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for
num_warps in [1, 2, 4, 8, 16]], key=['BT', 'BK', 'BV'])
@triton.jit
def bwd_prepare_wy_repr_kernel(k, v, beta, A, dw, du, dk, dv, dbeta,
offsets, indices, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V:
tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr,
USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
if HEAD_FIRST:
p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,),
(BT,), (0,))
p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (0,
i_t * BT), (BT, BT), (0, 1))
else:
p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t *
BT,), (BT,), (0,))
p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (BT, T), (1, H *
BT), (0, i_t * BT), (BT, BT), (0, 1))
b_beta = tl.load(p_beta, boundary_check=(0,))
b_A = tl.load(p_A, boundary_check=(0, 1))
b_dbeta = tl.zeros([BT], dtype=tl.float32)
b_dA = tl.zeros([BT, BT], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
if HEAD_FIRST:
p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_du = tl.make_block_ptr(du + i_bh * T * V, (T, V), (V, 1), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V,
1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H *
V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_du = tl.make_block_ptr(du + (bos * H + i_h) * V, (T, V), (H *
V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_v_beta = (b_v * b_beta[:, None]).to(b_v.dtype)
b_du = tl.load(p_du, boundary_check=(0, 1))
b_dA += tl.dot(b_du, tl.trans(b_v_beta), allow_tf32=False)
b_dv_beta = tl.dot(b_A, b_du, allow_tf32=False)
b_dv = b_dv_beta * b_beta[:, None]
b_dbeta += tl.sum(b_dv_beta * b_v, 1)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
for i_k in range(tl.cdiv(K, BK)):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dw = tl.make_block_ptr(dw + i_bh * T * K, (T, K), (K, 1), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dw = tl.make_block_ptr(dw + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype)
b_dw = tl.load(p_dw, boundary_check=(0, 1))
b_dA += tl.dot(b_dw, tl.trans(b_k_beta), allow_tf32=False)
b_dk_beta = tl.dot(b_A, b_dw, allow_tf32=False)
b_dk = b_dk_beta * b_beta[:, None]
b_dbeta += tl.sum(b_dk_beta * b_k, 1)
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
b_dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :],
b_dA, 0)
b_dA = tl.dot(b_dA.to(b_A.dtype), b_A)
b_dA = tl.dot(b_A, b_dA.to(b_A.dtype))
b_dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :],
-b_dA, 0).to(k.dtype.element_ty)
for i_k in range(tl.cdiv(K, BK)):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_dk = tl.load(p_dk, boundary_check=(0, 1))
b_k_beta = (b_k * b_beta[:, None]).to(b_k.dtype)
b_dk_beta = tl.dot(b_dA, b_k, allow_tf32=False)
b_dbeta += tl.sum(b_dk_beta * b_k, 1)
b_dk += tl.dot(tl.trans(b_dA), b_k_beta, allow_tf32=False)
b_dk += b_dk_beta * b_beta[:, None]
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
if HEAD_FIRST:
p_dbeta = tl.make_block_ptr(dbeta + i_bh * T, (T,), (1,), (i_t * BT
,), (BT,), (0,))
else:
p_dbeta = tl.make_block_ptr(dbeta + bos * H + i_h, (T,), (H,), (i_t *
BT,), (BT,), (0,))
tl.store(p_dbeta, b_dbeta.to(p_dbeta.dtype.element_ty), boundary_check=(0,)
)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/wy_fast.py |
a64c01e5-8feb-4826-8caa-64280d7be379 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/gla/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8)], key=['BK', 'NC', 'BT'])
@triton.jit
def chunk_gla_bwd_kernel_intra(q, k, g, dA, dq, dk, offsets, indices, T: tl
.constexpr, H: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.
constexpr, BK: tl.constexpr, NC: tl.constexpr, USE_OFFSETS: tl.
constexpr, HEAD_FIRST: tl.constexpr):
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_t, i_i = i_c // NC, i_c % NC
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
else:
bos, eos = i_b * T, i_b * T + T
T = eos - bos
if i_t * BT + i_i * BC >= T:
return
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
if HEAD_FIRST:
p_g = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t * BT +
i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
p_g = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H * K, 1),
(i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
b_g = tl.load(p_g, boundary_check=(0, 1))
b_dq = tl.zeros([BC, BK], dtype=tl.float32)
if i_i > 0:
if HEAD_FIRST:
p_gn = tl.max_contiguous(tl.multiple_of(g + (i_bh * T + i_t *
BT + i_i * BC) * K + o_k, BK), BK)
else:
p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT +
i_i * BC) * H * K + i_h * K + o_k, BK), BK)
b_gn = tl.load(p_gn, mask=m_k, other=0)
for i_j in range(0, i_i):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1),
(i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT,
1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (
H * K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (
1, 0))
p_dA = tl.make_block_ptr(dA + (bos * H + i_h) * BT, (T, BT),
(H * BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC),
(1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_kg = b_k * tl.exp(b_gn[None, :] - b_gk)
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dq += tl.dot(b_dA, b_kg)
b_dq *= tl.exp(b_g - b_gn[None, :])
o_i = tl.arange(0, BC)
m_dA = i_t * BT + i_i * BC + tl.arange(0, BC) < T
if HEAD_FIRST:
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)
) * BT + i_i * BC
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_gkj = tl.max_contiguous(tl.multiple_of(g + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_dq = tl.make_block_ptr(dq + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
o_dA = bos * H * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)
) * H * BT + i_h * BT + i_i * BC
p_kj = tl.max_contiguous(tl.multiple_of(k + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_gkj = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_dq = tl.make_block_ptr(dq + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_dA = tl.load(dA + o_dA + j, mask=m_dA, other=0)
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32)
b_gkj = tl.load(p_gkj, mask=m_k, other=0).to(tl.float32)
m_i = o_i[:, None] >= j
b_dq += tl.where(m_i, b_dA[:, None] * b_kj[None, :] * tl.exp(b_g -
b_gkj[None, :]), 0.0)
p_kj += K if HEAD_FIRST else H * K
p_gkj += K if HEAD_FIRST else H * K
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.debug_barrier()
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t * BT +
i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K, 1),
(i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_gk = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H * K, 1
), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_dk = tl.zeros([BC, BK], dtype=tl.float32)
NC = min(NC, tl.cdiv(T - i_t * BT, BC))
if i_i < NC - 1:
if HEAD_FIRST:
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bh * T * K + (i_t *
BT + i_i * BC + BC - 1) * K + o_k, BK), BK)
else:
p_gn = tl.max_contiguous(tl.multiple_of(g + bos * H * K + (i_t *
BT + i_i * BC + BC - 1) * H * K + i_h * K + o_k, BK), BK)
b_gn = tl.load(p_gn, mask=m_k, other=0)
for i_j in range(i_i + 1, NC):
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (BT, T), (1,
BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC), (0, 1))
else:
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + (bos * H + i_h) * BT, (BT, T),
(1, H * BT), (i_i * BC, i_t * BT + i_j * BC), (BC, BC),
(0, 1))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_g = tl.load(p_g, boundary_check=(0, 1))
b_qg = b_q * tl.exp(b_g - b_gn[None, :])
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dk += tl.dot(b_dA, b_qg)
b_dk *= tl.exp(b_gn[None, :] - b_gk)
if HEAD_FIRST:
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC
) * BT + i_i * BC + tl.arange(0, BC)
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_gqj = tl.max_contiguous(tl.multiple_of(g + (i_bh * T + i_t * BT +
i_i * BC) * K + o_k, BK), BK)
p_dk = tl.make_block_ptr(dk + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
else:
o_dA = bos * H * BT + (i_t * BT + i_i * BC
) * H * BT + i_h * BT + i_i * BC + tl.arange(0, BC)
p_qj = tl.max_contiguous(tl.multiple_of(q + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_gqj = tl.max_contiguous(tl.multiple_of(g + (bos + i_t * BT + i_i *
BC) * H * K + i_h * K + o_k, BK), BK)
p_dk = tl.make_block_ptr(dk + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_dA = tl.load(dA + o_dA + j * (1 if HEAD_FIRST else H) * BT)
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32)
b_gqj = tl.load(p_gqj, mask=m_k, other=0).to(tl.float32)
m_i = o_i[:, None] <= j
b_dk += tl.where(m_i, b_dA[:, None] * b_qj[None, :] * tl.exp(b_gqj[
None, :] - b_gk), 0.0)
p_qj += K if HEAD_FIRST else H * K
p_gqj += K if HEAD_FIRST else H * K
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Backpropagation",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py |
be7559f4-befc-4c5a-86c2-f17eaa7ed922 | block_offsets.py | Forkxz/TritonDeepLearningKernel | kernel/block_offsets.py | add54b6318e8fa5fdbf8c7b47659de9fceaa5691 | 0 | @triton.jit
def block_offsets_2d(shape_x, shape_y, stride_x, stride_y, offset_x,
offset_y, block_shape_x, block_shape_y, require_mask=False):
offs_x = tl.arange(0, block_shape_x) + offset_x
offs_y = tl.arange(0, block_shape_y) + offset_y
ptrs = offs_x[:, None] * stride_x + offs_y[None, :] * stride_y
if require_mask:
mask = (offs_x[:, None] < shape_x) & (offs_y[None, :] < shape_y)
return ptrs, mask
else:
return ptrs
| {
"Data Type": [],
"Functionality": [],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/Forkxz/TritonDeepLearningKernel/blob/add54b6318e8fa5fdbf8c7b47659de9fceaa5691/kernel/block_offsets.py |
49a57e59-6b3a-4a5b-a54d-579bb92b5c93 | triton_implicit_gemm_1x1_0x0_1x1.py | l1351868270/implicit_gemm.triton | triton_implicit_gemm_1x1_0x0_1x1.py | 64eb8548ccf4576883c928f6315be8b24680a455 | 0 | @triton.autotune(configs=get_autotune_config(), key=['GEMM_M', 'GEMM_N',
'GEMM_K'])
@triton.jit
def conv2d_kernel_1x1_1x1_0x0_1x1(x_ptr, w_ptr, y_ptr, N, C, H, W, K, P, Q,
R, S, U, V, pad_h, pad_w, dila_h, dila_w, GEMM_M, GEMM_N, GEMM_K,
stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K:
tl.constexpr, GROUP_SIZE_M: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(GEMM_M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(GEMM_N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % num_pid_in_group % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
gemm_i = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % GEMM_M
gemm_j = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % GEMM_N
n = gemm_i // (P * Q)
npq_residual = gemm_i % (P * Q)
p = npq_residual // Q
q = npq_residual % Q
k = gemm_j
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % GEMM_M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % GEMM_N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = x_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] *
stride_ak)
b_ptrs = w_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] *
stride_bn)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for idx_k in range(0, tl.cdiv(GEMM_K, BLOCK_SIZE_K)):
gemm_k = idx_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
r = gemm_k // (S * C)
rsc_residual = gemm_k % (S * C)
s = rsc_residual // C
c = rsc_residual % C
h = p[:, None] * U + r[None, :] * dila_h - pad_h
w = q[:, None] * V + s[None, :] * dila_w - pad_w
mask_x = (h >= 0) & (h < H) & (w >= 0) & (w < W)
mask_w = (r < R) & (s < S) & (c < C)
offs_x = n[:, None] * H * W * C + h * W * C + w * C + c
offs_w = k[None, :] * R * S * C + r[:, None] * S * C + s[:, None
] * C + c[:, None]
x_ptrs = x_ptr + offs_x
w_ptrs = w_ptr + offs_w
a = tl.load(a_ptrs, mask=offs_k[None, :] < GEMM_K - idx_k *
BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < GEMM_K - idx_k *
BLOCK_SIZE_K, other=0.0)
accumulator = tl.dot(a, b, accumulator, out_dtype=tl.float32)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
c = accumulator.to(tl.float16)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = y_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :
]
c_mask = (offs_cm[:, None] < GEMM_M) & (offs_cn[None, :] < GEMM_N)
tl.store(c_ptrs, c, mask=c_mask)
| {
"Data Type": [
"fp16",
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/l1351868270/implicit_gemm.triton/blob/64eb8548ccf4576883c928f6315be8b24680a455/triton_implicit_gemm_1x1_0x0_1x1.py |
66ca0a7e-3044-4054-9572-e48a84e580fd | triton_fused_attention.py | pytorch-labs/tritonbench | tritonbench/kernels/triton_fused_attention.py | 3a5dccb159834968567a2e45e561dc1aeaa8f8a8 | 0 | @triton.autotune(list(filter(keep, configsOrig)), key=['N_CTX'])
@triton.jit
def _attn_fwd(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v, desc_o,
stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh,
stride_kn, stride_kk, stride_vz, stride_vh, stride_vk, stride_vn,
stride_oz, stride_oh, stride_om, stride_on, Z, H, N_CTX, BLOCK_M: tl.
constexpr, BLOCK_N: tl.constexpr, HEAD_DIM: tl.constexpr, STAGE: tl.
constexpr, ENABLE_TMA: tl.constexpr, LOOP_SCHEDULE: tl.constexpr,
ENABLE_WS: tl.constexpr):
tl.static_assert(BLOCK_N <= HEAD_DIM)
pid = tl.program_id(0)
off_hz = tl.program_id(1)
_attn_fwd_compute(Q, K, V, sm_scale, M, Out, desc_q, desc_k, desc_v,
desc_o, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz,
stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vk,
stride_vn, stride_oz, stride_oh, stride_om, stride_on, off_hz, pid,
Z, H, N_CTX, BLOCK_M, BLOCK_N, HEAD_DIM, STAGE, ENABLE_TMA,
LOOP_SCHEDULE)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/kernels/triton_fused_attention.py |
d159d9b3-bf80-48b6-adf0-f8ae054b043a | mlstm_matmul.py | LukasBluebaum/xLSTM-Triton-CUDA-Implementation | mlstm_matmul.py | 6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b | 0 | @triton.jit
def mlstm_matmul_kernel_backward(dH, dB, Q, K, V, dQ, dK, dV, F, dF, I, dI,
M, B, NH: tl.constexpr, S: tl.constexpr, D: tl.constexpr, SB: tl.constexpr
):
bh_id = tl.program_id(0)
sb_id = tl.program_id(1)
batch_id = bh_id // NH
head_id = bh_id % NH
batch_offset_dh = batch_id * NH * S * D + head_id * S * D
batch_offset_f = batch_id * NH * S + head_id * S
offset_dh = tl.arange(0, SB) + sb_id * SB
offset_vk = tl.arange(0, SB) + sb_id * SB
d_range = tl.arange(0, D)
dh_range = batch_offset_dh + offset_dh[:, None] * D + d_range[None, :]
dh_mask = (offset_dh[:, None] < S) & (d_range[None, :] < D)
dh = tl.load(dH + dh_range, dh_mask)
m = tl.load(M + batch_offset_f + offset_dh, offset_dh < S)
b = tl.load(B + batch_offset_f + offset_dh, offset_dh < S)
f = tl.load(F + batch_offset_f + offset_dh, offset_dh < S)
db = tl.load(dB + batch_offset_f + offset_dh, offset_dh < S)
q = tl.load(Q + dh_range, dh_mask)
scale = tl.sqrt(tl.full((1,), D, dtype=tl.float32))
n = tl.maximum(tl.abs(b), tl.exp(-m)) + 1e-06
f = tl.cumsum(tl.log(tl.sigmoid(f)))
f_low = f
df_acc = tl.zeros((SB,), dtype=tl.float32)
dq_acc = tl.zeros((SB, D), dtype=tl.float32)
for j in range(sb_id, -1, -1):
vk_range = batch_offset_dh + offset_vk[:, None] * D + d_range[None, :]
vk_mask = (offset_vk[:, None] < S) & (d_range[None, :] < D)
f_next = tl.load(F + batch_offset_f + offset_vk, offset_vk < S)
i = tl.load(I + batch_offset_f + offset_vk, offset_vk < S)
f_next = tl.log(tl.sigmoid(f_next))
if j == sb_id:
f_next = tl.cumsum(f_next)
d = f[:, None] - f_next[None, :] + i[None, :]
mask = offset_dh[:, None] >= offset_vk[None, :]
d = tl.where(mask, d, -float('inf'))
else:
f += tl.sum(f_next)
f_next = tl.cumsum(f_next)
d = f[:, None] - f_next[None, :] + i[None, :]
d = tl.exp(d - m[:, None])
v = tl.load(V + vk_range, vk_mask)
dc_tilde = matrix_mult(dh, tl.trans(v), SB) * (1 / n)[:, None] + db[
:, None]
k = tl.load(K + vk_range, vk_mask) / scale
dq_acc += matrix_mult(dc_tilde * d, k, SB)
c_tilde = matrix_mult(q, tl.trans(k), SB) * d
df_acc += tl.sum(c_tilde * dc_tilde, 1)
offset_vk -= SB
tl.store(dQ + dh_range, dq_acc, dh_mask)
offset_q = tl.arange(0, SB) + sb_id * SB
f = tl.zeros((1,), dtype=tl.float32)
v = tl.load(V + dh_range, dh_mask)
k = tl.load(K + dh_range, dh_mask)
i = tl.load(I + batch_offset_f + offset_dh, offset_dh < S)
dk_acc = tl.zeros((SB, D), dtype=tl.float32)
dv_acc = tl.zeros((SB, D), dtype=tl.float32)
di_acc = tl.zeros((SB,), dtype=tl.float32)
for j in range(sb_id, tl.cdiv(S, SB)):
q_range = batch_offset_dh + offset_q[:, None] * D + d_range[None, :]
q_mask = (offset_q[:, None] < S) & (d_range[None, :] < D)
f_next = tl.load(F + batch_offset_f + offset_q, offset_q < S)
f_next = tl.log(tl.sigmoid(f_next))
f_next_sum = tl.sum(f_next)
f_next = f + tl.cumsum(f_next)
d = f_next[None, :] - f_low[:, None] + i[:, None]
f += f_next_sum
if j == sb_id:
mask = offset_dh[:, None] <= offset_q[None, :]
d = tl.where(mask, d, -float('inf'))
dh = tl.load(dH + q_range, q_mask)
m = tl.load(M + batch_offset_f + offset_q, offset_q < S)
b = tl.load(B + batch_offset_f + offset_q, offset_q < S)
db = tl.load(dB + batch_offset_f + offset_q, offset_q < S)
d = tl.exp(d - m[None, :])
n = tl.maximum(tl.abs(b), tl.exp(-m)) + 1e-06
dc_tilde_T = matrix_mult(v, tl.trans(dh), SB) * (1 / n)[None, :] + db[
None, :]
q = tl.load(Q + q_range, q_mask) / scale
dk_acc += matrix_mult(dc_tilde_T * d, q, SB)
c_tilde_T = matrix_mult(k, tl.trans(q), SB) * d
dv_acc += matrix_mult(c_tilde_T / n[None, :], dh, SB)
di_acc += tl.sum(c_tilde_T * dc_tilde_T, 1)
offset_q += SB
tl.store(dK + dh_range, dk_acc, dh_mask)
tl.store(dV + dh_range, dv_acc, dh_mask)
tl.store(dI + batch_offset_f + offset_dh, di_acc, offset_dh < S)
tl.store(dF + batch_offset_f + offset_dh + 1, di_acc - df_acc,
offset_dh + 1 < S)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_matmul.py |
aaf9342a-2fc0-47a4-a123-58f4a92788de | layernorm_gated.py | sustcsonglin/flash-linear-attention | fla/modules/layernorm_gated.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'HAS_BIAS': lambda args: args['B'] is not None, 'HAS_Z':
lambda args: args['Z'] is not None})
@triton.jit
def layer_norm_fwd_kernel(X, Y, W, B, Z, Mean, Rstd, stride_x_row,
stride_y_row, stride_z_row, M, N, eps, BLOCK_N: tl.constexpr, HAS_BIAS:
tl.constexpr, HAS_Z: tl.constexpr, NORM_BEFORE_GATE: tl.constexpr,
IS_RMS_NORM: tl.constexpr):
row = tl.program_id(0)
group = tl.program_id(1)
X += row * stride_x_row + group * N
Y += row * stride_y_row + group * N
if HAS_Z:
Z += row * stride_z_row + group * N
if not IS_RMS_NORM:
Mean += group * M
Rstd += group * M
W += group * N
if HAS_BIAS:
B += group * N
cols = tl.arange(0, BLOCK_N)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
if HAS_Z and not NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=cols < N).to(tl.float32)
x *= z * tl.sigmoid(z)
if not IS_RMS_NORM:
mean = tl.sum(x, axis=0) / N
tl.store(Mean + row, mean)
xbar = tl.where(cols < N, x - mean, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
else:
xbar = tl.where(cols < N, x, 0.0)
var = tl.sum(xbar * xbar, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
tl.store(Rstd + row, rstd)
mask = cols < N
w = tl.load(W + cols, mask=mask).to(tl.float32)
if HAS_BIAS:
b = tl.load(B + cols, mask=mask).to(tl.float32)
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
y = x_hat * w + b if HAS_BIAS else x_hat * w
if HAS_Z and NORM_BEFORE_GATE:
z = tl.load(Z + cols, mask=mask).to(tl.float32)
y *= z * tl.sigmoid(z)
tl.store(Y + cols, y, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/modules/layernorm_gated.py |
e45d6b24-d5c8-45cc-b1bf-50ded8c8c077 | bgmv_expand.py | IBM/vllm | vllm/lora/ops/bgmv_expand.py | 99523dd62be2ecf6c6db15e8133aaaf7855e7e86 | 0 | @triton.jit
def _bgmv_expand_kernel(input_ptr, lora_ptr, out_ptr, N, K, lora_indices,
xm_stride, xk_stride, l0_stride, lora_k_stride, lora_n_stride,
cm_stride, cn_stride, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
SPLIT_N: tl.constexpr, EVEN_K: tl.constexpr, ADD_INPUTS: tl.constexpr,
CAST_TYPE: tl.constexpr):
"""
GroupGEMV, additionally, introducing SPLIT_N can improve large hidden_size's
performance
"""
pid_sn = tl.program_id(axis=0)
cur_batch = tl.program_id(axis=1)
lora_index = tl.load(lora_indices + cur_batch)
if lora_index == -1:
return
offset_k = tl.arange(0, BLOCK_K)
offset_n = tl.arange(0, BLOCK_N)
if EVEN_K:
tiled_a = tl.load(input_ptr + cur_batch * xm_stride + offset_k *
xk_stride)
else:
tiled_a = tl.load(input_ptr + cur_batch * xm_stride + offset_k *
xk_stride, mask=offset_k < K, other=0)
split_n_length = tl.cdiv(N, SPLIT_N)
if CAST_TYPE:
tiled_a = tiled_a.to(lora_ptr.dtype.element_ty)
b_ptr = (lora_ptr + l0_stride * lora_index + pid_sn * split_n_length *
lora_k_stride)
c_ptr = out_ptr + cur_batch * cm_stride + pid_sn * split_n_length
for n in range(0, split_n_length, BLOCK_N):
current_n = n + offset_n
current_n_c = tl.max_contiguous(current_n, BLOCK_N)
b_ptr_mask = (current_n[:, None] < split_n_length) & (offset_k[None,
:] < K)
c_mask = current_n < split_n_length
tiled_b = tl.load(b_ptr + current_n_c[:, None] * lora_k_stride +
offset_k[None, :] * lora_n_stride, mask=b_ptr_mask, other=0.0)
if ADD_INPUTS:
tiled_out = tl.load(c_ptr + current_n * cn_stride, mask=c_mask,
other=0.0)
accumulator = tl.sum(tiled_a * tiled_b, 1) + tiled_out
else:
accumulator = tl.sum(tiled_a * tiled_b, 1)
tl.store(c_ptr + current_n * cn_stride, accumulator, mask=c_mask)
| {
"Data Type": [
"fp32",
"bf16"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/lora/ops/bgmv_expand.py |
1f2dca18-a3cd-441e-8a5f-75bcbedf659d | mlstm_matmul.py | LukasBluebaum/xLSTM-Triton-CUDA-Implementation | mlstm_matmul.py | 6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b | 0 | @triton.jit
def scan_add_op(x1, x2):
return x1 + x2
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Low Latency"
]
} | [
"MIT"
] | https://github.com/LukasBluebaum/xLSTM-Triton-CUDA-Implementation/blob/6fb49b89cc74e7dadd0f3d56db05684bb4e86f4b/mlstm_matmul.py |
43a7b7ff-eadb-490b-9acd-84f7d2a3ee0f | test_fused_chunk.py | sustcsonglin/flash-linear-attention | tests/test_fused_chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def attention_fwd_kernel(q, k, v, h, o, s_qh, s_qt, s_qd, s_hh, s_ht, T,
scale, BT: tl.constexpr, BD: tl.constexpr, NT: tl.constexpr, STORE: tl.
constexpr, IFCOND: tl.constexpr):
i_bh = tl.program_id(0)
b_h = tl.zeros([BD, BD], dtype=tl.float32)
for i in range(0, tl.cdiv(T, BT)):
p_q = tl.make_block_ptr(q + i_bh * s_qh, (T, BD), (s_qt, s_qd), (i *
BT, 0), (BT, BD), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_qh, (BD, T), (s_qd, s_qt), (0,
i * BT), (BD, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_bh * s_qh, (T, BD), (s_qt, s_qd), (i *
BT, 0), (BT, BD), (1, 0))
p_h = tl.make_block_ptr(h + i_bh * s_hh, (NT * BD, BD), (s_ht, s_qd
), (i * BD, 0), (BD, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * s_qh, (T, BD), (s_qt, s_qd), (i *
BT, 0), (BT, BD), (1, 0))
if STORE:
tl.store(p_h, b_h.to(p_h.dtype.element_ty))
b_q = tl.load(p_q)
b_q = (b_q * scale).to(b_q.dtype)
b_k = tl.load(p_k)
b_v = tl.load(p_v)
b_s = tl.dot(b_q, b_k, allow_tf32=False)
b_o = tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False)
if IFCOND:
if i == 0:
b_h = tl.dot(b_k, b_v, allow_tf32=False)
else:
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
b_h += tl.dot(b_k, b_v, allow_tf32=False)
else:
b_o += tl.dot(b_q, b_h.to(b_q.dtype), allow_tf32=False)
b_h += tl.dot(b_k, b_v, allow_tf32=False)
tl.store(p_o, b_o.to(p_o.dtype.element_ty))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/tests/test_fused_chunk.py |
242c3dab-c302-4bf0-96fc-8162444aedf6 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/gla/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps) for BK in [32, 64] for BV in [64, 128] for num_warps in [2,
4, 8]], key=['BT'])
@triton.jit
def chunk_gla_bwd_kernel_dv(k, g, A, do, dh, dv, offsets, indices, T: tl.
constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.
constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_OFFSETS: tl.
constexpr, HEAD_FIRST: tl.constexpr):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
if HEAD_FIRST:
p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (0,
i_t * BT), (BT, BT), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
else:
p_A = tl.make_block_ptr(A + (bos * H + i_h) * BT, (BT, T), (1, H *
BT), (0, i_t * BT), (BT, BT), (0, 1))
p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H * V,
1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H * V,
1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_A = tl.load(p_A, boundary_check=(0, 1))
b_A = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :],
b_A, 0.0)
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dv = tl.dot(b_A, b_do.to(b_A.dtype), allow_tf32=False)
for i_k in range(tl.cdiv(K, BK)):
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_gk = tl.make_block_ptr(g + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_gn = tl.max_contiguous(tl.multiple_of(g + i_bh * T * K + min(
i_t * BT + BT, T) * K - K + o_k, BK), BK)
p_dh = tl.make_block_ptr(dh + (i_bh * NT + i_t) * K * V, (K, V),
(V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_gk = tl.make_block_ptr(g + (bos * H + i_h) * K, (T, K), (H *
K, 1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_gn = tl.max_contiguous(tl.multiple_of(g + (bos + min(i_t * BT +
BT, T) - 1) * H * K + i_h * K + o_k, BK), BK)
p_dh = tl.make_block_ptr(dh + (i_tg * H + i_h) * K * V, (K, V),
(V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_gn = tl.exp(tl.load(p_gn, mask=m_k, other=0)[None, :] - b_gk)
b_k = (b_k * b_gn).to(b_k.dtype)
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_dv += tl.dot(b_k, b_dh.to(b_k.dtype))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32",
"bf16"
],
"Functionality": [
"Backpropagation",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/chunk.py |
80930cb4-c6ca-4869-ac5f-29e8b9906e6b | paged_attn.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/paged_attn.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _inner_paged_attn_unroll_4_kernel(q, k_cache, v_cache, stride_km,
block_base_ptrs, base_offs_kv, alibi_slope, block_offs, seq_len, qkv,
qk_max, exp_sum, BLOCK_SIZE: tl.constexpr, LO: tl.constexpr, HI: tl.
constexpr):
for block_idx in range(LO, HI, 4):
offs_kv_0 = tl.load(block_base_ptrs + block_idx + 0
) * stride_km + base_offs_kv
offs_kv_1 = tl.load(block_base_ptrs + block_idx + 1
) * stride_km + base_offs_kv
offs_kv_2 = tl.load(block_base_ptrs + block_idx + 2
) * stride_km + base_offs_kv
offs_kv_3 = tl.load(block_base_ptrs + block_idx + 3
) * stride_km + base_offs_kv
k_0 = tl.load(k_cache + offs_kv_0)
k_1 = tl.load(k_cache + offs_kv_1)
k_2 = tl.load(k_cache + offs_kv_2)
k_3 = tl.load(k_cache + offs_kv_3)
v_0 = tl.load(v_cache + offs_kv_0)
v_1 = tl.load(v_cache + offs_kv_1)
v_2 = tl.load(v_cache + offs_kv_2)
v_3 = tl.load(v_cache + offs_kv_3)
_qk_0 = tl.sum((q[None, :] * k_0).to(tl.float32), axis=1)
_qk_1 = tl.sum((q[None, :] * k_1).to(tl.float32), axis=1)
_qk_2 = tl.sum((q[None, :] * k_2).to(tl.float32), axis=1)
_qk_3 = tl.sum((q[None, :] * k_3).to(tl.float32), axis=1)
if alibi_slope is not None:
_qk_0 += alibi_slope * ((block_idx + 0) * BLOCK_SIZE +
block_offs - seq_len + 1)
_qk_1 += alibi_slope * ((block_idx + 1) * BLOCK_SIZE +
block_offs - seq_len + 1)
_qk_2 += alibi_slope * ((block_idx + 2) * BLOCK_SIZE +
block_offs - seq_len + 1)
_qk_3 += alibi_slope * ((block_idx + 3) * BLOCK_SIZE +
block_offs - seq_len + 1)
_qk_max = tl.maximum(tl.max(_qk_0, axis=0), qk_max)
_qk_max = tl.maximum(tl.max(_qk_1, axis=0), _qk_max)
_qk_max = tl.maximum(tl.max(_qk_2, axis=0), _qk_max)
_qk_max = tl.maximum(tl.max(_qk_3, axis=0), _qk_max)
exp_tmp = tl.exp(_qk_0 - _qk_max) + tl.exp(_qk_1 - _qk_max) + tl.exp(
_qk_2 - _qk_max) + tl.exp(_qk_3 - _qk_max)
_exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(exp_tmp, axis=0)
qkv_sum_tmp = tl.exp(_qk_0[:, None] - _qk_max).to(v_cache.dtype.
element_ty) * v_0 + tl.exp(_qk_1[:, None] - _qk_max).to(v_cache
.dtype.element_ty) * v_1 + tl.exp(_qk_2[:, None] - _qk_max).to(
v_cache.dtype.element_ty) * v_2 + tl.exp(_qk_3[:, None] - _qk_max
).to(v_cache.dtype.element_ty) * v_3
qkv = (qkv * (exp_sum * tl.exp(qk_max - _qk_max)) + qkv_sum_tmp
) / _exp_sum
qk_max = _qk_max
exp_sum = _exp_sum
return qkv, qk_max, exp_sum
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn.py |
57901932-eb13-48bb-80fb-5ac1397e137c | swiglu.py | dame-cell/Triformer | triformer/swiglu.py | 0712537d576166b93fa09aa9509b2661b9ed8a68 | 0 | @triton.jit
def swiglu_backward(grad_output_ptr, grad_e_ptr, grad_g_ptr, e_ptr, g_ptr,
n_cols, sigmoid_ptr, f_ptr, grad_output_stride, grad_e_stride,
grad_g_stride, e_stride, g_stride, sigmoid_stride, f_stride, BLOCK_SIZE:
tl.constexpr):
pid = tl.program_id(axis=0)
col_offset = tl.arange(0, BLOCK_SIZE)
mask = col_offset < n_cols
grad_output_row = tl.load(grad_output_ptr + pid * grad_output_stride +
col_offset, mask=mask)
e_row = tl.load(e_ptr + pid * e_stride + col_offset, mask=mask)
g_row = tl.load(g_ptr + pid * g_stride + col_offset, mask=mask)
sigmoid_row = tl.load(sigmoid_ptr + pid * sigmoid_stride + col_offset,
mask=mask)
f_row = tl.load(f_ptr + pid * f_stride + col_offset, mask=mask)
grad_g_row = grad_output_row * f_row
grad_e_row = grad_output_row * g_row * sigmoid_row * (1.0 + e_row * (
1.0 - sigmoid_row))
tl.store(grad_e_ptr + pid * grad_e_stride + col_offset, grad_e_row,
mask=mask)
tl.store(grad_g_ptr + pid * grad_g_stride + col_offset, grad_g_row,
mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/swiglu.py |
ca5df2aa-d6b2-436b-ad6e-334a25e38f83 | lightning_attn2_no_decay.py | OpenNLPLab/lightning-attention | lightning_attn/ops/triton/lightning_attn2_no_decay.py | d7439519541e966084eeaaf3ffd63eecc216f414 | 0 | @triton.jit
def _bwd_inter_kernel(Q, K, V, DO, DQ, DK, DV, b: tl.constexpr, h: tl.
constexpr, n: tl.constexpr, d: tl.constexpr, e: tl.constexpr, BLOCK: tl
.constexpr, NUM_BLOCK: tl.constexpr, CBLOCK: tl.constexpr, NUM_CBLOCK:
tl.constexpr):
off_bh = tl.program_id(0)
off_bh % h
qk_offset = off_bh * n * d
v_offset = off_bh * n * e
o_offset = off_bh * n * e
DQ_block_ptr = DQ + qk_offset + tl.arange(0, CBLOCK)[:, None
] * d + tl.arange(0, d)[None, :]
K_block_ptr = K + qk_offset + tl.arange(0, CBLOCK)[:, None
] * d + tl.arange(0, d)[None, :]
V_trans_block_ptr = V + v_offset + tl.arange(0, CBLOCK)[None, :
] * e + tl.arange(0, e)[:, None]
DO_block_ptr = DO + o_offset + tl.arange(0, CBLOCK)[:, None
] * e + tl.arange(0, e)[None, :]
off_block1 = tl.arange(0, CBLOCK)
off_block2 = tl.arange(0, CBLOCK)
kv_trans = tl.zeros([e, d], dtype=tl.float32)
for i in range(NUM_BLOCK):
for j in range(NUM_CBLOCK):
if i > 0:
do = tl.load(DO_block_ptr, mask=off_block1[:, None] < n,
other=0.0).to(tl.float32)
dq_inter = tl.dot(do, kv_trans)
dq = dq_inter + tl.load(DQ_block_ptr, mask=off_block1[:,
None] < n, other=0.0)
tl.store(DQ_block_ptr, dq.to(DQ_block_ptr.dtype.element_ty),
mask=off_block1[:, None] < n)
DQ_block_ptr += CBLOCK * d
DO_block_ptr += CBLOCK * e
off_block1 += CBLOCK
kv_trans_current = tl.zeros([e, d], dtype=tl.float32)
for j in range(NUM_CBLOCK):
v_trans = tl.load(V_trans_block_ptr, mask=off_block2[None, :] <
n, other=0.0).to(tl.float32)
k = tl.load(K_block_ptr, mask=off_block2[:, None] < n, other=0.0
).to(tl.float32)
kv_trans_current += tl.dot(v_trans, k)
K_block_ptr += CBLOCK * d
V_trans_block_ptr += CBLOCK * e
off_block2 += CBLOCK
kv_trans += kv_trans_current
m = NUM_BLOCK * BLOCK
off_block1 = m + tl.arange(0, CBLOCK)
off_block2 = m + tl.arange(0, CBLOCK)
Q_trans_block_ptr = Q + qk_offset + m * d + tl.arange(0, CBLOCK)[None, :
] * d + tl.arange(0, d)[:, None]
K_block_ptr = K + qk_offset + m * d + tl.arange(0, CBLOCK)[:, None
] * d + tl.arange(0, d)[None, :]
V_trans_block_ptr = V + v_offset + m * e + tl.arange(0, CBLOCK)[None, :
] * e + tl.arange(0, e)[:, None]
DK_trans_block_ptr = DK + qk_offset + m * d + tl.arange(0, CBLOCK)[None, :
] * d + tl.arange(0, d)[:, None]
DV_block_ptr = DV + v_offset + m * e + tl.arange(0, CBLOCK)[:, None
] * e + tl.arange(0, e)[None, :]
DO_block_ptr = DO + o_offset + m * e + tl.arange(0, CBLOCK)[:, None
] * e + tl.arange(0, e)[None, :]
dkv = tl.zeros([d, e], dtype=tl.float32)
for i in range(NUM_BLOCK - 1, -1, -1):
for j in range(NUM_CBLOCK - 1, -1, -1):
K_block_ptr -= CBLOCK * d
V_trans_block_ptr -= CBLOCK * e
DK_trans_block_ptr -= CBLOCK * d
DV_block_ptr -= CBLOCK * e
off_block1 -= CBLOCK
if i < NUM_BLOCK - 1:
k = tl.load(K_block_ptr, mask=off_block1[:, None] < n,
other=0.0).to(tl.float32)
v_trans = tl.load(V_trans_block_ptr, mask=off_block1[None,
:] < n, other=0.0).to(tl.float32)
dk_inter_trans = tl.dot(dkv, v_trans)
dv_inter = tl.dot(k, dkv)
dk_trans = dk_inter_trans + tl.load(DK_trans_block_ptr,
mask=off_block1[None, :] < n, other=0.0)
dv = dv_inter + tl.load(DV_block_ptr, mask=off_block1[:,
None] < n, other=0.0)
tl.store(DK_trans_block_ptr, dk_trans.to(DK_trans_block_ptr
.dtype.element_ty), mask=off_block1[None, :] < n)
tl.store(DV_block_ptr, dv.to(DV_block_ptr.dtype.element_ty),
mask=off_block1[:, None] < n)
dkv_current = tl.zeros([d, e], dtype=tl.float32)
for j in range(NUM_CBLOCK - 1, -1, -1):
DO_block_ptr -= CBLOCK * e
Q_trans_block_ptr -= CBLOCK * d
off_block2 -= CBLOCK
do = tl.load(DO_block_ptr, mask=off_block2[:, None] < n, other=0.0
).to(tl.float32)
q_trans = tl.load(Q_trans_block_ptr, mask=off_block2[None, :] <
n, other=0.0).to(tl.float32)
dkv_current += tl.dot(q_trans, do)
dkv += dkv_current
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/OpenNLPLab/lightning-attention/blob/d7439519541e966084eeaaf3ffd63eecc216f414/lightning_attn/ops/triton/lightning_attn2_no_decay.py |
c521d63c-9555-41f2-9185-de188587390f | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/linear_attn/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_linear_attn_bwd_kernel_dh(q, do, dh, s_k_h, s_k_t, s_k_d, s_v_h,
s_v_t, s_v_d, s_h_h, s_h_t, scale, T: tl.constexpr, K: tl.constexpr, V:
tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT:
tl.constexpr):
i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
for i_t in range(NT - 1, -1, -1):
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), (
s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_q.dtype)
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dh += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/chunk.py |
89f28703-00f8-4324-8d3c-5d383c132016 | normalization.py | ai-compiler-study/triton-kernels | triton_kernels/kernels/normalization.py | 2308e5e9d965059fe2d19b4d535debac4970b69e | 0 | @triton.jit
def _layer_norm_modulation_fwd(X, Y, W, B, Mean, Rstd, stride, seq_len, N,
eps, BLOCK_SIZE: tl.constexpr):
row = tl.program_id(0)
batch_idx = row // seq_len
Y += row * stride
X += row * stride
W += batch_idx * stride
B += batch_idx * stride
cols = tl.arange(0, BLOCK_SIZE)
mask = cols < N
x = tl.load(X + cols, mask=mask, other=0.0)
w = tl.load(W + cols, mask=mask, other=0.0)
b = tl.load(B + cols, mask=mask, other=0.0)
mean = tl.sum(x, axis=0) / N
var = tl.sum(x * x, axis=0) / N - mean * mean
rstd = tl.rsqrt(var + eps)
tl.store(Mean + row, mean)
tl.store(Rstd + row, rstd)
y = (x - mean) * rstd * (1 + w) + b
tl.store(Y + cols, y, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/kernels/normalization.py |
50f5f29f-f284-422f-95ef-6638cd047f96 | avgpool.py | neuro-ml/kerops | kerops/kernels/avgpool.py | 735336775e825d5cb06b8850d25423661b12d1ac | 0 | @triton.jit
def _AvgPoolCeilStats_cl3d_impl(X_ptr, Out_ptr, Mean_ptr, Sqmean_ptr,
h_input, w_input, d_input, d_output, batch_stride_input, H_stride_input,
W_stride_input, batch_stride_output, H_stride_output, W_stride_output,
numel_no_channels_output, num_channels: tl.constexpr, almost_half_d: tl
.constexpr):
batch = tl.program_id(0)
H = tl.program_id(1)
W = tl.program_id(2)
Out_ptr += (batch * batch_stride_output + H * H_stride_output + W *
W_stride_output)
output = tl.zeros([almost_half_d, num_channels], dtype=tl.float32)
pair_offset = tl.arange(0, 2)
channels_offset = tl.arange(0, num_channels)
d_offset = tl.arange(0, almost_half_d)
offset = d_offset[:, None, None] * (2 * num_channels) + channels_offset[
None, :, None] + pair_offset[None, None, :] * num_channels
output_offset = d_offset[:, None] * num_channels + channels_offset[None, :]
mask_input = offset < d_input * num_channels
output_mask = output_offset < d_output * num_channels
norm_step = tl.sum(mask_input.to(tl.float32), axis=2).to(tl.float32)
norm_step = tl.where(norm_step != 0, norm_step, 1.0)
num_norm = 1
Temp_ptr = (X_ptr + batch * batch_stride_input + 2 * H * H_stride_input +
2 * W * W_stride_input)
x = tl.load(Temp_ptr + offset, mask=mask_input, other=0.0).to(tl.float32)
x = tl.sum(x, axis=2)
output += x
W_skip = False
if 2 * (W + 1) > w_input:
W_skip = True
else:
Temp_ptr = (X_ptr + batch * batch_stride_input + 2 * H *
H_stride_input + (2 * W + 1) * W_stride_input)
x = tl.load(Temp_ptr + offset, mask=mask_input, other=0.0).to(tl.
float32)
x = tl.sum(x, axis=2)
output += x
num_norm += 1
H_skip = False
if 2 * (H + 1) > h_input:
H_skip = True
else:
Temp_ptr = X_ptr + batch * batch_stride_input + (2 * H + 1
) * H_stride_input + 2 * W * W_stride_input
x = tl.load(Temp_ptr + offset, mask=mask_input, other=0.0).to(tl.
float32)
x = tl.sum(x, axis=2)
output += x
num_norm += 1
if not H_skip and not W_skip:
Temp_ptr = X_ptr + batch * batch_stride_input + (2 * H + 1
) * H_stride_input + (2 * W + 1) * W_stride_input
x = tl.load(Temp_ptr + offset, mask=mask_input, other=0.0).to(tl.
float32)
x = tl.sum(x, axis=2)
output += x
num_norm += 1
output = output / (norm_step * num_norm)
tl.store(Out_ptr + output_offset, output, mask=output_mask)
output = tl.trans(output)
mean = tl.sum(output, axis=1) / numel_no_channels_output
sqmean = tl.sum(output * output, axis=1) / numel_no_channels_output
tl.atomic_add(Mean_ptr + channels_offset, mean)
tl.atomic_add(Sqmean_ptr + channels_offset, sqmean)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/neuro-ml/kerops/blob/735336775e825d5cb06b8850d25423661b12d1ac/kerops/kernels/avgpool.py |
44cf831b-a88e-40b6-914b-3c52caca46e3 | softmax.py | shaRk-033/learn | learn_triton/softmax.py | 3108e580bf00448a10fd41e3885fa952b46439ab | 0 | @triton.jit
def softmax_kernel(inp_ptr, out_ptr, b, t, c, BLOCK_SIZE: tl.constexpr):
bid = tl.program_id(0)
tid = tl.program_id(1)
if bid >= b or tid >= t:
return
cols = tl.arange(0, BLOCK_SIZE)
offset = bid * t * c + tid * c + cols
mask = cols < c
x = tl.load(inp_ptr + offset, mask=mask, other=float('-inf'))
maxx = tl.max(x, axis=0)
x = x - maxx
expx = tl.exp(x)
sumx = tl.sum(expx, axis=0)
outx = expx / sumx
tl.store(out_ptr + offset, outx, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"CC0"
] | https://github.com/shaRk-033/learn/blob/3108e580bf00448a10fd41e3885fa952b46439ab/learn_triton/softmax.py |
f4086042-eb57-44c2-8406-648d389752ae | matmul.py | sustcsonglin/flash-linear-attention | fla/ops/utils/matmul.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def leaky_relu(x):
return tl.where(x >= 0, x, 0.01 * x)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"Low Latency"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/matmul.py |
9d977a77-0a9d-44fe-8a4a-f1679ef7d33d | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_bwd_kernel_V(k, v, z, h, A, do, dh, dq, dk, dv, dA, s_k_h,
s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, s_h_d, scale, T: tl.
constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.
constexpr, BV: tl.constexpr):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_p = tl.maximum(i_t * BT - 1, 0)
n_bh = tl.num_programs(2)
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_zc = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), ((i_t *
BT + BT - 1) * K + i_k * BK,), (BK,), (0,))
p_A = tl.make_block_ptr(A + i_bh * T * BT, (BT, T), (1, BT), (0, i_t *
BT), (BT, BT), (0, 1))
b_zc = tl.load(p_zc, boundary_check=(0,))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_k = tl.exp(b_k - b_zc[None, :]).to(b_k.dtype)
b_A = tl.load(p_A, boundary_check=(0, 1))
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_dA = tl.zeros([BT, BT], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * V * K, (V, K), (
s_h_d, s_h_t), (i_v * BV, i_k * BK), (BV, BK), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), (
s_h_t, s_h_d), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_k * n_bh + i_bh) * s_v_h, (T, V),
(s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_h = tl.load(p_h, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_dv = tl.dot(b_k, b_dh, allow_tf32=False)
if i_k == 0:
b_dv += tl.dot(b_A, b_do, allow_tf32=False)
b_do = (b_do * scale).to(b_do.dtype)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
b_dA += tl.dot(b_do, tl.trans(b_v), allow_tf32=False)
b_dq += tl.dot(b_do, b_h, allow_tf32=False)
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False)
p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_zp = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), (i_p * K +
i_k * BK,), (BK,), (0,))
b_zp = tl.load(p_zp, boundary_check=(0,))
b_z = tl.load(p_z, boundary_check=(0, 1))
b_z = tl.exp(b_zp[None, :] - b_z)
b_dq = b_dq * b_z
b_dk = b_dk * b_k
p_dq = tl.make_block_ptr(dq + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT, 0), (BT, BT), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
b_dA = tl.where(m_s, b_dA, 0.0).to(b_k.dtype)
if i_k == 0:
tl.store(p_dA, b_dA.to(p_dA.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
dd0ac36c-0d7f-4fec-8eaf-5ab99edcd368 | quant_triton.py | CompendiumLabs/ziggy | ziggy/backends/quant_triton.py | bd12fe50ca3475743f62ae26d4c184108e441e03 | 0 | @triton.jit
def matmul_float_kernel(A, B, C, N, M, K, stride_an, stride_ak, stride_bk,
stride_bm, stride_cn, stride_cm, BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_K: tl.constexpr):
dtype = C.dtype.element_ty
pid_n = tl.program_id(0)
pid_m = tl.program_id(1)
rn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
rm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
rk = tl.arange(0, BLOCK_SIZE_K)
mask_a = rn[:, None] < N
mask_b = rm[None, :] < M
mask_c = mask_a & mask_b
A1 = A + (rn[:, None] * stride_an + rk[None, :] * stride_ak)
B1 = B + (rk[:, None] * stride_bk + rm[None, :] * stride_bm)
C1 = C + (rn[:, None] * stride_cn + rm[None, :] * stride_cm)
acc = tl.zeros((BLOCK_SIZE_N, BLOCK_SIZE_M), dtype=dtype)
for k in range(0, K, BLOCK_SIZE_K):
a = tl.load(A1, mask=mask_a)
b = tl.load(B1, mask=mask_b)
acc += tl.dot(a, b, out_dtype=dtype)
A1 += BLOCK_SIZE_K * stride_ak
B1 += BLOCK_SIZE_K * stride_bk
tl.store(C1, acc, mask=mask_c)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/CompendiumLabs/ziggy/blob/bd12fe50ca3475743f62ae26d4c184108e441e03/ziggy/backends/quant_triton.py |
f2af12dc-f012-439b-bcf8-16486d668412 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_fwd_kernel_intra_V(q, k, z, A, s_k_h, s_k_t, s_k_d, scale, T:
tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK:
tl.constexpr, NC: tl.constexpr):
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_t, i_i, i_j = i_c // (NC * NC), i_c % (NC * NC) // NC, i_c % (NC * NC
) % NC
n_bh = tl.num_programs(2)
if i_i > i_j:
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
i_k * BK, i_t * BT + i_j * BC), (BK, BC), (0, 1))
p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_A = tl.make_block_ptr(A + (i_k * n_bh + i_bh) * T * BT, (T, BT),
(BT, 1), (i_t * BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
p_zn = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), ((
i_t * BT + i_i * BC) * K + i_k * BK,), (BK,), (0,))
b_zn = tl.load(p_zn, boundary_check=(0,))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_z = tl.load(p_z, boundary_check=(0, 1))
b_q = (b_q * tl.exp(b_zn[None, :] - b_z) * scale).to(b_q.dtype)
b_k = tl.load(p_k, boundary_check=(0, 1))
b_k = tl.exp(b_k - b_zn[:, None]).to(b_k.dtype)
b_A = tl.dot(b_q, b_k, allow_tf32=False)
tl.store(p_A, b_A.to(A.dtype.element_ty), boundary_check=(0, 1))
elif i_i == i_j:
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T * K,), (s_k_d,), ((i_t *
BT + i_j * BC) * K + i_k * BK,), (BK,), (0,))
p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_z = tl.load(p_z, boundary_check=(0, 1))
o_i = tl.arange(0, BC)
o_A = (i_bh + i_k * n_bh) * T * BT + (i_t * BT + i_i * BC + tl.
arange(0, BC)) * BT + i_j * BC
m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T
for j in range(0, BC):
b_k = tl.load(p_k, boundary_check=(0,)).to(tl.float32)
b_A = tl.sum(b_q * tl.exp(b_k[None, :] - b_z) * scale, 1)
b_A = tl.where(o_i >= j, b_A, 0.0)
tl.store(A + o_A + j, b_A.to(b_q.dtype), mask=m_A)
p_k = tl.advance(p_k, (K,))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
e8622bcb-db14-44d9-adcb-257ca07eab7d | scaled_quant.py | drisspg/transformer_nuggets | transformer_nuggets/fp8/scaled_quant.py | a4c66bbeebaa479ad8b6ed82d7efbafa41b17260 | 0 | @triton.jit
def dynamic_scaled_cast(inpt_ptr: torch.Tensor, output_ptr: torch.Tensor,
abs_max_ptr: torch.Tensor, spin_lock: torch.Tensor, numel: int, XBLOCK:
tl.constexpr, float8_dtype: tl.constexpr, max_val: tl.constexpr):
"""Quantize tensor to fp8 using current global absmax"""
n_blocks = tl.num_programs(0)
offset = tl.program_id(0) * XBLOCK
index = offset + tl.arange(0, XBLOCK)[:]
index = tl.max_contiguous(tl.multiple_of(index, XBLOCK), XBLOCK)
mask = index < numel
inpt = tl.load(inpt_ptr + index, mask=mask)
block_max = tl.max(tl.abs(inpt))
tl.atomic_max(abs_max_ptr, block_max)
tl.atomic_add(spin_lock, 1, sem='release')
while tl.load(spin_lock, volatile=True) < n_blocks:
pass
scale = max_val / tl.clamp(tl.load(abs_max_ptr), -1000000000000.0,
float('inf'))
scaled_inpt = inpt * scale
scaled_inpt = tl.clamp(scaled_inpt, -1 * max_val, max_val)
tl.store(output_ptr + index, scaled_inpt.to(float8_dtype), mask=mask)
| {
"Data Type": [
"int8"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Memory-Bound"
]
} | [
"BSD"
] | https://github.com/drisspg/transformer_nuggets/blob/a4c66bbeebaa479ad8b6ed82d7efbafa41b17260/transformer_nuggets/fp8/scaled_quant.py |
45e590dd-7a3c-444a-bf55-6af49405bf85 | k_fused_matmul_fw.py | cpuhrsch/torchfused | torchfused/triton/k_fused_matmul_fw.py | 6c40ed160dcecbe7825f268f7c86bccd359e0ebf | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_ROW': 16, 'BLOCK_COL': 16},
num_stages=5, num_warps=1), triton.Config({'BLOCK_ROW': 32, 'BLOCK_COL':
32}, num_stages=5, num_warps=1), triton.Config({'BLOCK_ROW': 64,
'BLOCK_COL': 32}, num_stages=5, num_warps=2), triton.Config({
'BLOCK_ROW': 32, 'BLOCK_COL': 64}, num_stages=5, num_warps=2), triton.
Config({'BLOCK_ROW': 128, 'BLOCK_COL': 64}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_ROW': 64, 'BLOCK_COL': 128}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_ROW': 128, 'BLOCK_COL': 128},
num_stages=4, num_warps=4)], key=['M', 'N', 'K'])
@triton.jit
def kernel_fma(OUT, ACT_INPUTS, INPUT, WEIGHT, BIAS, M, N, K, stride_om,
stride_im, stride_wn, stride_wk, **META):
"""
Kernel for computing Out = activation(A x W + C)
- Input has shape (M, K)
- Weight has shape (K, N)
- Bias has shape (N,)
- Output has shape (M, N)
- ActInputs (optional) has shape (M, N)
'ActInputs' optionally saves the A x W + C intermediate for backward computations
This kernel will consolidate over K
"""
BLOCK_M, GROUP_M = META['BLOCK_ROW'], META['GROUP_ROW']
BLOCK_N, BLOCK_K = META['BLOCK_COL'], META['BLOCK_K']
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_M)
num_pid_n = tl.cdiv(N, BLOCK_N)
num_pid_in_group = GROUP_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_M
GROUP_M = min(num_pid_m - first_pid_m, GROUP_M)
pid_m = first_pid_m + pid % GROUP_M
pid_n = pid % num_pid_in_group // GROUP_M
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
rk = tl.arange(0, BLOCK_K)
input_ptrs = INPUT + rm[:, None] * stride_im + rk[None, :]
weight_ptrs = WEIGHT + rk[:, None] * stride_wk + rn[None, :] * stride_wn
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
if META['BIAS']:
bias = tl.load(BIAS + rn, mask=rn < N, other=0.0).to(tl.float32)
acc += bias[None, :]
for _ in range(K, 0, -BLOCK_K):
a = tl.load(input_ptrs, mask=(rk[None, :] < K) & (rm[:, None] < M),
other=0.0)
w = tl.load(weight_ptrs, mask=(rk[:, None] < K) & (rn[None, :] < N),
other=0.0)
acc += tl.dot(a, w).to(tl.float32)
input_ptrs += BLOCK_K
weight_ptrs += BLOCK_K * stride_wk
if META['SAVE_ACT_INPUTS']:
act_in_ptrs = ACT_INPUTS + rm[:, None] * stride_om + rn[None, :]
tl.store(act_in_ptrs, acc, mask=(rm[:, None] < M) & (rn[None, :] < N))
if META['ACTIVATION']:
acc = META['ACTIVATION'](acc)
out_ptrs = OUT + rm[:, None] * stride_om + rn[None, :]
tl.store(out_ptrs, acc, mask=(rm[:, None] < M) & (rn[None, :] < N))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"BSD"
] | https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_fused_matmul_fw.py |
f7ae9f93-489e-4fd5-b45e-db9d45f58144 | quant_triton.py | CompendiumLabs/ziggy | ziggy/backends/quant_triton.py | bd12fe50ca3475743f62ae26d4c184108e441e03 | 0 | @triton.jit
def matmul_quant_kernel(A, B, C, N, M, K, K1, stride_an, stride_ak,
stride_bk, stride_bm, stride_cn, stride_cm, scale, zero_point, BITS: tl
.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr, BLOCK_SIZE_K1: tl.constexpr):
dtype = C.dtype.element_ty
zero_point_ty = tl.full((), zero_point, dtype=dtype)
scale_ty = tl.full((), scale, dtype=dtype)
QFACT = 8 // BITS
QMASK = (1 << BITS) - 1
QMASK_INT = tl.full((), QMASK, dtype=tl.uint8)
pid_n = tl.program_id(0)
pid_m = tl.program_id(1)
rn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
rm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
rk = tl.arange(0, BLOCK_SIZE_K)
rk1, rq1 = rk // QFACT, rk % QFACT
a_shift = BITS * rq1
mask_a = rn[:, None] < N
mask_b = rm[None, :] < M
mask_c = mask_a & mask_b
A1 = A + (rn[:, None] * stride_an + rk1[None, :] * stride_ak)
B1 = B + (rk[:, None] * stride_bk + rm[None, :] * stride_bm)
C1 = C + (rn[:, None] * stride_cn + rm[None, :] * stride_cm)
acc = tl.zeros((BLOCK_SIZE_N, BLOCK_SIZE_M), dtype=dtype)
for k in range(0, K, BLOCK_SIZE_K):
aq = tl.load(A1, mask=mask_a)
b = tl.load(B1, mask=mask_b)
ai = aq >> a_shift & QMASK_INT
a = ai.to(dtype) - zero_point_ty
b1 = b.to(dtype)
acc += tl.dot(a, b1, out_dtype=dtype)
A1 += BLOCK_SIZE_K1 * stride_ak
B1 += BLOCK_SIZE_K * stride_bk
acc *= scale_ty
tl.store(C1, acc, mask=mask_c)
| {
"Data Type": [
"fp32",
"int8",
"uint8"
],
"Functionality": [
"Matrix Multiplication",
"Quantization"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/CompendiumLabs/ziggy/blob/bd12fe50ca3475743f62ae26d4c184108e441e03/ziggy/backends/quant_triton.py |
4f055ba2-8e8d-4b65-989b-b19e4874a19b | 06-fused-attention.py | triton-lang/triton | python/tutorials/06-fused-attention.py | a2b398e0bb1b120f31cf386d6ae3261c3ab84207 | 0 | @triton.jit
def _attn_bwd_preprocess(O, DO, Delta, Z, H, N_CTX, BLOCK_M: tl.constexpr,
HEAD_DIM: tl.constexpr):
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
off_hz = tl.program_id(1)
off_n = tl.arange(0, HEAD_DIM)
o = tl.load(O + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM +
off_n[None, :])
do = tl.load(DO + off_hz * HEAD_DIM * N_CTX + off_m[:, None] * HEAD_DIM +
off_n[None, :]).to(tl.float32)
delta = tl.sum(o * do, axis=1)
tl.store(Delta + off_hz * N_CTX + off_m, delta)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/triton-lang/triton/blob/a2b398e0bb1b120f31cf386d6ae3261c3ab84207/python/tutorials/06-fused-attention.py |
b076a099-4288-404c-911a-b081727d520c | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/rwkv6/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=1), triton.Config({},
num_warps=2), triton.Config({}, num_warps=4), triton.Config({},
num_warps=8)], key=['BC', 'BK'])
@triton.jit
def chunk_rwkv6_fwd_A_kernel_intra_sub_intra_split(q, k, gi, ge, u, A,
offsets, indices, scale, B: tl.constexpr, T: tl.constexpr, H: tl.
constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.
constexpr, NC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.
constexpr):
i_k, i_tc, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
i_t, i_i = i_tc // NC, i_tc % NC
i_j = i_i
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
all = T
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
all = B * T
if i_t * BT + i_i * BC >= T:
return
o_i = tl.arange(0, BC)
o_k = i_k * BK + tl.arange(0, BK)
m_k = o_k < K
m_A = i_t * BT + i_i * BC + tl.arange(0, BC) < T
if HEAD_FIRST:
o_A = (i_k * B * H + i_bh) * T * BC + (i_t * BT + i_i * BC + tl.
arange(0, BC)) * BC
p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t * BT +
i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(ge + i_bh * T * K, (T, K), (K, 1), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_qj = tl.max_contiguous(tl.multiple_of(q + (i_bh * T + i_t * BT +
i_j * BC) * K + o_k, BK), BK)
p_kj = tl.max_contiguous(tl.multiple_of(k + (i_bh * T + i_t * BT +
i_j * BC) * K + o_k, BK), BK)
p_gk = tl.max_contiguous(tl.multiple_of(gi + (i_bh * T + i_t * BT +
i_j * BC) * K + o_k, BK), BK)
else:
o_A = (i_k * all + bos + i_t * BT + i_i * BC + tl.arange(0, BC)
) * H * BC + i_h * BC
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K, 1),
(i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_g = tl.make_block_ptr(ge + (bos * H + i_h) * K, (T, K), (H * K, 1
), (i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_qj = tl.max_contiguous(tl.multiple_of(q + (bos + i_t * BT + i_j *
BC) * H * K + i_h * K + o_k, BK), BK)
p_kj = tl.max_contiguous(tl.multiple_of(k + (bos + i_t * BT + i_j *
BC) * H * K + i_h * K + o_k, BK), BK)
p_gk = tl.max_contiguous(tl.multiple_of(gi + (bos + i_t * BT + i_j *
BC) * H * K + i_h * K + o_k, BK), BK)
b_q = tl.load(p_q, boundary_check=(0, 1))
b_g = tl.load(p_g, boundary_check=(0, 1))
p_u = tl.make_block_ptr(u + i_h * K, (K,), (1,), i_k * BK, (BK,), (0,))
b_u = tl.load(p_u, boundary_check=(0,))
for j in range(0, min(BC, T - i_t * BT - i_i * BC)):
b_qj = tl.load(p_qj, mask=m_k, other=0).to(tl.float32)
b_kj = tl.load(p_kj, mask=m_k, other=0).to(tl.float32)
b_gk = tl.load(p_gk, mask=m_k, other=0).to(tl.float32)
b_A = tl.sum(b_q * b_kj[None, :] * tl.exp(b_g - b_gk[None, :]), 1)
b_A = tl.where(o_i > j, b_A * scale, 0.0)
b_A = tl.where(o_i != j, b_A, tl.sum(b_qj * b_kj * b_u * scale))
tl.store(A + o_A + j, b_A, mask=m_A)
p_qj += K if HEAD_FIRST else H * K
p_kj += K if HEAD_FIRST else H * K
p_gk += K if HEAD_FIRST else H * K
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Coalesced",
"Blocked Access"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rwkv6/chunk.py |
a0025e28-0746-4d9e-bb24-18053ce379b0 | z_order.py | Kitsunetic/space-filling-pytorch | space_filling_pytorch/functional/z_order.py | 0de955ad1036973ee7506c5a0124c208acec722d | 0 | @triton.jit
def _calculate_zorder(fx, fy, fz, space_size):
x = ((fx + 1) / 2 * space_size).to(tl.int64)
y = ((fy + 1) / 2 * space_size).to(tl.int64)
z = ((fz + 1) / 2 * space_size).to(tl.int64)
x = tl.minimum(tl.maximum(x, 0), space_size - 1)
y = tl.minimum(tl.maximum(y, 0), space_size - 1)
z = tl.minimum(tl.maximum(z, 0), space_size - 1)
ret = 0
for i in tl.static_range(0, 16):
q = 1 << i
ret |= (x & q) << 2 * i + 2
ret |= (y & q) << 2 * i + 1
ret |= (z & q) << 2 * i + 0
return ret
| {
"Data Type": [
"fp32"
],
"Functionality": [],
"Memory Access Pattern": [
"Transposed Access"
],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/Kitsunetic/space-filling-pytorch/blob/0de955ad1036973ee7506c5a0124c208acec722d/space_filling_pytorch/functional/z_order.py |
834e54f1-1ce6-424e-a37a-b8bc89efdeec | cross_entropy.py | ardywibowo/triton-mode | kernels/cross_entropy.py | 5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1 | 0 | @triton.jit
def triton_cross_entropy_forward(input_ptr, input_stride, target_ptr,
target_stride, loss_output_ptr, loss_output_stride, num_classes,
num_valid_targets, ignore_label, smoothing_factor: tl.constexpr,
reduction_mode: tl.constexpr, BLOCK_SIZE: tl.constexpr):
row_id = tl.program_id(0).to(tl.int64)
target_ptr += row_id * target_stride
target_label = tl.load(target_ptr)
input_ptr += row_id * input_stride
if target_label == ignore_label:
for i in range(0, num_classes, BLOCK_SIZE):
input_offsets = i + tl.arange(0, BLOCK_SIZE)
tl.store(input_ptr + input_offsets, 0.0, mask=input_offsets <
num_classes)
return
loss_output_ptr += row_id * loss_output_stride
max_val = float('-inf')
normalization_factor = 0.0
target_input_val = tl.load(input_ptr + target_label)
smoothing_sum = 0.0
epsilon = smoothing_factor / num_classes
for i in range(0, num_classes, BLOCK_SIZE):
input_offsets = i + tl.arange(0, BLOCK_SIZE)
input_block = tl.load(input_ptr + input_offsets, mask=input_offsets <
num_classes, other=float('-inf'))
block_max = tl.max(input_block)
if smoothing_factor > 0:
smoothing_sum += tl.sum(tl.where(input_offsets < num_classes, -
epsilon * input_block, 0.0))
new_max = tl.maximum(max_val, block_max)
normalization_factor = normalization_factor * tl.exp(max_val - new_max
) + tl.sum(tl.exp(input_block - new_max))
max_val = new_max
for i in range(0, num_classes, BLOCK_SIZE):
input_offsets = i + tl.arange(0, BLOCK_SIZE)
input_block = tl.load(input_ptr + input_offsets, mask=input_offsets <
num_classes, other=float('-inf'))
if reduction_mode == 'mean':
input_block = (tl.exp(input_block - max_val) /
normalization_factor - epsilon) / num_valid_targets
else:
input_block = tl.exp(input_block - max_val
) / normalization_factor - epsilon
tl.store(input_ptr + input_offsets, input_block, mask=input_offsets <
num_classes)
tl.debug_barrier()
row_loss = -(target_input_val - max_val - tl.log(normalization_factor))
if smoothing_factor > 0:
smooth_loss = smoothing_sum + smoothing_factor * (max_val + tl.log(
normalization_factor))
row_loss = row_loss * (1 - smoothing_factor) + smooth_loss
if reduction_mode == 'mean':
row_loss /= num_valid_targets
updated_target_val = tl.load(input_ptr + target_label)
if reduction_mode == 'mean':
updated_target_val += -(1 - smoothing_factor) / num_valid_targets
else:
updated_target_val += -(1 - smoothing_factor)
tl.store(loss_output_ptr, row_loss)
tl.store(input_ptr + target_label, updated_target_val)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Softmax"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/ardywibowo/triton-mode/blob/5cd773ec95e25e23c6b75e312c7a9a1c6eb650b1/kernels/cross_entropy.py |
514b2699-68b0-4166-9e48-359401f2a1ee | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/linear_attn/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_linear_attn_bwd_kernel_dqkv(q, k, v, h, do, dh, dq, dk, dv, s_k_h,
s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, s_h_h, s_h_t, scale, T: tl.constexpr,
K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr,
BV: tl.constexpr, NT: tl.constexpr):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
n_bh = tl.num_programs(2)
o_i = tl.arange(0, BT)
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (i_k *
BK, i_t * BT), (BK, BT), (0, 1))
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
b_s = tl.where(o_i[:, None] <= o_i[None, :], b_s, 0)
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_ds = tl.zeros([BT, BT], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + i_bh * s_h_h, (V, NT * K), (1, s_h_t),
(i_v * BV, i_t * K + i_k * BK), (BV, BK), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (T, V), (s_v_t, s_v_d),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dh = tl.make_block_ptr(dh + i_bh * s_h_h, (NT * K, V), (s_h_t, 1),
(i_t * K + i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_k * n_bh + i_bh) * s_v_h, (T, V),
(s_v_t, s_v_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_h = tl.load(p_h, boundary_check=(0, 1))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False)
b_dq += tl.dot(b_do, b_h, allow_tf32=False) * scale
b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False)
b_dv = tl.dot(b_k, b_dh, allow_tf32=False) + tl.dot(b_s.to(b_q.
dtype), b_do, allow_tf32=False)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale, 0).to(b_q.dtype
)
b_dq += tl.dot(b_ds, b_k, allow_tf32=False)
b_dk += tl.trans(tl.dot(b_q, b_ds, allow_tf32=False))
p_dq = tl.make_block_ptr(dq + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Backpropagation"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/linear_attn/chunk.py |
f35c6d9e-1bb6-42a6-b3bf-22b95cb2e626 | mhmoe_bwd.py | dtadpole/triton-playground | mhmoe_bwd.py | 2d317976722d63080133b1bf88b1f0cdec98f831 | 0 | @triton.jit
def _mlp_wide_kernel_bwd_dw1w2(pid_h, pid_e, x_ptr, w1_ptr, w2_ptr, o_ptr,
dx_ptr, dw1_ptr, dw2_ptr, do_ptr, H, B, D: tl.constexpr, E, stride_xb,
stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob,
stride_od, stride_dxb, stride_dxd, stride_dw1d, stride_dw1e,
stride_dw2e, stride_dw2d, stride_dob, stride_dod, BLOCK_SIZE_B: tl.
constexpr, BLOCK_SIZE_E: tl.constexpr, ACTIVATION: tl.constexpr):
"""Kernel for computing the mlp_bwd_dw1w2
Z = X @ W1, H = f(Z), O = H @ W2
- X has shape (B, D)
- W1 has shape (D, E)
- W2 has shape (E, D)
- O has shape (B, D)
- dX has shape (B, D)
- dW1 has shape (D, E)
- dW2 has shape (E, D)
- dO has shape (B, D)
"""
TARGET_TYPE = x_ptr.type.element_ty
offs_b = tl.arange(0, BLOCK_SIZE_B)
offs_d = tl.arange(0, D)
offs_e = tl.arange(0, BLOCK_SIZE_E)
x_ptrs = x_ptr + ((pid_h * B + offs_b[:, None]) * stride_xb + offs_d[
None, :] * stride_xd)
do_ptrs = do_ptr + ((pid_h * B + offs_b[:, None]) * stride_dob + offs_d
[None, :] * stride_dod)
do_mask = (offs_b[:, None] < B) & (offs_d[None, :] < D)
w1_ptrs = w1_ptr + ((pid_h * D + offs_d[:, None]) * stride_w1d + (pid_e *
BLOCK_SIZE_E + offs_e[None, :]) * stride_w1e)
w1_mask = (offs_d[:, None] < D) & (offs_e[None, :] < E - pid_e *
BLOCK_SIZE_E)
w2_ptrs = w2_ptr + ((pid_h * E + pid_e * BLOCK_SIZE_E + offs_e[:, None]
) * stride_w2e + offs_d[None, :] * stride_w2d)
w2_mask = (offs_e[:, None] < E - pid_e * BLOCK_SIZE_E) & (offs_d[None,
:] < D)
w1 = tl.load(w1_ptrs, mask=w1_mask, other=0.0)
w2 = tl.load(w2_ptrs, mask=w2_mask, other=0.0)
do = tl.load(do_ptrs, mask=do_mask, other=0.0)
dw1 = tl.zeros((D, BLOCK_SIZE_E), dtype=tl.float32)
dw2 = tl.zeros((BLOCK_SIZE_E, D), dtype=tl.float32)
for b in range(0, tl.cdiv(B, BLOCK_SIZE_B)):
x_mask = (offs_b[:, None] < B - b * BLOCK_SIZE_B) & (offs_d[None, :
] < D)
do_mask = (offs_b[:, None] < B - b * BLOCK_SIZE_B) & (offs_d[None,
:] < D)
x = tl.load(x_ptrs, mask=x_mask, other=0.0)
do = tl.load(do_ptrs, mask=do_mask, other=0.0)
z = tl.dot(x, w1, out_dtype=tl.float32)
if ACTIVATION == 'leaky_relu':
h = leaky_relu(z).to(TARGET_TYPE)
else:
h = z.to(TARGET_TYPE)
dh = tl.dot(do, tl.trans(w2), out_dtype=tl.float32)
dw2 += tl.dot(tl.trans(h), do, out_dtype=tl.float32)
if ACTIVATION == 'leaky_relu':
dz = (dh * d_leacky_relu_inv_backward(z)).to(TARGET_TYPE)
else:
dz = dh.to(TARGET_TYPE)
dw1 += tl.dot(tl.trans(x), dz, out_dtype=tl.float32)
x_ptrs += BLOCK_SIZE_B * stride_xb
do_ptrs += BLOCK_SIZE_B * stride_dob
return dw1, dw2
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe_bwd.py |
d8147557-5e28-4b54-9d2b-db80fd84ae11 | utils.py | huyz2023/2by4-pretrain | sparse/utils.py | 9e330125dea71e5a3dee235f4efb8869f9e4cdd0 | 0 | @triton.jit
def _soft_threshold(a0, a1, a2, a3):
x1, x2, x3, x4, x5, x6 = tl.abs(a0) > tl.abs(a1), tl.abs(a0) > tl.abs(a2
), tl.abs(a0) > tl.abs(a3), tl.abs(a1) > tl.abs(a2), tl.abs(a1
) > tl.abs(a3), tl.abs(a2) > tl.abs(a3)
m0, m1, m2, m3 = (x2 & x3 | x1 & x2 | x1 & x3, ~x1 & x5 | x4 & x5 | ~x1 &
x4, ~x2 & ~x4 | ~x2 & x6 | ~x4 & x6, ~x3 & ~x5 | ~x3 & ~x6 | ~x5 & ~x6)
threshold = tl.minimum(tl.maximum(tl.minimum(tl.abs(a0), tl.abs(a1)),
tl.minimum(tl.abs(a2), tl.abs(a3))), tl.minimum(tl.maximum(tl.abs(
a0), tl.abs(a1)), tl.maximum(tl.abs(a2), tl.abs(a3))))
s0 = tl.where(a0 > 0, a0 - threshold, a0 + threshold)
s1 = tl.where(a1 > 0, a1 - threshold, a1 + threshold)
s2 = tl.where(a2 > 0, a2 - threshold, a2 + threshold)
s3 = tl.where(a3 > 0, a3 - threshold, a3 + threshold)
return s0, s1, s2, s3, m0, m1, m2, m3
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [
"Coalesced"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/utils.py |
3e563cf1-4a15-483f-8db0-7b40621112a6 | RzLinearForward.py | apd10/RzLinear | python/rz_linear/impl/RzLinearForward.py | eb56657b2de0a97f398f88af421b0fbcbc5469c9 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K':
32}, num_stages=3, num_warps=8), triton.Config({'BLOCK_SIZE_M': 256,
'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K':
32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K':
32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K':
32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K':
32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32,
'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K':
32}, num_stages=4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K':
32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32,
'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K':
32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64,
'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K':
32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 16,
'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K':
32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 128,
'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K':
32}, num_stages=3, num_warps=4), triton.Config({'BLOCK_SIZE_M': 32,
'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 32}, num_stages=3, num_warps=4)],
key=['M', 'N', 'K'])
@triton.jit
def rz_linear_forward_kernel_fp32(a_ptr, b_ptr, c_ptr, init_factor, M, N, K,
H, stride_am, stride_ak, stride_cm, stride_cn, R7: int, R6: int, R5:
int, R4: int, R3: int, R2: int, R1: int, R0: int, BLOCK_SIZE_M: tl.
constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE: tl.constexpr):
rz_linear_forward_core(a_ptr=a_ptr, b_ptr=b_ptr, c_ptr=c_ptr,
init_factor=init_factor, M=M, N=N, K=K, H=H, stride_am=stride_am,
stride_ak=stride_ak, stride_cm=stride_cm, stride_cn=stride_cn,
allow_tf32=False, R7=R7, R6=R6, R5=R5, R4=R4, R3=R3, R2=R2, R1=R1,
R0=R0, BLOCK_SIZE_M=BLOCK_SIZE_M, BLOCK_SIZE_N=BLOCK_SIZE_N,
BLOCK_SIZE_K=BLOCK_SIZE_K, GROUP_SIZE=GROUP_SIZE)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Coalesced",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/apd10/RzLinear/blob/eb56657b2de0a97f398f88af421b0fbcbc5469c9/python/rz_linear/impl/RzLinearForward.py |
5e4fffd9-e14a-4bf7-a094-9d0f4377b78b | y_4.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/direct/y_4.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def fourth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
output_stride: tl.constexpr):
block_id = tl.program_id(0)
coord_stride = 3
coord_striding = tl.arange(0, block_size) * coord_stride
coord_row_offset = coord_striding + block_size * coord_stride * block_id
x = tl.load(coord_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
y = tl.load(coord_ptr + coord_row_offset + 1, mask=coord_row_offset + 1 <
coord_numel)
z = tl.load(coord_ptr + coord_row_offset + 2, mask=coord_row_offset + 2 <
coord_numel)
output_striding = tl.arange(0, block_size) * output_stride
output_row_offset = (output_striding + block_size * output_stride *
block_id + col_offset)
g_0 = tl.load(sph_grad_ptr + output_row_offset, mask=output_row_offset <
output_numel)
g_1 = tl.load(sph_grad_ptr + output_row_offset + 1, mask=
output_row_offset + 1 < output_numel)
g_2 = tl.load(sph_grad_ptr + output_row_offset + 2, mask=
output_row_offset + 2 < output_numel)
g_3 = tl.load(sph_grad_ptr + output_row_offset + 3, mask=
output_row_offset + 3 < output_numel)
g_4 = tl.load(sph_grad_ptr + output_row_offset + 4, mask=
output_row_offset + 4 < output_numel)
g_5 = tl.load(sph_grad_ptr + output_row_offset + 5, mask=
output_row_offset + 5 < output_numel)
g_6 = tl.load(sph_grad_ptr + output_row_offset + 6, mask=
output_row_offset + 6 < output_numel)
g_7 = tl.load(sph_grad_ptr + output_row_offset + 7, mask=
output_row_offset + 7 < output_numel)
g_8 = tl.load(sph_grad_ptr + output_row_offset + 8, mask=
output_row_offset + 8 < output_numel)
CONST000 = 2.0
CONST001 = 4.5
CONST002 = 2.25
CONST006 = 9.48683298050514
CONST008 = 12.0
CONST012 = 28.4604989415154
CONST014 = 40.2492235949962
CONST015 = -37.6497011940334
CONST016 = -6.70820393249937
CONST017 = -26.6223590239483
CONST018 = -21.3453742061366
CONST019 = -20.1246117974981
CONST020 = -18.8248505970167
CONST021 = -18.0
CONST022 = -14.2302494707577
CONST023 = -10.0623058987491
CONST024 = -9.0
CONST025 = -8.87411967464942
CONST026 = -7.11512473537885
CONST027 = -6.27495019900557
CONST028 = -3.35410196624968
VAR07 = x * x * x
VAR08 = x * x
VAR16 = y * y * y
VAR17 = y * y
VAR25 = z * z * z
VAR26 = z * z
g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask=
coord_row_offset + 1 < coord_numel)
g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask=
coord_row_offset + 2 < coord_numel)
g_x += CONST015 * g_7 * x * y * z + CONST022 * g_5 * x * y * z + g_0 * (
CONST017 * VAR08 * z - CONST025 * VAR25) + g_1 * y * (CONST020 *
VAR08 - CONST020 * VAR26) + g_2 * (-CONST019 * VAR17 * z + CONST023 *
VAR08 * z + CONST028 * VAR25) + g_3 * (CONST006 * VAR16 + CONST018 *
VAR08 * y + CONST026 * VAR26 * y) + g_4 * (CONST000 * x * (CONST002 *
VAR26 + CONST024 * VAR17) + CONST001 * VAR07) + g_6 * (-CONST016 *
VAR07 + CONST019 * VAR17 * x) + g_8 * (CONST017 * VAR26 * x -
CONST025 * VAR07)
g_y += CONST000 * g_6 * y * (CONST023 * VAR08 - CONST023 * VAR26
) + CONST014 * g_2 * x * y * z + g_1 * (-CONST020 * VAR26 * x +
CONST027 * VAR07) + g_3 * (CONST026 * VAR07 + x * (CONST012 * VAR17 +
CONST026 * VAR26)) + g_4 * (CONST008 * VAR16 + CONST021 * VAR08 * y +
CONST021 * VAR26 * y) + g_5 * (CONST026 * VAR25 + z * (CONST012 *
VAR17 + CONST026 * VAR08)) + g_7 * (CONST020 * VAR08 * z - CONST027 *
VAR25)
g_z += -CONST015 * g_1 * x * y * z + CONST022 * g_3 * x * y * z + g_0 * (
-CONST017 * VAR26 * x + CONST025 * VAR07) + g_2 * (CONST028 * VAR07 +
x * (-CONST019 * VAR17 + CONST023 * VAR26)) + g_4 * (CONST001 *
VAR08 * z + CONST001 * VAR25 + CONST021 * VAR17 * z) + g_5 * (
CONST006 * VAR16 + CONST018 * VAR26 * y + CONST026 * VAR08 * y
) + g_6 * (CONST016 * VAR25 - CONST019 * VAR17 * z) + g_7 * y * (
CONST020 * VAR08 - CONST020 * VAR26) + g_8 * (CONST017 * VAR08 * z -
CONST025 * VAR25)
tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset <
coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask=
coord_row_offset + 1 < coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask=
coord_row_offset + 2 < coord_numel)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Memory-Bound"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_4.py |
13dbadc6-77e5-4822-8ad4-db75cbf0f44b | flash_triton.py | MayDomine/Burst-Attention | burst_attn/flash_triton.py | b088c554072935074ea9c643de5ee363be5ab1f6 | 0 | @triton.jit
def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE,
D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm,
stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k,
headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL:
tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N:
tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr,
BLOCK_N: tl.constexpr):
begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M
offs_qm = begin_m + tl.arange(0, BLOCK_M)
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
offs_m = tl.arange(0, BLOCK_M)
offs_d = tl.arange(0, BLOCK_HEADDIM)
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
if BIAS_TYPE == 'vector':
b_ptrs = Bias + offs_n
elif BIAS_TYPE == 'matrix':
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
if begin_m >= seqlen_q:
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k,
headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
return
if EVEN_N & EVEN_M:
if EVEN_HEADDIM:
k = tl.load(k_ptrs)
v = tl.load(v_ptrs)
else:
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
elif EVEN_HEADDIM:
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
else:
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[
None, :] < headdim), other=0.0)
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[
None, :] < headdim), other=0.0)
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
start_m = tl.multiple_of(start_m, BLOCK_M)
offs_m_curr = start_m + offs_m
if EVEN_M & EVEN_HEADDIM:
q = tl.load(q_ptrs)
elif EVEN_HEADDIM:
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0
)
else:
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (
offs_d[None, :] < headdim), other=0.0)
qk = tl.dot(q, k, trans_b=True)
if not EVEN_N:
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf'))
if IS_CAUSAL:
qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk,
float('-inf'))
if BIAS_TYPE != 'none':
tl.debug_barrier()
if BIAS_TYPE == 'vector':
if EVEN_N:
bias = tl.load(b_ptrs).to(tl.float32)
else:
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0
).to(tl.float32)
bias = bias[None, :]
elif BIAS_TYPE == 'matrix':
if EVEN_M & EVEN_N:
bias = tl.load(b_ptrs).to(tl.float32)
else:
bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] <
seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0
).to(tl.float32)
qk = qk * softmax_scale + bias
if not EVEN_M & EVEN_HEADDIM:
tl.debug_barrier()
lse_i = tl.load(LSE + offs_m_curr)
if BIAS_TYPE == 'none':
p = tl.exp(qk * softmax_scale - lse_i[:, None])
else:
p = tl.exp(qk - lse_i[:, None])
if EVEN_M & EVEN_HEADDIM:
do = tl.load(do_ptrs)
else:
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) &
(offs_d[None, :] < headdim), other=0.0)
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
if not EVEN_M & EVEN_HEADDIM:
tl.debug_barrier()
dp = tl.dot(do, v, trans_b=True)
if not EVEN_HEADDIM:
tl.debug_barrier()
Di = tl.load(D + offs_m_curr)
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
dk += tl.dot(ds, q, trans_a=True)
if not EVEN_M & EVEN_HEADDIM:
tl.debug_barrier()
if not ATOMIC_ADD:
if EVEN_M & EVEN_HEADDIM:
dq = tl.load(dq_ptrs, eviction_policy='evict_last')
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, eviction_policy='evict_last')
elif EVEN_HEADDIM:
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q,
other=0.0, eviction_policy='evict_last')
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
eviction_policy='evict_last')
else:
dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q
) & (offs_d[None, :] < headdim), other=0.0,
eviction_policy='evict_last')
dq += tl.dot(ds, k)
tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q
) & (offs_d[None, :] < headdim), eviction_policy=
'evict_last')
else:
dq = tl.dot(ds, k)
if EVEN_M & EVEN_HEADDIM:
tl.atomic_add(dq_ptrs, dq)
elif EVEN_HEADDIM:
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q
)
else:
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] <
seqlen_q) & (offs_d[None, :] < headdim))
dq_ptrs += BLOCK_M * stride_dqm
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_dom
if BIAS_TYPE == 'matrix':
b_ptrs += BLOCK_M * stride_bm
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
_bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k,
headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms",
"Matrix Multiplication",
"Softmax"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/MayDomine/Burst-Attention/blob/b088c554072935074ea9c643de5ee363be5ab1f6/burst_attn/flash_triton.py |
5b0222d0-40c9-44d6-9305-fa0136e4416c | parallel.py | sustcsonglin/flash-linear-attention | fla/ops/rebased/parallel.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def _parallel_rebased_bwd_dkv(i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dk,
dv, s_k_h, s_k_t, s_k_d, s_v_h, s_v_t, s_v_d, scale, B: tl.constexpr, H:
tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BTL:
tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr):
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_c *
BTL, i_k * BK), (BTL, BK), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * s_v_h, (T, V), (s_v_t, s_v_d), (i_c *
BTL, i_v * BV), (BTL, BV), (1, 0))
b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load(p_v,
boundary_check=(0, 1))
b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros([BTL, BV],
dtype=tl.float32)
for i in range(tl.cdiv(T, BTS) * BTS - BTS, (i_c + 1) * BTL - BTS, -BTS):
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
i_k * BK, i), (BK, BTS), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (V, T), (s_v_d, s_v_t),
(i_v * BV, i), (BV, BTS), (0, 1))
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
b_q = tl.load(p_q, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
b_dz = tl.load(p_dz, mask=i + tl.arange(0, BTS) < T)
b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * scale
b_s2 = b_s * b_s
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale
if i_v == 0:
b_ds += b_dz[None, :] * scale
else:
b_ds = b_ds
b_dk += tl.dot((2 * b_ds * b_s).to(b_q.dtype), tl.trans(b_q),
allow_tf32=False)
tl.debug_barrier()
o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL)
for i in range(i_c * BTL, (i_c + 1) * BTL, BTS):
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (K, T), (s_k_d, s_k_t), (
i_k * BK, i), (BK, BTS), (0, 1))
p_do = tl.make_block_ptr(do + i_bh * s_v_h, (V, T), (s_v_d, s_v_t),
(i_v * BV, i), (BV, BTS), (0, 1))
p_dz = dz + i_bh * T + i + tl.arange(0, BTS)
b_q = tl.load(p_q, boundary_check=(0, 1))
b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype)
b_dz = tl.load(p_dz, mask=i + tl.arange(0, BTS) < T)
m_s = o_k[:, None] <= o_q[None, :]
b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale
b_s2 = b_s * b_s
b_s = tl.where(m_s, b_s, 0)
b_s2 = tl.where(m_s, b_s2, 0)
b_ds = tl.dot(b_v, b_do, allow_tf32=False)
if i_v == 0:
b_ds += b_dz[None, :]
else:
b_ds = b_ds
b_ds = tl.where(m_s, b_ds, 0) * scale
b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False)
b_dk += tl.dot((2 * b_ds * b_s).to(b_q.dtype), tl.trans(b_q),
allow_tf32=False)
o_q += BTS
p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * s_k_h, (T, K), (
s_k_t, s_k_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * s_v_h, (T, V), (
s_v_t, s_v_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
return
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Matrix Multiplication",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/rebased/parallel.py |
6e8a194d-0aed-429d-8a29-942bafe62aad | tl_evaluate.py | 2986002971/TSP_GA | algorithm/tl_evaluate.py | 930dd889a3b99e18cd9e07c344fc9cbc3ce6d9c8 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE': 32}, num_warps=4),
triton.Config({'BLOCK_SIZE': 64}, num_warps=8), triton.Config({
'BLOCK_SIZE': 128}, num_warps=8), triton.Config({'BLOCK_SIZE': 256},
num_warps=16)], key=['n_paths', 'n_cities'])
@triton.jit
def evaluate_paths_kernel(dist_matrix_ptr, paths_ptr, n_cities: tl.
constexpr, next_power_of_2: tl.constexpr, n_paths: tl.constexpr,
output_ptr, BLOCK_SIZE: tl.constexpr):
"""
评估所有路径的距离,找出最短路径
"""
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_paths
path_start = offsets * n_cities
city_offsets = tl.arange(0, next_power_of_2)
city_mask = city_offsets < n_cities
"""
利用广播机制,一次性加载一组路径的所有城市索引
假设
BLOCK_SIZE = 2
n_cities = 3
则可知
path_start = [0, 3]
则
city_offsets = [0, 1, 2]
path_start[:, None] = [[0],
[3]]
city_offsets[None, :] = [[0, 1, 2]]
加载当前城市的索引,广播运算:
[[0, 1, 2],
[3, 4, 5]]
加载下一个城市的索引(模运算):
[[1, 2, 0],
[4, 5, 3]]
"""
curr_cities = tl.load(paths_ptr + path_start[:, None] + city_offsets[
None, :], mask=mask[:, None] & city_mask[None, :])
next_cities = tl.load(paths_ptr + path_start[:, None] + ((city_offsets +
1) % n_cities)[None, :], mask=mask[:, None] & city_mask[None, :])
dists = tl.load(dist_matrix_ptr + curr_cities * n_cities + next_cities,
mask=mask[:, None])
distances = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
distances = tl.sum(dists, axis=1)
tl.store(output_ptr + offsets, distances, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/2986002971/TSP_GA/blob/930dd889a3b99e18cd9e07c344fc9cbc3ce6d9c8/algorithm/tl_evaluate.py |
705819f8-d177-4232-b148-dca7e6e633ff | paged_attn_v2.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/paged_attn_v2.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _single_query_cached_kv_attention_v2_unroll4(exp_sums, max_logits, out,
q, k_cache, v_cache, head_mapping, scale, block_tables, seq_lens,
partiton_size, max_num_blocks_per_seq, alibi_slopes, stride_qm,
stride_qn, stride_om, stride_on, stride_ok, stride_km, stride_kn,
stride_kk, stride_exp_m, stride_exp_n, BLOCK_SIZE: tl.constexpr,
HEAD_SIZE: tl.constexpr):
seq_idx = tl.program_id(axis=1)
par_idx = tl.program_id(axis=2)
seq_len = tl.load(seq_lens + seq_idx)
if par_idx * partiton_size >= seq_len:
return
num_context_blocks = tl.cdiv(seq_len, BLOCK_SIZE)
num_blocks_per_par = partiton_size // BLOCK_SIZE
start_block_idx = par_idx * num_blocks_per_par
end_block_idx = tl.minimum(start_block_idx + num_blocks_per_par,
num_context_blocks)
head_idx = tl.program_id(axis=0)
kv_head_idx = tl.load(head_mapping + head_idx)
if alibi_slopes is None:
alibi_slope = 0.0
else:
alibi_slope = tl.load(alibi_slopes + head_idx)
block_offs = tl.arange(0, BLOCK_SIZE)
head_size_offs = tl.arange(0, HEAD_SIZE)
q = tl.load(q + seq_idx * stride_qm + head_idx * stride_qn + head_size_offs
)
q = (q * scale).to(tl.float16)
qkv = tl.zeros([BLOCK_SIZE, HEAD_SIZE], dtype=tl.float32)
qk_max = float('-inf')
exp_sum = 0.0
fp16_0 = tl.zeros([1, 1], dtype=k_cache.dtype.element_ty)
base_offs_kv = kv_head_idx * stride_kn + block_offs[:, None
] * stride_kk + head_size_offs[None, :]
block_base_ptrs = block_tables + seq_idx * max_num_blocks_per_seq
for block_idx in range(start_block_idx, end_block_idx, 4):
mask_0 = block_offs[:, None] < seq_len - (block_idx + 0) * BLOCK_SIZE
mask_1 = block_offs[:, None] < seq_len - (block_idx + 1) * BLOCK_SIZE
mask_2 = block_offs[:, None] < seq_len - (block_idx + 2) * BLOCK_SIZE
mask_3 = block_offs[:, None] < seq_len - (block_idx + 3) * BLOCK_SIZE
offs_kv_0 = tl.load(block_base_ptrs + block_idx + 0
) * stride_km + base_offs_kv
offs_kv_1 = tl.load(block_base_ptrs + block_idx + 1
) * stride_km + base_offs_kv
offs_kv_2 = tl.load(block_base_ptrs + block_idx + 2
) * stride_km + base_offs_kv
offs_kv_3 = tl.load(block_base_ptrs + block_idx + 3
) * stride_km + base_offs_kv
k_0 = tl.load(k_cache + offs_kv_0, mask=mask_0, other=fp16_0)
k_1 = tl.load(k_cache + offs_kv_1, mask=mask_1, other=fp16_0)
k_2 = tl.load(k_cache + offs_kv_2, mask=mask_2, other=fp16_0)
k_3 = tl.load(k_cache + offs_kv_3, mask=mask_3, other=fp16_0)
v_0 = tl.load(v_cache + offs_kv_0, mask=mask_0, other=fp16_0)
v_1 = tl.load(v_cache + offs_kv_1, mask=mask_1, other=fp16_0)
v_2 = tl.load(v_cache + offs_kv_2, mask=mask_2, other=fp16_0)
v_3 = tl.load(v_cache + offs_kv_3, mask=mask_3, other=fp16_0)
_qk_0 = tl.sum((q[None, :] * k_0).to(tl.float32), axis=1)
_qk_1 = tl.sum((q[None, :] * k_1).to(tl.float32), axis=1)
_qk_2 = tl.sum((q[None, :] * k_2).to(tl.float32), axis=1)
_qk_3 = tl.sum((q[None, :] * k_3).to(tl.float32), axis=1)
_qk_0 += alibi_slope * ((block_idx + 0) * BLOCK_SIZE + block_offs -
seq_len + 1)
_qk_1 += alibi_slope * ((block_idx + 1) * BLOCK_SIZE + block_offs -
seq_len + 1)
_qk_2 += alibi_slope * ((block_idx + 2) * BLOCK_SIZE + block_offs -
seq_len + 1)
_qk_3 += alibi_slope * ((block_idx + 3) * BLOCK_SIZE + block_offs -
seq_len + 1)
_qk_max = tl.maximum(tl.max(_qk_0, axis=0), qk_max)
_qk_max = tl.maximum(tl.max(_qk_1, axis=0), _qk_max)
_qk_max = tl.maximum(tl.max(_qk_2, axis=0), _qk_max)
_qk_max = tl.maximum(tl.max(_qk_3, axis=0), _qk_max)
qk_0 = tl.where(mask_0, _qk_0[:, None], float('-inf'))
qk_1 = tl.where(mask_1, _qk_1[:, None], float('-inf'))
qk_2 = tl.where(mask_2, _qk_2[:, None], float('-inf'))
qk_3 = tl.where(mask_3, _qk_3[:, None], float('-inf'))
_exp_sum = exp_sum * tl.exp(qk_max - _qk_max) + tl.sum(tl.exp(_qk_0 -
_qk_max), axis=0) + tl.sum(tl.exp(_qk_1 - _qk_max), axis=0
) + tl.sum(tl.exp(_qk_2 - _qk_max), axis=0) + tl.sum(tl.exp(
_qk_3 - _qk_max), axis=0)
qkv = qkv * (exp_sum * tl.exp(qk_max - _qk_max) / _exp_sum) + tl.exp(
qk_0 - _qk_max) / _exp_sum * v_0 + tl.exp(qk_1 - _qk_max
) / _exp_sum * v_1 + tl.exp(qk_2 - _qk_max
) / _exp_sum * v_2 + tl.exp(qk_3 - _qk_max) / _exp_sum * v_3
qk_max = _qk_max
exp_sum = _exp_sum
offs_exp = seq_idx * stride_exp_m + head_idx * stride_exp_n + par_idx
tl.store(exp_sums + offs_exp, exp_sum)
tl.store(max_logits + offs_exp, qk_max)
offs_out = (seq_idx * stride_om + head_idx * stride_on + par_idx *
stride_ok + head_size_offs)
tl.store(out + offs_out, tl.sum(qkv, axis=0))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn_v2.py |
60a6b4c9-ca74-46f7-b620-ed6b512cc8aa | chunk_h_split.py | sustcsonglin/flash-linear-attention | fla/ops/common/chunk_h_split.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not
None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps, num_stages=num_stages) for BK in [32, 64] for BV in [32, 64] for
num_warps in [2, 4, 8] for num_stages in [2, 3]], key=['BT', 'USE_G',
'USE_GK', 'USE_GV'])
@triton.jit
def chunk_fwd_kernel_h_split(k, v, g, gk, gv, hs, hr, h0, ht, offsets,
split_indices, T: tl.constexpr, S: tl.constexpr, H: tl.constexpr, K: tl
.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl
.constexpr, USE_G: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.
constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.
constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
i_k, i_v, i_sh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_ss, i_h = i_sh // H, i_sh % H
if USE_OFFSETS:
i_n, i_s = tl.load(split_indices + i_ss * 2).to(tl.int32), tl.load(
split_indices + i_ss * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NS = tl.cdiv(T, S)
else:
NS = tl.cdiv(T, S)
i_n, i_s = i_ss // NS, i_ss % NS
bos, eos = i_n * T, i_n * T + T
i_nh = i_n * H + i_h
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if i_s == 0:
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_nh * K * V, (K, V), (V, 1), (
i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_h += tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
p_hr = tl.make_block_ptr(hr + i_sh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_hr, b_h.to(p_hr.dtype.element_ty), boundary_check=(0, 1))
for i_t in range(tl.cdiv(i_s * S, BT), tl.cdiv(min(i_s * S + S, T), BT)):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_nh * T * K, (K, T), (1, K), (i_k *
BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_nh * T * V, (T, V), (V, 1), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H *
K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V,
1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
last_idx = min(i_t * BT + BT, T) - 1
if USE_G:
if HEAD_FIRST:
b_g_last = tl.load(g + i_nh * T + last_idx)
p_g = g + i_nh * T + i_t * BT + tl.arange(0, BT)
p_g = tl.max_contiguous(tl.multiple_of(p_g, BT), BT)
else:
b_g_last = tl.load(g + bos * H + last_idx * H + i_h)
p_g = g + bos * H + (i_t * BT + tl.arange(0, BT)) * H + i_h
b_h *= tl.exp(b_g_last)
b_g = tl.load(p_g, mask=i_t * BT + tl.arange(0, BT) < T, other=0.0)
b_v = (b_v * tl.exp(b_g_last - b_g)[:, None]).to(b_v.dtype)
if USE_GK:
if HEAD_FIRST:
p_gk = tl.make_block_ptr(gk + i_nh * T * K, (K, T), (1, K),
(i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = (gk + i_nh * T * K + last_idx * K + i_k * BK +
tl.arange(0, BK))
else:
p_gk = tl.make_block_ptr(gk + (bos * H + i_h) * K, (K, T),
(1, H * K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_gk_last = gk + (bos + last_idx
) * H * K + i_h * K + i_k * BK + tl.arange(0, BK)
p_gk_last = tl.max_contiguous(tl.multiple_of(p_gk_last, BK), BK)
b_gk_last = tl.load(p_gk_last, mask=i_k * BK + tl.arange(0, BK) <
K, other=0.0)
b_h *= tl.exp(b_gk_last)[:, None]
b_gk = tl.load(p_gk, boundary_check=(0, 1))
b_k = (b_k * tl.exp(b_gk_last[:, None] - b_gk)).to(b_k.dtype)
if USE_GV:
if HEAD_FIRST:
p_gv = tl.make_block_ptr(gv + i_nh * T * V, (T, V), (V, 1),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = (gv + i_nh * T * V + last_idx * V + i_v * BV +
tl.arange(0, BV))
else:
p_gv = tl.make_block_ptr(gv + (bos * H + i_h) * V, (T, V),
(H * V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_gv_last = gv + (bos + last_idx
) * H * V + i_h * V + i_v * BV + tl.arange(0, BV)
p_gv_last = tl.max_contiguous(tl.multiple_of(p_gv_last, BV), BV)
b_gv_last = tl.load(p_gv_last, mask=i_v * BV + tl.arange(0, BV) <
V, other=0.0)
b_h *= tl.exp(b_gv_last)[None, :]
b_gv = tl.load(p_gv, boundary_check=(0, 1))
b_v = (b_v * tl.exp(b_gv_last[None, :] - b_gv)).to(b_v.dtype)
b_h += tl.dot(b_k, b_v)
if NS > 1:
p_hs = tl.make_block_ptr(hs + i_sh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_hs, b_h.to(p_hs.dtype.element_ty), boundary_check=(0, 1))
elif STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_nh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access"
],
"Parallelization Strategy": [
"Persistent Kernels"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/common/chunk_h_split.py |
8a0c1d45-0ee4-4b70-a724-b28e532e0284 | lightningAttention2.py | Computational-Machine-Intelligence/LeetDecoding | leetDecoding/methods/lightningAttention2.py | 1b545c2f5bacc155255250d1f70ac9484744559a | 0 | @triton.jit
def _fwd_kernel(Q, K, V, Out, S, b: tl.constexpr, h: tl.constexpr, n: tl.
constexpr, d: tl.constexpr, e: tl.constexpr, BLOCK: tl.constexpr,
NUM_BLOCK: tl.constexpr, BLOCK_MODEL: tl.constexpr):
off_bh = tl.program_id(0)
off_h = off_bh % h
off_e = tl.program_id(1)
qk_offset = off_bh * n * d
v_offset = off_bh * n * e
o_offset = off_bh * n * e
e_offset = off_e * BLOCK_MODEL
Q_block_ptr = Q + qk_offset + tl.arange(0, d)[None, :]
K_trans_block_ptr = K + qk_offset + tl.arange(0, d)[:, None]
V_block_ptr = V + v_offset + e_offset + tl.arange(0, BLOCK_MODEL)[None, :]
O_block_ptr = Out + o_offset + e_offset + tl.arange(0, BLOCK_MODEL)[None, :
]
S_block_ptr = S + off_h
s = tl.load(S_block_ptr)
off_block = tl.arange(0, BLOCK)
q_decay = tl.exp(-s.to(tl.float32) * off_block[:, None])
k_trans_decay = tl.exp(-s.to(tl.float32) * (BLOCK - off_block[None, :]))
block_decay = tl.exp(-s.to(tl.float32) * BLOCK)
index = off_block[:, None] - off_block[None, :]
s_index = s * index
s_index = tl.where(index >= 0, -s_index, float('-inf'))
diag_decay = tl.exp(s_index)
kv = tl.zeros([d, BLOCK_MODEL], dtype=tl.float32)
for i in range(NUM_BLOCK):
q = tl.load(Q_block_ptr + off_block[:, None] * d, mask=off_block[:,
None] < n, other=0.0).to(tl.float32)
k_trans = tl.load(K_trans_block_ptr + off_block[None, :] * d, mask=
off_block[None, :] < n, other=0.0).to(tl.float32)
v = tl.load(V_block_ptr + off_block[:, None] * e, mask=off_block[:,
None] < n, other=0.0).to(tl.float32)
qk = tl.dot(q, k_trans) * diag_decay
o_intra = tl.dot(qk, v)
o_inter = tl.dot(q, kv) * q_decay
o = o_intra + o_inter
tl.store(O_block_ptr + off_block[:, None] * e, o.to(O_block_ptr.
dtype.element_ty), mask=off_block[:, None] < n)
kv = block_decay * kv + tl.dot(k_trans * k_trans_decay, v)
off_block += BLOCK
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication",
"Softmax"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/Computational-Machine-Intelligence/LeetDecoding/blob/1b545c2f5bacc155255250d1f70ac9484744559a/leetDecoding/methods/lightningAttention2.py |
006edbee-aca4-431a-a039-c2ae16158575 | swiglu.py | dame-cell/Triformer | triformer/swiglu.py | 0712537d576166b93fa09aa9509b2661b9ed8a68 | 0 | @triton.jit
def swiglu_forward_optimized(e_ptr, g_ptr, output_ptr, sigmoid_ptr, f_ptr,
e_stride, g_stride, output_stride, sigmoid_stride, f_stride, BLOCK_SIZE:
tl.constexpr, n_cols):
row_idx = tl.program_id(axis=0)
col_offset = tl.arange(0, BLOCK_SIZE)
mask = col_offset < n_cols
e_ptr += row_idx * e_stride
g_ptr += row_idx * g_stride
output_ptr += row_idx * output_stride
sigmoid_ptr += row_idx * sigmoid_stride
f_ptr += row_idx * f_stride
e_row = tl.load(e_ptr + col_offset, mask=mask).to(tl.float32)
g_row = tl.load(g_ptr + col_offset, mask=mask).to(tl.float32)
sigmoid_e_row = tl.sigmoid(e_row)
f_row = e_row * sigmoid_e_row
tl.store(sigmoid_ptr + col_offset, sigmoid_e_row, mask=mask)
tl.store(f_ptr + col_offset, f_row, mask=mask)
output_row = f_row * g_row
tl.store(output_ptr + col_offset, output_row, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Low Latency"
]
} | [
"MIT"
] | https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/swiglu.py |
8edb5183-1d49-41a4-b064-f713cd7c7a3d | test_triton.py | pytorch/xla | test/test_triton.py | 40efdb7b6571ce92797b5ba42619b79c1b147b3e | 0 | @triton.jit
def _attn_fwd(Q, K, V, sm_scale, M, Out, stride_qz, stride_qh, stride_qm,
stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz,
stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om,
stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
HEAD_DIM: tl.constexpr, STAGE: tl.constexpr):
tl.static_assert(BLOCK_N <= HEAD_DIM)
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
off_z = off_hz // H
off_h = off_hz % H
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64
) * stride_qh
Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX,
HEAD_DIM), strides=(stride_qm, stride_qk), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0))
V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX,
HEAD_DIM), strides=(stride_vk, stride_vn), offsets=(0, 0),
block_shape=(BLOCK_N, HEAD_DIM), order=(1, 0))
K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=(HEAD_DIM,
N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape
=(HEAD_DIM, BLOCK_N), order=(0, 1))
O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX,
HEAD_DIM), strides=(stride_om, stride_on), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, HEAD_DIM), order=(1, 0))
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
acc = tl.zeros([BLOCK_M, HEAD_DIM], dtype=tl.float32)
qk_scale = sm_scale
qk_scale *= 1.44269504
q = tl.load(Q_block_ptr)
if STAGE & 1:
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, qk_scale, BLOCK_M, HEAD_DIM, BLOCK_N, 4 -
STAGE, offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5)
if STAGE & 2:
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, qk_scale, BLOCK_M, HEAD_DIM, BLOCK_N, 2,
offs_m, offs_n, N_CTX, V.dtype.element_ty == tl.float8e5)
m_i += tl.math.log2(l_i)
acc = acc / l_i[:, None]
m_ptrs = M + off_hz * N_CTX + offs_m
tl.store(m_ptrs, m_i)
tl.store(O_block_ptr, acc.to(Out.type.element_ty))
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication",
"Softmax"
],
"Memory Access Pattern": [
"Tiled"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/pytorch/xla/blob/40efdb7b6571ce92797b5ba42619b79c1b147b3e/test/test_triton.py |
8c5238cc-c037-4b47-b27f-b517a0dadced | cross_entropy_loss_kernels.py | BobMcDear/attorch | attorch/cross_entropy_loss_kernels.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'feat_dim'])
@triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic,
'BLOCK_SIZE_FEAT': lambda args: next_power_of_2(args['feat_dim'])})
@triton.jit
def cross_entropy_loss_forward_kernel(input_pointer, target_pointer,
weight_pointer, sum_weights_pointer, output_pointer, batch_dim,
feat_dim, input_batch_stride, input_feat_stride, weighted: tl.constexpr,
BLOCK_SIZE_BATCH: tl.constexpr, BLOCK_SIZE_FEAT: tl.constexpr):
"""
Measures the mean cross entropy loss between the input and target,
with optional reweighing of each class.
Args:
input_pointer: Pointer to the input.
The input must be of shape [batch_dim, feat_dim].
target_pointer: Pointer to the target.
The target must be of shape [batch_dim].
weight_pointer: Pointer to an optional class weight vector.
The class weight vector, if provided, must be of shape [feat_dim].
sum_weights_pointer: Pointer to a container the sum of the class weights is written to.
The container must be of shape [batch_dim/BLOCK_SIZE_BATCH].
output_pointer: Pointer to a container the loss is written to.
The container must be of shape [batch_dim/BLOCK_SIZE_BATCH].
batch_dim: Batch dimension.
feat_dim: Dimensionality of the features.
input_batch_stride: Stride necessary to jump one element along the
input's batch dimension.
input_feat_stride: Stride necessary to jump one element along the
input's feature dimension.
weighted: Flag for weighing each class.
BLOCK_SIZE_BATCH: Block size across the batch dimension.
BLOCK_SIZE_FEAT: Block size across the feature dimension.
"""
batch_pid = tl.program_id(axis=0)
batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH
)
feat_offset = tl.arange(0, BLOCK_SIZE_FEAT)
batch_mask = batch_offset < batch_dim
feat_mask = feat_offset < feat_dim
target = tl.load(target_pointer + batch_offset, mask=batch_mask)
pred_pointer = (input_pointer + input_feat_stride * target +
input_batch_stride * batch_offset)
input_pointer += input_batch_stride * batch_offset[:, None
] + input_feat_stride * feat_offset[None, :]
input = tl.load(input_pointer, mask=batch_mask[:, None] & feat_mask[
None, :], other=-float('inf')).to(tl.float32)
pred = tl.load(pred_pointer, mask=batch_mask).to(tl.float32)
mx = tl.max(input, axis=1)
input -= mx[:, None]
loss = tl.log(tl.sum(tl.exp(input), axis=1)) - pred + mx
if weighted:
weight = tl.load(weight_pointer + target, mask=batch_mask).to(tl.
float32)
loss *= weight
tl.store(sum_weights_pointer + batch_pid, tl.sum(weight))
else:
loss /= batch_dim
tl.store(output_pointer + batch_pid, tl.sum(loss))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/cross_entropy_loss_kernels.py |
a74682cf-3a90-4677-b098-f7898cae3980 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/hgrn/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.autotune(configs=[triton.Config({'BD': 32}, num_warps=1), triton.
Config({'BD': 32}, num_warps=2), triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8), triton.Config({'BD': 64},
num_warps=1), triton.Config({'BD': 64}, num_warps=2), triton.Config({
'BD': 64}, num_warps=4), triton.Config({'BD': 64}, num_warps=8), triton
.Config({'BD': 128}, num_warps=1), triton.Config({'BD': 128}, num_warps
=2), triton.Config({'BD': 128}, num_warps=4), triton.Config({'BD': 128},
num_warps=8)], key=['D'])
@triton.jit
def chunk_hgrn_bwd_kernel_h(g, gc, dx, do, T: tl.constexpr, D: tl.constexpr,
BT: tl.constexpr, BD: tl.constexpr):
i_d, i_t, i_b = tl.program_id(0), tl.program_id(1), tl.program_id(2)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
BC = min(BT, T - i_t * BT)
NT = tl.num_programs(1)
p_g = g + (i_b * T + i_t * BT + BC - 1) * D + o_d
p_gc = gc + (i_b * T + i_t * BT + BC - 1) * D + o_d
p_dx = dx + (i_b * T + i_t * BT + BC - 1) * D + o_d
p_do = do + (i_b * T + i_t * BT + BC - 1) * D + o_d
if i_t == NT - 1:
b_gc = tl.zeros([BD], dtype=tl.float32)
else:
b_gc = tl.load(g + (i_b * T + i_t * BT + BT) * D + o_d, mask=mask,
other=0).to(tl.float32)
b_dh = tl.zeros([BD], dtype=tl.float32)
for _ in range(BC - 1, -1, -1):
tl.store(p_gc, b_gc.to(p_gc.dtype.element_ty), mask=mask)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
b_gc = b_gc + b_g
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
p_g -= D
p_gc -= D
p_dx -= D
p_do -= D
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/hgrn/chunk.py |
09e3a5f7-b511-46a3-93e4-ca2098887d89 | triton_chunk.py | NX-AI/xlstm-jax | xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py | 6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7 | 0 | @triton.jit
def chunk_mlstm_bwd_kernel_dqkvif(q, k, v, C, m, m_total, norm, i, f, dh,
dC, dq, dk, dv, s_qk_h, s_qk_t, s_qk_d, s_vh_h, s_vh_t, s_vh_d, s_C_h,
s_C_t, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.
constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.
constexpr, NT: tl.constexpr):
i_k, i_t, i_bC = tl.program_id(0), tl.program_id(1), tl.program_id(2)
n_bh = tl.num_programs(2)
o_i = tl.arange(0, BT)
p_q = tl.make_block_ptr(q + i_bC * s_qk_h, (K, T), (s_qk_d, s_qk_t), (
i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_k = tl.make_block_ptr(k + i_bC * s_qk_h, (T, K), (s_qk_t, s_qk_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_s = tl.dot(b_k, b_q, allow_tf32=False)
p_f = f + i_bC * T + i_t * BT + tl.arange(0, BT)
p_i = i + i_bC * T + i_t * BT + tl.arange(0, BT)
b_f = tl.load(p_f)
b_f_last = tl.load(f + i_bC * T + i_t * BT + BT - 1)
b_m = tl.load(m + i_bC * (NT + 1) + i_t)
b_m_total = tl.load(m_total + i_bC * T + i_t * BT + tl.arange(0, BT))
b_norm = tl.load(norm + i_bC * T + i_t * BT + tl.arange(0, BT))
b_i = tl.load(p_i)
mask = tl.math.exp2(b_i[:, None] + b_f[None, :] - b_f[:, None] -
b_m_total[None, :])
mask = tl.where(o_i[:, None] <= o_i[None, :], mask * scale, 0)
b_s = b_s * mask
b_m_next = tl.load(m + i_bC * (NT + 1) + i_t + 1)
b_dq = tl.zeros([BT, BK], dtype=tl.float32)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
b_ds = tl.zeros([BT, BT], dtype=tl.float32)
for i_v in range(tl.cdiv(V, BV)):
p_v = tl.make_block_ptr(v + i_bC * s_vh_h, (T, V), (s_vh_t, s_vh_d),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_C = tl.make_block_ptr(C + i_bC * s_C_h, (V, NT * K), (1, s_C_t),
(i_v * BV, i_t * K + i_k * BK), (BV, BK), (0, 1))
p_dh = tl.make_block_ptr(dh + i_bC * s_vh_h, (T, V), (s_vh_t,
s_vh_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dC = tl.make_block_ptr(dC + i_bC * s_C_h, (NT * K, V), (s_C_t, 1),
(i_t * K + i_k * BK, i_v * BV), (BK, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (i_k * n_bh + i_bC) * s_vh_h, (T, V),
(s_vh_t, s_vh_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_dh = tl.load(p_dh, boundary_check=(0, 1))
b_C = tl.load(p_C, boundary_check=(0, 1))
b_dC = tl.load(p_dC, boundary_check=(0, 1))
b_ds += tl.dot(b_dh, tl.trans(b_v), allow_tf32=False)
b_dq += tl.dot(b_dh, b_C, allow_tf32=False) * scale
b_dk += tl.dot(b_v, tl.trans(b_dC), allow_tf32=False)
b_dv = tl.dot(b_k, b_dC, allow_tf32=False) * tl.math.exp2(b_i - b_f +
b_f_last - b_m_next)[:, None] + tl.dot(b_s.to(b_q.dtype) /
b_norm[None, :], b_dh, allow_tf32=False)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
b_dq = b_dq * tl.math.exp2(b_f + b_m - b_m_total)[:, None] / b_norm[:, None
]
b_dk = b_dk * tl.math.exp2(b_i - b_f + b_f_last - b_m_next)[:, None]
b_ds = b_ds * tl.trans(mask)
b_ds = b_ds.to(b_k.dtype)
b_dq += tl.dot(b_ds, b_k, allow_tf32=False) / b_norm[:, None]
b_dk += tl.trans(tl.dot(b_q / b_norm[None, :], b_ds, allow_tf32=False))
p_dq = tl.make_block_ptr(dq + i_bC * s_qk_h, (T, K), (s_qk_t, s_qk_d),
(i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_dk = tl.make_block_ptr(dk + i_bC * s_qk_h, (T, K), (s_qk_t, s_qk_d),
(i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Recurrent Neural Networks"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache",
"BSD"
] | https://github.com/NX-AI/xlstm-jax/blob/6615e620ba4ecdbe4fd9cc4e9a5a313b133e84a7/xlstm_jax/models/xlstm_pytorch/blocks/mlstm/backend/triton_chunk.py |
b533c264-f2a6-46f8-ac1f-f1b856309aba | wy_fast.py | sustcsonglin/flash-linear-attention | fla/ops/gated_delta_rule/wy_fast.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=num_warps) for
num_warps in [2, 4, 8]], key=['BK'])
@triton.jit
def fwd_prepare_wy_repr_kernel_chunk32(k, g, beta, Aw, Au, offsets, indices,
T: tl.constexpr, K: tl.constexpr, H: tl.constexpr, BT: tl.constexpr, BK:
tl.constexpr, BC: tl.constexpr, USE_OFFSETS: tl.constexpr, HEAD_FIRST:
tl.constexpr):
i_t, i_bh = tl.program_id(0), tl.program_id(1)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
b_Aw = tl.zeros([BC, BC], dtype=tl.float32)
if HEAD_FIRST:
p_beta = tl.make_block_ptr(beta + i_bh * T, (T,), (1,), (i_t * BT,),
(BT,), (0,))
else:
p_beta = tl.make_block_ptr(beta + bos * H + i_h, (T,), (H,), (i_t *
BT,), (BT,), (0,))
b_beta = tl.load(p_beta, boundary_check=(0,))
for i_k in range(tl.cdiv(K, BK)):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_kb = (b_k * b_beta[:, None]).to(b_k.dtype)
b_Aw += tl.dot(b_kb, tl.trans(b_k))
b_Aw = -tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :],
b_Aw, 0)
if HEAD_FIRST:
p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,
), (0,))
else:
p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,),
(BT,), (0,))
b_g = tl.load(p_g, boundary_check=(0,))
b_Au = b_Aw * tl.exp(b_g[:, None] - b_g[None, :])
for i in range(1, BC):
mask = tl.arange(0, BC) == i
b_aw = tl.sum(tl.where(mask[:, None], b_Aw, 0), 0)
b_au = tl.sum(tl.where(mask[:, None], b_Au, 0), 0)
b_aw = b_aw + tl.sum(b_aw[:, None] * b_Aw, 0) * (tl.arange(0, BC) < i)
b_au = b_au + tl.sum(b_au[:, None] * b_Au, 0) * (tl.arange(0, BC) < i)
b_Aw = tl.where(mask[:, None], b_aw, b_Aw)
b_Au = tl.where(mask[:, None], b_au, b_Au)
b_Aw += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
b_Au += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
if HEAD_FIRST:
p_Aw = tl.make_block_ptr(Aw + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT, 0), (BC, BC), (1, 0))
p_Au = tl.make_block_ptr(Au + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT, 0), (BC, BC), (1, 0))
else:
p_Aw = tl.make_block_ptr(Aw + (bos * H + i_h) * BT, (T, BT), (H *
BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
p_Au = tl.make_block_ptr(Au + (bos * H + i_h) * BT, (T, BT), (H *
BT, 1), (i_t * BT, 0), (BC, BC), (1, 0))
tl.store(p_Aw, b_Aw.to(p_Aw.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_Au, b_Au.to(p_Au.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings",
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gated_delta_rule/wy_fast.py |
d7b0c935-63df-4ee8-a4db-e04227fcfa37 | shape.py | 2niuhe/triton_utils | src/triton_utils/shape.py | 6184906ac3b86dac3ccbfac128ec393ccecde5df | 0 | @triton.jit
def load_1d(ptr, sz: tl.constexpr, n, max, stride=1):
"""Chunk 1d vector (defined by ptr) into 1d grid, where each chunk has size sz.
Load the nth chunk. Ie, load [n*sz,...,(n+1)*sz-1]."""
offs = get_1d_offest(sz, n)
mask = get_1d_mask(offs, max)
return tl.load(ptr + offs, mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Low Latency"
]
} | [
"Apache"
] | https://github.com/2niuhe/triton_utils/blob/6184906ac3b86dac3ccbfac128ec393ccecde5df/src/triton_utils/shape.py |
abd8d704-a5d9-4edd-8154-cd775adf20b5 | fused_chunk.py | sustcsonglin/flash-linear-attention | fla/ops/gla/fused_chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def bwd_inner_chunk(q, k, g, dA, dq, dk, s_k_h, s_k_t, s_k_d, T: tl.
constexpr, K: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr):
i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
p_g = tl.make_block_ptr(g + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
mask = i_k * BK + tl.arange(0, BK) < K
o_i = tl.arange(0, BT)
p_q = q + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK)
p_dq = dq + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK)
p_gq = g + i_bh * s_k_h + i_k * BK + i_t * BT * K + tl.arange(0, BK)
p_dA = dA + i_bh * (tl.cdiv(T, BT) * BT * BT) + i_t * BT * BT + tl.arange(
0, BT)
b_dk = tl.zeros([BT, BK], dtype=tl.float32)
for i in range(BT):
_q = tl.load(p_q, mask=mask, other=0)
gq = tl.load(p_gq, mask=mask, other=0).to(tl.float32)
score = tl.exp(gq[None, :] - b_g)
score = tl.where(o_i[:, None] <= i, score, 0)
_dA = tl.load(p_dA)
_dA = tl.where(o_i <= i, _dA, 0)
b_dk += _dA[:, None] * score * _q[None, :]
b_dq = tl.sum(_dA[:, None] * score * b_k, axis=0)
tl.store(p_dq, b_dq, mask=mask)
p_q += K
p_dq += K
p_gq += K
p_dA += BT
p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT, i_k * BK), (BT, BK), (1, 0))
tl.store(p_dk, b_dk.to(dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/gla/fused_chunk.py |
dfffff6c-5718-4d9e-8554-1123df93f9ca | ln_linear_triton_2.py | ethansmith2000/fused-layer-norm | ln_linear_triton_2.py | 84fe243a829364acdcfd7cd70b699db04838af0f | 0 | @triton.jit
def _layer_norm_bwd_dx_fused(DX, DY, DSc, DSh, Y, Sc, Sh, Mean, Rstd, Lock,
stride, N, GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
row = tl.program_id(0)
cols = tl.arange(0, BLOCK_SIZE_N)
mask = cols < N
Y += row * stride
DY += row * stride
DX += row * stride
lock_id = row % GROUP_SIZE_M
Lock += lock_id
Count = Lock + GROUP_SIZE_M
DSc = DSc + lock_id * N + cols
DSh = DSh + lock_id * N + cols
y = tl.load(Y + cols, mask=mask, other=0).to(tl.float32)
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
sc = tl.load(Sc + cols, mask=mask).to(tl.float32)
sh = tl.load(Sh + cols, mask=mask).to(tl.float32)
mean = tl.load(Mean + row)
rstd = tl.load(Rstd + row)
xhat = (y - sh) / sc
scdy = sc * dy
xhat = tl.where(mask, xhat, 0.0)
scdy = tl.where(mask, scdy, 0.0)
c1 = tl.sum(xhat * scdy, axis=0) / N
c2 = tl.sum(scdy, axis=0) / N
dx = (scdy - (xhat * c1 + c2)) * rstd
tl.store(DX + cols, dx, mask=mask)
partial_dsc = (dy * xhat).to(sc.dtype)
partial_dsh = dy.to(sc.dtype)
while tl.atomic_cas(Lock, 0, 1) == 1:
pass
count = tl.load(Count)
if count == 0:
tl.atomic_xchg(Count, 1)
else:
partial_dsc += tl.load(DSc, mask=mask)
partial_dsh += tl.load(DSh, mask=mask)
tl.store(DSc, partial_dsc, mask=mask)
tl.store(DSh, partial_dsh, mask=mask)
tl.atomic_xchg(Lock, 0)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization",
"Backpropagation"
],
"Memory Access Pattern": [
"Blocked Access",
"Shared Memory Intensive"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/ethansmith2000/fused-layer-norm/blob/84fe243a829364acdcfd7cd70b699db04838af0f/ln_linear_triton_2.py |
0556ec3b-dfff-4fcf-bfe4-7f2f435207f6 | test_sampler.py | Coco58323/vllm_blend | tests/kernels/test_sampler.py | 1fe36887b3c8402d71d119f6a2ff545c2fffff4d | 0 | @triton.jit
def _uniform_to_exponential_kernel(input, output, n: tl.constexpr):
idx = tl.arange(0, n)
x = tl.load(input + idx)
y = _uniform_to_exponential(x)
tl.store(output + idx, y)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Low Latency"
]
} | [
"Apache"
] | https://github.com/Coco58323/vllm_blend/blob/1fe36887b3c8402d71d119f6a2ff545c2fffff4d/tests/kernels/test_sampler.py |
88444d28-55e3-434c-8f2a-ca5d9b2c5a02 | triton_conv3d.py | l1351868270/implicit_gemm.triton | triton_conv3d.py | 64eb8548ccf4576883c928f6315be8b24680a455 | 0 | @triton.autotune(configs=get_autotune_config(), key=['N', 'C', 'D', 'H',
'W', 'K', 'D_out', 'H_out', 'W_out', 'T', 'R', 'S', 'stride_d',
'stride_h', 'stride_w', 'pad_d', 'pad_h', 'pad_w', 'dila_d', 'dila_h',
'dila_w'])
@triton.jit
def conv3d_kernel(x_ptr, w_ptr, y_ptr, N, C, D, H, W, K, D_out, H_out,
W_out, T, R, S, stride_d, stride_h, stride_w, pad_d, pad_h, pad_w,
dila_d, dila_h, dila_w, GEMM_M, GEMM_N, GEMM_K, BLOCK_SIZE_M: tl.
constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(GEMM_M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(GEMM_N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % num_pid_in_group % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
gemm_i = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % GEMM_M
gemm_j = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % GEMM_N
n = gemm_i // (D_out * H_out * W_out)
ndhw_residual = gemm_i % (D_out * H_out * W_out)
d_out = ndhw_residual // (H_out * W_out)
dhw_residual = ndhw_residual % (H_out * W_out)
h_out = dhw_residual // W_out
w_out = dhw_residual % W_out
k = gemm_j
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for idx_k in range(0, tl.cdiv(GEMM_K, BLOCK_SIZE_K)):
gemm_k = idx_k * BLOCK_SIZE_K + tl.arange(0, BLOCK_SIZE_K)
t = gemm_k // (R * S * C)
trsc_residual = gemm_k % (R * S * C)
r = trsc_residual // (S * C)
rsc_residual = gemm_k % (S * C)
s = rsc_residual // C
c = rsc_residual % C
d = d_out[:, None] * stride_d + t[None, :] * dila_d - pad_d
h = h_out[:, None] * stride_h + r[None, :] * dila_h - pad_h
w = w_out[:, None] * stride_w + s[None, :] * dila_w - pad_w
mask_x = (d >= 0) & (d < D) & (h >= 0) & (h < H) & (w >= 0) & (w < W)
mask_w = (t < T) & (r < R) & (s < S) & (c < C)
offs_x = n[:, None
] * D * H * W * C + d * H * W * C + h * W * C + w * C + c
offs_w = k[None, :] * T * R * S * C + t[:, None] * R * S * C + r[:,
None] * S * C + s[:, None] * C + c[:, None]
x_ptrs = x_ptr + offs_x
w_ptrs = w_ptr + offs_w
x_data = tl.load(x_ptrs, mask=mask_x, other=0.0)
w_data = tl.load(w_ptrs, mask=mask_w[:, None], other=0.0)
accumulator = tl.dot(x_data, w_data, accumulator)
c_data = accumulator.to(tl.float16)
offs_y = gemm_i[:, None] * GEMM_N + gemm_j[None, :]
mask_y = (gemm_i[:, None] < GEMM_M) & (gemm_j[None, :] < GEMM_N)
y_ptrs = y_ptr + offs_y
tl.store(y_ptrs, c_data, mask=mask_y)
| {
"Data Type": [
"fp16"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access",
"Blocked Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/l1351868270/implicit_gemm.triton/blob/64eb8548ccf4576883c928f6315be8b24680a455/triton_conv3d.py |
0cdc9206-f8ac-4983-a3c9-9a7b7091b772 | chunk_fuse.py | elephantmipt/rebased_minimal | flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py | e7b945509972fab9f9c1c7be431abf7d6bf62c95 | 0 | @triton.jit
def chunk_abc_fwd_kernel_o(p, v, o, rv, cv, pv, s_qk_h, s_qk_t, s_qk_d,
s_sk_h, s_sk_t, s_sk_m, T, BT: tl.constexpr, BM: tl.constexpr, BV: tl.
constexpr, DM: tl.constexpr, DV: tl.constexpr, NT: tl.constexpr):
i_v, i_m, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
n_bh = tl.num_programs(2)
p_p = tl.make_block_ptr(p + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m), (
0, i_m * BM), (BT, BM), (1, 0))
p_v = tl.make_block_ptr(v + i_bh * s_qk_h, (T, DV), (s_qk_t, s_qk_d), (
0, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + (i_m * n_bh + i_bh) * s_qk_h, (T, DV), (
s_qk_t, s_qk_d), (0, i_v * BV), (BT, BV), (1, 0))
p_rv = tl.make_block_ptr(rv + i_bh * s_sk_t * NT, (NT * DM,), (s_sk_m,),
(i_m * BM,), (BM,), (0,))
p_cv = tl.make_block_ptr(cv + i_bh * s_sk_h, (DM, T), (s_sk_m, s_sk_t),
(i_m * BM, 0), (BM, BT), (0, 1))
p_pv = tl.make_block_ptr(pv + i_bh * s_sk_h, (T, DM), (s_sk_t, s_sk_m),
(0, i_m * BM), (BT, BM), (1, 0))
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
b_hv = tl.zeros([BM, BV], dtype=tl.float32)
for _ in range(NT):
b_p = tl.load(p_p, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
b_rv = tl.load(p_rv, boundary_check=(0,))
b_cv = tl.load(p_cv, boundary_check=(0, 1))
b_pv = tl.load(p_pv, boundary_check=(0, 1))
b_p = b_p * b_pv
b_inter = tl.dot((b_p * b_rv[None, :]).to(b_v.dtype), b_hv.to(b_v.
dtype), allow_tf32=False)
b_intra = tl.where(m_s, tl.dot(b_p.to(b_v.dtype), b_cv, allow_tf32=
False), 0)
b_intra = tl.dot(b_intra.to(b_v.dtype), b_v, allow_tf32=False)
b_o = b_inter + b_intra
b_hv = b_hv * b_rv[:, None] + tl.dot(b_cv, b_v, allow_tf32=False)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
p_p = tl.advance(p_p, (BT, 0))
p_v = tl.advance(p_v, (BT, 0))
p_o = tl.advance(p_o, (BT, 0))
p_rv = tl.advance(p_rv, (DM,))
p_cv = tl.advance(p_cv, (0, BT))
p_pv = tl.advance(p_pv, (BT, 0))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/elephantmipt/rebased_minimal/blob/e7b945509972fab9f9c1c7be431abf7d6bf62c95/flash_linear_attention/fla/ops/triton/abc/chunk_fuse.py |
aa3dc7ca-31b5-4d4d-864c-523094a3cabe | blocksparse_logsumexp.py | kimiasa/Experiments | src/models/attention/blocksparse_logsumexp.py | c4e73bfefd8290695ec52b6386b6b81838ca94a1 | 0 | @triton.heuristics({'num_warps': lambda *args, **meta: num_warps(args[3] *
meta['BLOCK'])})
@triton.heuristics({'TN': lambda *args, **meta: next_power_of_2(args[3] *
meta['BLOCK'])})
@triton.jit
def _forward(X, OUT, LUT, sizemax, stride_zx, stride_zout, stride_hout, **meta
):
TN = meta['TN']
BLOCK = meta['BLOCK']
pidhm = tl.program_id(0)
pidz = tl.program_id(1)
rxm = pidhm % BLOCK
rbm = pidhm // BLOCK
rxn = tl.arange(0, TN) % BLOCK
rbn = tl.arange(0, TN) // BLOCK
header = LUT + rbm * 2
size = tl.load(header + 0)
offset = tl.load(header + 1)
check = rbn < size
rbmn = tl.where(check, rbn, size - 1)
blockid = tl.load(LUT + offset + rbmn * 4 + 0)
rowid = tl.load(LUT + offset + rbmn * 4 + 2)
headid = tl.load(LUT + offset + rbmn * 4 + 3)
px = X + pidz * stride_zx + blockid * BLOCK * BLOCK + rxm * BLOCK + rxn
x = tl.load(px, mask=check, other=-float('inf'))
x = x.to(tl.float32)
c = tl.max(x, axis=0)
out = tl.log(tl.sum(tl.exp(x - c), axis=0)) + c
pout = (OUT + pidz * stride_zout + headid * stride_hout + rowid * BLOCK +
rxm)
tl.store(pout, out)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/kimiasa/Experiments/blob/c4e73bfefd8290695ec52b6386b6b81838ca94a1/src/models/attention/blocksparse_logsumexp.py |
090c7a0b-2d5b-41b2-ae7d-fd6bf3dd7f24 | 06-fused-attention.py | 2lambda123/triton | python/tutorials/06-fused-attention.py | 09e27725b89043a07f49c440db6a9aedcfba8432 | 0 | @triton.jit
def _fwd_kernel(Q, K, V, sm_scale, L, Out, stride_qz, stride_qh, stride_qm,
stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz,
stride_vh, stride_vk, stride_vn, stride_oz, stride_oh, stride_om,
stride_on, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.
constexpr, BLOCK_N: tl.constexpr, IS_CAUSAL: tl.constexpr):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
qvk_offset = off_hz * stride_qh
Q_block_ptr = tl.make_block_ptr(base=Q + qvk_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
K_block_ptr = tl.make_block_ptr(base=K + qvk_offset, shape=(
BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0
), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
V_block_ptr = tl.make_block_ptr(base=V + qvk_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0))
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf')
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
qk_scale = sm_scale * 1.44269504
q = tl.load(Q_block_ptr)
q = (q * qk_scale).to(tl.float16)
lo = 0
hi = (start_m + 1) * BLOCK_M if IS_CAUSAL else N_CTX
for start_n in range(lo, hi, BLOCK_N):
k = tl.load(K_block_ptr)
v = tl.load(V_block_ptr)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
if IS_CAUSAL:
qk = tl.where(offs_m[:, None] >= start_n + offs_n[None, :], qk,
float('-inf'))
qk += tl.dot(q, k)
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
acc_scale = l_i * 0 + alpha
acc *= acc_scale[:, None]
acc += tl.dot(p.to(tl.float16), v)
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
acc = acc / l_i[:, None]
l_ptrs = L + off_hz * N_CTX + offs_m
tl.store(l_ptrs, m_i + tl.math.log2(l_i))
O_block_ptr = tl.make_block_ptr(base=Out + qvk_offset, shape=(N_CTX,
BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0))
tl.store(O_block_ptr, acc.to(tl.float16))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Softmax"
],
"Memory Access Pattern": [
"Blocked Access",
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput",
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/2lambda123/triton/blob/09e27725b89043a07f49c440db6a9aedcfba8432/python/tutorials/06-fused-attention.py |
3756e1f0-c01b-4b42-bb9d-de07cfbb77e8 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/simple_gla/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({}, num_warps=4)], key=['BT', 'BK',
'BV'])
@triton.jit
def chunk_simple_gla_fwd_kernel_o(q, k, v, h, g, o, offsets, indices, scale,
T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT:
tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr,
USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_tg = i_t
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
else:
NT = tl.cdiv(T, BT)
i_tg = i_b * NT + i_t
bos, eos = i_b * T, i_b * T + T
o_i = tl.arange(0, BT)
m_s = o_i[:, None] >= o_i[None, :]
b_o = tl.zeros([BT, BV], dtype=tl.float32)
b_s = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + i_bh * T * K, (K, T), (1, K), (i_k *
BK, i_t * BT), (BK, BT), (0, 1))
p_h = tl.make_block_ptr(h + (i_bh * NT + i_t) * K * V, (K, V),
(V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H *
K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_h = tl.make_block_ptr(h + (i_tg * H + i_h) * K * V, (K, V), (
V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_h = tl.load(p_h, boundary_check=(0, 1))
b_o += tl.dot(b_q, b_h, allow_tf32=False)
b_s += tl.dot(b_q, b_k, allow_tf32=False)
if HEAD_FIRST:
p_g = tl.make_block_ptr(g + i_bh * T, (T,), (1,), (i_t * BT,), (BT,
), (0,))
p_v = tl.make_block_ptr(v + i_bh * T * V, (T, V), (V, 1), (i_t * BT,
i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + i_bh * T * V, (T, V), (V, 1), (i_t * BT,
i_v * BV), (BT, BV), (1, 0))
else:
p_g = tl.make_block_ptr(g + bos * H + i_h, (T,), (H,), (i_t * BT,),
(BT,), (0,))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V, 1),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_o = tl.make_block_ptr(o + (bos * H + i_h) * V, (T, V), (H * V, 1),
(i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_g = tl.load(p_g, boundary_check=(0,))
b_o = b_o * tl.exp(b_g)[:, None]
b_s = b_s * tl.exp(b_g[:, None] - b_g[None, :])
b_s = tl.where(m_s, b_s, 0)
b_v = tl.load(p_v, boundary_check=(0, 1))
b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) * scale
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"bf16",
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Quantization"
],
"Memory Access Pattern": [
"Strided Access",
"Blocked Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops",
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/simple_gla/chunk.py |
4fceec9b-8d2a-47cc-a208-fb9e821e4377 | fused_moe_a16w4.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/fused_moe_a16w4.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _fused_moe_kernel_a16w4_perchannel(A, B, C, scale_b_ptr,
zero_points_ptr, topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr,
num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am,
stride_ak, stride_be, stride_bn, stride_bk, stride_cm, stride_cn,
stride_scale_be, stride_scale_bn, stride_scale_bk, stride_zero_points_e,
stride_zero_points_n, stride_zero_points_k, BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M:
tl.constexpr, MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr,
add_zero_points: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % num_pid_in_group % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N * 2) // 2) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_token[:, None] // top_k * stride_am + offs_k[None, :
] * stride_ak)
off_experts = tl.load(expert_ids_ptr + pid_m)
b_ptrs = B + off_experts * stride_be + (offs_k[None, :] * stride_bk +
offs_bn[:, None] * stride_bn)
if add_zero_points:
offs_zero_points = pid_n * BLOCK_SIZE_N * 2 + tl.arange(0, 2 *
BLOCK_SIZE_N)
zero_points_ptrs = (zero_points_ptr + off_experts *
stride_zero_points_e + offs_zero_points)
_ZERO_POINT0 = tl.zeros([1], dtype=zero_points_ptr.dtype.element_ty)
zero_points_vals = tl.load(zero_points_ptrs, mask=offs_zero_points <
2 * N, other=_ZERO_POINT0)
_A0 = tl.zeros([1, 1], dtype=A.dtype.element_ty)
_B0 = tl.zeros([1, 1], dtype=B.dtype.element_ty)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N * 2), dtype=tl.float32)
l_shifter = (1 - tl.arange(0, BLOCK_SIZE_N * 2) % 2) * 4
for k in range(tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K -
k * BLOCK_SIZE_K), other=_A0)
b = tl.load(b_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
other=_B0)
b = (b << l_shifter[:, None]).to(tl.int8).__rshift__(4)
if add_zero_points:
b -= zero_points_vals[:, None]
b = tl.trans(b)
b = b.to(a_ptrs.dtype.element_ty)
accumulator += tl.dot(a, b, out_dtype=tl.float32)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
offs_scale = pid_n * BLOCK_SIZE_N * 2 + tl.arange(0, BLOCK_SIZE_N * 2)
scale_ptrs = (scale_b_ptr + off_experts * stride_scale_be + offs_scale *
stride_scale_bn)
_SCALE0 = tl.zeros([1], dtype=scale_b_ptr.dtype.element_ty)
scales = tl.load(scale_ptrs, mask=offs_scale < 2 * N, other=_SCALE0)
accumulator *= scales[None, :]
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask,
other=0.0)
accumulator = accumulator * moe_weight[:, None]
accumulator = accumulator.to(A.dtype.element_ty)
offs_cn = pid_n * BLOCK_SIZE_N * 2 + tl.arange(0, BLOCK_SIZE_N * 2)
c_ptrs = C + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N * 2)
tl.store(c_ptrs, accumulator, mask=c_mask)
| {
"Data Type": [
"int8",
"bf16",
"fp32"
],
"Functionality": [
"Quantization",
"Top-K Selection",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access",
"Transposed Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/fused_moe_a16w4.py |
a8ad76d1-6af5-4b88-892c-7131230d4b1c | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/retention/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_INITIAL_STATE': lambda args: args['h0'] is not
None, 'STORE_FINAL_STATE': lambda args: args['ht'] is not None,
'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps, num_stages=num_stages) for BK in [32, 64, 128] for BV in [32,
64, 128] for num_warps in [2, 4, 8] for num_stages in [2, 3, 4]], key=[
'BT'])
@triton.jit
def chunk_retention_fwd_kernel_h(k, v, h, h0, ht, offsets, chunk_offsets, T:
tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl
.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.
constexpr, STORE_FINAL_STATE: tl.constexpr, USE_OFFSETS: tl.constexpr,
HEAD_FIRST: tl.constexpr):
i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_n, i_h = i_nh // H, i_nh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
NT = tl.cdiv(T, BT)
boh = tl.load(chunk_offsets + i_n).to(tl.int32)
else:
bos, eos = i_n * T, i_n * T + T
NT = tl.cdiv(T, BT)
boh = i_n * NT
b_b = tl.math.log2(1 - tl.math.exp2(-5 - i_h * 1.0))
o_i = tl.arange(0, BT)
d_b, d_i = tl.math.exp2(BT * b_b), tl.math.exp2((BT - o_i - 1) * b_b)
b_h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = tl.make_block_ptr(h0 + i_nh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32)
for i_t in range(NT):
if HEAD_FIRST:
p_k = tl.make_block_ptr(k + i_nh * T * K, (K, T), (1, K), (i_k *
BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + i_nh * T * V, (T, V), (V, 1), (i_t *
BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + (i_nh * NT + i_t) * K * V, (K, V),
(V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
else:
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (K, T), (1, H *
K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_v = tl.make_block_ptr(v + (bos * H + i_h) * V, (T, V), (H * V,
1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_h = tl.make_block_ptr(h + ((boh + i_t) * H + i_h) * K * V, (K,
V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_v = tl.load(p_v, boundary_check=(0, 1))
if i_t == NT - 1 and T % BT != 0:
d_b = tl.math.exp2(T % BT * b_b)
d_i = tl.math.exp2((T % BT - o_i - 1) * b_b)
b_h = d_b * b_h + tl.dot(b_k, (b_v * d_i[:, None]).to(b_k.dtype),
allow_tf32=False)
if STORE_FINAL_STATE:
p_ht = tl.make_block_ptr(ht + i_nh * K * V, (K, V), (V, 1), (i_k *
BK, i_v * BV), (BK, BV), (1, 0))
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Recurrent Neural Networks"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/retention/chunk.py |
49950adc-5589-4676-af7f-0b95a107d8e9 | dot_triton.py | markdewing/AI_kernels | dot/triton/dot_triton.py | 32b2fe4b1e81cf60a16ef188e37f2d47428ce23d | 0 | @triton.jit
def dot_product_kernel(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl
.constexpr):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
z = x * y
c = tl.sum(z)
tl.atomic_add(output_ptr, c)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/markdewing/AI_kernels/blob/32b2fe4b1e81cf60a16ef188e37f2d47428ce23d/dot/triton/dot_triton.py |
23cd9919-1bc6-4aea-9f69-aad2aa2f2839 | sb_varlen_bwd.py | shawntan/stickbreaking-attention | stickbreaking_attention/sb_varlen/sb_varlen_bwd.py | 8dd32ad5e58f0ee0232fd4782dc53d354ff8d283 | 0 | @triton.jit
def locked_add(Lock_ptr, Count_ptr, A_ptrs, a, B_ptrs, b, N_mask, NO_N_MASK,
D_mask, NO_D_MASK: tl.constexpr):
while tl.atomic_cas(Lock_ptr, 0, 1) == 1:
pass
count = tl.load(Count_ptr, eviction_policy='evict_last')
if NO_D_MASK:
if NO_N_MASK:
if count == 0:
tl.store(Count_ptr, True, eviction_policy='evict_last')
else:
a += tl.load(A_ptrs, eviction_policy='evict_last')
b += tl.load(B_ptrs, eviction_policy='evict_last')
tl.store(A_ptrs, a, eviction_policy='evict_last')
tl.store(B_ptrs, b, eviction_policy='evict_last')
else:
if count == 0:
tl.store(Count_ptr, True, eviction_policy='evict_last')
else:
a += tl.load(A_ptrs, mask=N_mask[:, None], eviction_policy=
'evict_last')
b += tl.load(B_ptrs, mask=N_mask[:, None], eviction_policy=
'evict_last')
tl.store(A_ptrs, a, mask=N_mask[:, None], eviction_policy=
'evict_last')
tl.store(B_ptrs, b, mask=N_mask[:, None], eviction_policy=
'evict_last')
else:
mask = N_mask[:, None] & D_mask[None, :]
if count == 0:
tl.store(Count_ptr, True, eviction_policy='evict_last')
else:
a += tl.load(A_ptrs, mask=mask, eviction_policy='evict_last')
b += tl.load(B_ptrs, mask=mask, eviction_policy='evict_last')
tl.store(A_ptrs, a, mask=mask, eviction_policy='evict_last')
tl.store(B_ptrs, b, mask=mask, eviction_policy='evict_last')
tl.atomic_xchg(Lock_ptr, 0)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Low Latency"
]
} | [
"Apache"
] | https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_bwd.py |
7f7cdfd8-dd2a-4c5f-825b-860f5d4fc16a | y_1.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/direct/y_1.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def first_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
output_stride: tl.constexpr):
block_id = tl.program_id(0)
coord_stride = 3
coord_striding = tl.arange(0, block_size) * coord_stride
coord_row_offset = coord_striding + block_size * coord_stride * block_id
output_striding = tl.arange(0, block_size) * output_stride
output_row_offset = (output_striding + block_size * output_stride *
block_id + col_offset)
g_Y10 = tl.load(sph_grad_ptr + output_row_offset, mask=
output_row_offset < output_numel)
g_Y11 = tl.load(sph_grad_ptr + output_row_offset + 1, mask=
output_row_offset + 1 < output_numel)
g_Y12 = tl.load(sph_grad_ptr + output_row_offset + 2, mask=
output_row_offset + 2 < output_numel)
g_x = tl.load(coord_grad_ptr + coord_row_offset, mask=coord_row_offset <
coord_numel)
g_y = tl.load(coord_grad_ptr + coord_row_offset + 1, mask=
coord_row_offset + 1 < coord_numel)
g_z = tl.load(coord_grad_ptr + coord_row_offset + 2, mask=
coord_row_offset + 2 < coord_numel)
CONST_00 = tl.sqrt(3.0)
g_x += CONST_00 * g_Y10
g_y += CONST_00 * g_Y11
g_z += CONST_00 * g_Y12
tl.store(coord_grad_ptr + coord_row_offset, g_x, mask=coord_row_offset <
coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 1, g_y, mask=
coord_row_offset + 1 < coord_numel)
tl.store(coord_grad_ptr + coord_row_offset + 2, g_z, mask=
coord_row_offset + 2 < coord_numel)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_1.py |
2a143289-7f7a-4301-8cd6-b7852faa3ceb | triton_flash_attention.py | IBM/vllm | vllm/attention/ops/triton_flash_attention.py | 99523dd62be2ecf6c6db15e8133aaaf7855e7e86 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64,
'waves_per_eu': 2, 'PRE_LOAD_V': False}, num_stages=1, num_warps=8),
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'waves_per_eu': 2,
'PRE_LOAD_V': False}, num_stages=1, num_warps=4), triton.Config({
'BLOCK_M': 256, 'BLOCK_N': 128, 'waves_per_eu': 2, 'PRE_LOAD_V': False},
num_stages=1, num_warps=8), triton.Config({'BLOCK_M': 128, 'BLOCK_N':
64, 'waves_per_eu': 1, 'PRE_LOAD_V': False}, num_stages=1, num_warps=4),
triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 3,
'PRE_LOAD_V': True}, num_stages=1, num_warps=4), triton.Config({
'BLOCK_M': 128, 'BLOCK_N': 64, 'waves_per_eu': 3, 'PRE_LOAD_V': False},
num_stages=1, num_warps=4), triton.Config({'BLOCK_M': 64, 'BLOCK_N': 64,
'waves_per_eu': 4, 'PRE_LOAD_V': False}, num_stages=1, num_warps=8),
triton.Config({'BLOCK_M': 32, 'BLOCK_N': 32, 'waves_per_eu': 4,
'PRE_LOAD_V': False}, num_stages=1, num_warps=8), triton.Config({
'BLOCK_M': 16, 'BLOCK_N': 16, 'waves_per_eu': 1, 'PRE_LOAD_V': False},
num_stages=1, num_warps=4)], key=['IS_CAUSAL', 'dropout_p', 'BLOCK_DMODEL']
)
@triton.jit
def attn_fwd(Q, K, V, bias, sm_scale, L, Out, stride_qz, stride_qh,
stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vk, stride_vn, stride_oz, stride_oh,
stride_om, stride_on, stride_bz, stride_bh, stride_bm, stride_bn,
cu_seqlens_q, cu_seqlens_k, dropout_p, philox_seed, philox_offset_base,
encoded_softmax, HQ: tl.constexpr, HK: tl.constexpr,
ACTUAL_BLOCK_DMODEL: tl.constexpr, MAX_SEQLENS_Q: tl.constexpr,
MAX_SEQLENS_K: tl.constexpr, VARLEN: tl.constexpr, IS_CAUSAL: tl.
constexpr, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N:
tl.constexpr, PRE_LOAD_V: tl.constexpr, BIAS_TYPE: tl.constexpr,
ENABLE_DROPOUT: tl.constexpr, RETURN_ENCODED_SOFTMAX: tl.constexpr):
start_m = tl.program_id(0)
off_h_q = tl.program_id(1)
off_z = tl.program_id(2)
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
if VARLEN:
cu_seqlens_q_start = tl.load(cu_seqlens_q + off_z)
cu_seqlens_q_end = tl.load(cu_seqlens_q + off_z + 1)
seqlen_q = cu_seqlens_q_end - cu_seqlens_q_start
if start_m * BLOCK_M > seqlen_q:
return
cu_seqlens_k_start = tl.load(cu_seqlens_k + off_z)
cu_seqlens_k_end = tl.load(cu_seqlens_k + off_z + 1)
seqlen_k = cu_seqlens_k_end - cu_seqlens_k_start
else:
cu_seqlens_q_start = 0
cu_seqlens_k_start = 0
seqlen_q = MAX_SEQLENS_Q
seqlen_k = MAX_SEQLENS_K
n_blocks = cdiv_fn(seqlen_k, BLOCK_N)
if IS_CAUSAL:
n_blocks_seqlen = cdiv_fn((start_m + 1) * BLOCK_M + seqlen_k -
seqlen_q, BLOCK_N)
n_blocks = min(n_blocks, n_blocks_seqlen)
if n_blocks <= 0:
o_offset = (off_z * stride_oz + cu_seqlens_q_start * stride_om +
off_h_q * stride_oh)
O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(
seqlen_q, BLOCK_DMODEL), strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M,
BLOCK_DMODEL), order=(1, 0))
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=Out.type.element_ty)
return
GROUP_SIZE: tl.constexpr = HQ // HK
off_h_k = off_h_q // GROUP_SIZE if GROUP_SIZE != 1 else off_h_q
n_extra_tokens = 0
if seqlen_k < BLOCK_N:
n_extra_tokens = BLOCK_N - seqlen_k
elif seqlen_k % BLOCK_N:
n_extra_tokens = seqlen_k % BLOCK_N
padded_head = ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL
q_offset = (off_z * stride_qz + off_h_q * stride_qh +
cu_seqlens_q_start * stride_qm)
Q_block_ptr = tl.make_block_ptr(base=Q + q_offset, shape=(seqlen_q,
ACTUAL_BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(
start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(
1, 0))
k_offset = (off_z * stride_kz + off_h_k * stride_kh +
cu_seqlens_k_start * stride_kn)
K_block_ptr = tl.make_block_ptr(base=K + k_offset, shape=(
ACTUAL_BLOCK_DMODEL, seqlen_k), strides=(stride_kk, stride_kn),
offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1))
v_offset = (off_z * stride_vz + off_h_k * stride_vh +
cu_seqlens_k_start * stride_vk)
V_block_ptr = tl.make_block_ptr(base=V + v_offset, shape=(seqlen_k,
ACTUAL_BLOCK_DMODEL), strides=(stride_vk, stride_vn), offsets=(0, 0
), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0))
if BIAS_TYPE != 0:
bias_ptr = tl.make_block_ptr(base=bias + off_h_q * stride_bh, shape
=(seqlen_q, seqlen_k), strides=(stride_bm, stride_bn), offsets=
(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_N), order=(
1, 0))
else:
bias_ptr = None
if ENABLE_DROPOUT:
batch_philox_offset = philox_offset_base + (off_z * HQ + off_h_q
) * seqlen_q * seqlen_k
else:
batch_philox_offset = 0
if RETURN_ENCODED_SOFTMAX:
encoded_softmax_block_ptr = tl.make_block_ptr(base=encoded_softmax +
off_h_q * seqlen_q * seqlen_k, shape=(seqlen_q, seqlen_k),
strides=(seqlen_k, 1), offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_N), order=(1, 0))
else:
encoded_softmax_block_ptr = 0
m_i = tl.full([BLOCK_M], float('-inf'), dtype=tl.float32)
l_i = tl.full([BLOCK_M], 1.0, dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
qk_scale = sm_scale * 1.44269504089
q = load_fn(Q_block_ptr, True, padded_head, 'zero')
q = (q * qk_scale).to(Q_block_ptr.type.element_ty)
padded_block_k = n_extra_tokens != 0
is_modulo_mn = not padded_block_k and seqlen_q % BLOCK_M == 0
if IS_CAUSAL:
masked_blocks = BLOCK_M // BLOCK_N + (not is_modulo_mn)
else:
masked_blocks = padded_block_k
masked_blocks = min(masked_blocks, n_blocks)
n_full_blocks = n_blocks - masked_blocks
block_min = 0
block_max = n_blocks * BLOCK_N
if n_full_blocks > 0:
block_max = (n_blocks - masked_blocks) * BLOCK_N
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, seqlen_k, dropout_p, philox_seed,
batch_philox_offset, encoded_softmax_block_ptr, block_min,
block_max, 0, 0, 0, bias_ptr, False, BLOCK_M, BLOCK_DMODEL,
BLOCK_N, offs_m, offs_n, PRE_LOAD_V, False, ENABLE_DROPOUT,
RETURN_ENCODED_SOFTMAX, padded_head)
block_min = block_max
block_max = n_blocks * BLOCK_N
tl.debug_barrier()
if masked_blocks > 0:
offs_n_causal = offs_n + (seqlen_q - seqlen_k) if IS_CAUSAL else 0
K_block_ptr = tl.advance(K_block_ptr, (0, n_full_blocks * BLOCK_N))
V_block_ptr = tl.advance(V_block_ptr, (n_full_blocks * BLOCK_N, 0))
if bias_ptr is not None:
bias_ptr = tl.advance(bias_ptr, (0, n_full_blocks * BLOCK_N))
if RETURN_ENCODED_SOFTMAX:
encoded_softmax_block_ptr = tl.advance(encoded_softmax_block_ptr,
(0, n_full_blocks))
acc, l_i, m_i = _attn_fwd_inner(acc, l_i, m_i, q, K_block_ptr,
V_block_ptr, start_m, seqlen_k, dropout_p, philox_seed,
batch_philox_offset, encoded_softmax_block_ptr, block_min,
block_max, offs_n_causal, masked_blocks, n_extra_tokens,
bias_ptr, IS_CAUSAL, BLOCK_M, BLOCK_DMODEL, BLOCK_N, offs_m,
offs_n, PRE_LOAD_V, True, ENABLE_DROPOUT,
RETURN_ENCODED_SOFTMAX, padded_head)
acc = acc / l_i[:, None]
if ENABLE_DROPOUT:
acc = acc / (1 - dropout_p)
end_m_idx = (start_m + 1) * BLOCK_M
start_m_idx = start_m * BLOCK_M
causal_start_idx = seqlen_q - seqlen_k
acc = acc.to(Out.type.element_ty)
if IS_CAUSAL:
if causal_start_idx > start_m_idx and causal_start_idx < end_m_idx:
out_mask_boundary = tl.full((BLOCK_DMODEL,), causal_start_idx,
dtype=tl.int32)
mask_m_offsets = start_m_idx + tl.arange(0, BLOCK_M)
out_ptrs_mask = mask_m_offsets[:, None] >= out_mask_boundary[
None, :]
z = 0.0
acc = tl.where(out_ptrs_mask, acc, z.to(acc.type.element_ty))
o_offset = (off_z * stride_oz + cu_seqlens_q_start * stride_om +
off_h_q * stride_oh)
O_block_ptr = tl.make_block_ptr(base=Out + o_offset, shape=(seqlen_q,
ACTUAL_BLOCK_DMODEL), strides=(stride_om, stride_on), offsets=(
start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(
1, 0))
tl.store(O_block_ptr, acc, boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/IBM/vllm/blob/99523dd62be2ecf6c6db15e8133aaaf7855e7e86/vllm/attention/ops/triton_flash_attention.py |
06dc48e5-e255-4b73-9331-51d5c246c0ca | dropout_rng.py | ROCm/aotriton | tritonsrc/dropout_rng.py | 016f733e8ff746450e066f78bed68709ccd93e60 | 0 | @triton.jit
def debug_fill_dropout_rng(R, stride_rz, stride_rh, stride_rm, stride_rn,
seqlen_q, seqlen_k, philox_seed, philox_offset_base, BLOCK_M: tl.
constexpr, BLOCK_N: tl.constexpr):
start_m = tl.program_id(0)
off_h = tl.program_id(1)
off_z = tl.program_id(2)
d_offset = off_h * stride_rh + off_z * stride_rz
num_h = tl.num_programs(1)
off_zh = off_z * num_h + off_h * 1
batch_philox_offset = philox_offset_base + off_zh * seqlen_q * seqlen_k
R_block_ptr = tl.make_block_ptr(base=R + d_offset, shape=(seqlen_q,
seqlen_k), strides=(stride_rm, stride_rn), offsets=(start_m *
BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_N), order=(1, 0))
for start_n in range(0, seqlen_k, BLOCK_N):
philox_offset = (batch_philox_offset + start_m * BLOCK_M * seqlen_k +
start_n)
rng = dropout_rng(philox_seed, philox_offset, BLOCK_M, BLOCK_N,
seqlen_k)
tl.store(R_block_ptr, rng.to(R_block_ptr.type.element_ty),
boundary_check=(0, 1))
R_block_ptr = tl.advance(R_block_ptr, (0, BLOCK_N))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/ROCm/aotriton/blob/016f733e8ff746450e066f78bed68709ccd93e60/tritonsrc/dropout_rng.py |
2fcb6b4b-d342-4810-8e57-787ada488273 | mhmoe_bwd.py | dtadpole/triton-playground | mhmoe_bwd.py | 2d317976722d63080133b1bf88b1f0cdec98f831 | 0 | @triton.jit
def _mlp_wide_kernel_bwd_dx(pid_h, pid_b, x_ptr, w1_ptr, w2_ptr, o_ptr,
dx_ptr, dw1_ptr, dw2_ptr, do_ptr, H, B, D: tl.constexpr, E, stride_xb,
stride_xd, stride_w1d, stride_w1e, stride_w2e, stride_w2d, stride_ob,
stride_od, stride_dxb, stride_dxd, stride_dw1d, stride_dw1e,
stride_dw2e, stride_dw2d, stride_dob, stride_dod, BLOCK_SIZE_B: tl.
constexpr, BLOCK_SIZE_E: tl.constexpr, ACTIVATION: tl.constexpr):
"""Kernel for computing the mlp_bwd_dx
Z = X @ W1, H = f(Z), O = H @ W2
- X has shape (B, D)
- W1 has shape (D, E)
- W2 has shape (E, D)
- O has shape (B, D)
- dX has shape (B, D)
- dW1 has shape (D, E)
- dW2 has shape (E, D)
- dO has shape (B, D)
"""
TARGET_TYPE = x_ptr.type.element_ty
offs_b = tl.arange(0, BLOCK_SIZE_B)
offs_d = tl.arange(0, D)
offs_e = tl.arange(0, BLOCK_SIZE_E)
x_ptrs = x_ptr + ((pid_h * B + pid_b * BLOCK_SIZE_B + offs_b[:, None]) *
stride_xb + offs_d[None, :] * stride_xd)
x_mask = (offs_b[:, None] < B - pid_b * BLOCK_SIZE_B) & (offs_d[None, :
] < D)
do_ptrs = do_ptr + ((pid_h * B + pid_b * BLOCK_SIZE_B + offs_b[:, None]
) * stride_dob + offs_d[None, :] * stride_dod)
do_mask = (offs_b[:, None] < B - pid_b * BLOCK_SIZE_B) & (offs_d[None,
:] < D)
w1_ptrs = w1_ptr + ((pid_h * D + offs_d[:, None]) * stride_w1d + offs_e
[None, :] * stride_w1e)
w2_ptrs = w2_ptr + ((pid_h * E + offs_e[:, None]) * stride_w2e + offs_d
[None, :] * stride_w2d)
dw1_ptrs = dw1_ptr + ((pid_h * D + offs_d[:, None]) * stride_dw1d +
offs_e[None, :] * stride_dw1e)
dw2_ptrs = dw2_ptr + ((pid_h * E + offs_e[:, None]) * stride_dw2e +
offs_d[None, :] * stride_dw2d)
x = tl.load(x_ptrs, mask=x_mask, other=0.0)
do = tl.load(do_ptrs, mask=do_mask, other=0.0)
dx = tl.zeros((BLOCK_SIZE_B, D), dtype=tl.float32)
for e in range(0, tl.cdiv(E, BLOCK_SIZE_E)):
w1_mask = (offs_d[:, None] < D) & (offs_e[None, :] < E - e *
BLOCK_SIZE_E)
w2_mask = (offs_e[:, None] < E - e * BLOCK_SIZE_E) & (offs_d[None,
:] < D)
w1 = tl.load(w1_ptrs, mask=w1_mask, other=0.0)
w2 = tl.load(w2_ptrs, mask=w2_mask, other=0.0)
z = tl.dot(x, w1, out_dtype=tl.float32)
if ACTIVATION == 'leaky_relu':
h = leaky_relu(z).to(TARGET_TYPE)
else:
h = z.to(TARGET_TYPE)
dh = tl.dot(do, tl.trans(w2), out_dtype=tl.float32)
if ACTIVATION == 'leaky_relu':
dz = (dh * d_leacky_relu_inv_backward(z)).to(TARGET_TYPE)
else:
dz = dh.to(TARGET_TYPE)
dx += tl.dot(dz, tl.trans(w1), out_dtype=tl.float32)
w1_ptrs += BLOCK_SIZE_E * stride_w1e
w2_ptrs += BLOCK_SIZE_E * stride_w2e
dw1_ptrs += BLOCK_SIZE_E * stride_dw1e
dw2_ptrs += BLOCK_SIZE_E * stride_dw2e
return dx
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Backpropagation",
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/dtadpole/triton-playground/blob/2d317976722d63080133b1bf88b1f0cdec98f831/mhmoe_bwd.py |
c290ae95-140d-49ca-bf58-a327ab667240 | smem_triton_matmul.py | WesKwong/gemm-example-cuda2py | triton_mm/smem_triton_matmul.py | 901c4488a79b6d71f7a4dc15dcdfc9546b879a23 | 0 | @triton.jit
def smem_triton_matmul(c_ptr, a_ptr, b_ptr, M, N, K, stride_am, stride_ak,
stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M:
tl.constexpr):
raw_pid_m = tl.program_id(0)
raw_pid_n = tl.program_id(1)
num_program_m = tl.num_programs(0)
num_program_n = tl.num_programs(1)
group_id = raw_pid_m // GROUP_SIZE_M
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_program_m - first_pid_m, GROUP_SIZE_M)
linear_pid_in_group = (raw_pid_m - first_pid_m) * num_program_n + raw_pid_n
pid_m = first_pid_m + linear_pid_in_group % group_size_m
pid_n = linear_pid_in_group // group_size_m
offset_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offset_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offset_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offset_am[:, None] * stride_am + offset_k[None, :] *
stride_ak)
b_ptrs = b_ptr + (offset_k[:, None] * stride_bk + offset_bn[None, :] *
stride_bn)
res = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=offset_k[None, :] < K - k * BLOCK_SIZE_K,
other=0.0)
b = tl.load(b_ptrs, mask=offset_k[None, :] < K - k * BLOCK_SIZE_K,
other=0.0)
res += tl.dot(a, b, allow_tf32=False)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
c_ptrs = c_ptr + (offset_am[:, None] * stride_cm + offset_bn[None, :] *
stride_cn)
c_mask = (offset_am[:, None] < M) & (offset_bn[None, :] < N)
tl.store(c_ptrs, res, mask=c_mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Tiled",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings",
"Persistent Kernels"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/WesKwong/gemm-example-cuda2py/blob/901c4488a79b6d71f7a4dc15dcdfc9546b879a23/triton_mm/smem_triton_matmul.py |
60cd7074-f5da-4801-bf48-534ee82c78c0 | copy.py | chengzeyi/stable-fast | src/sfast/triton/ops/copy.py | 3a6f35c7045f8f6812515957ca62ef37260ff080 | 0 | @eval(
"""triton.heuristics({
'BLOCK_M': lambda kwargs: min(4096, triton.next_power_of_2(kwargs['size_inp_0'])),
'BATCH_STRIDE_INP_IS_1': lambda kwargs: kwargs['batch_stride_inp'] == 1,
'STRIDE_INP_0_IS_1': lambda kwargs: kwargs['stride_inp_0'] == 1,
'BATCH_STRIDE_OUT_IS_1': lambda kwargs: kwargs['batch_stride_out'] == 1,
'STRIDE_OUT_0_IS_1': lambda kwargs: kwargs['stride_out_0'] == 1,
})"""
)
@eval(
"""triton.heuristics({
'num_warps': lambda kwargs: max(1, min(16, kwargs['BLOCK_M'] // 32)),
})"""
)
@triton.jit
def copy_2d_kernel(output_ptr, input_ptr, bs, size_inp_0, batch_stride_inp,
stride_inp_0, batch_stride_out, stride_out_0, BATCH_STRIDE_INP_IS_1: tl
.constexpr, STRIDE_INP_0_IS_1: tl.constexpr, BATCH_STRIDE_OUT_IS_1: tl.
constexpr, STRIDE_OUT_0_IS_1: tl.constexpr, BLOCK_M: tl.constexpr):
pid = tl.program_id(0)
pid_batch = tl.program_id(1)
grid_m = tl.cdiv(size_inp_0, BLOCK_M)
pid_m = pid
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
A = input_ptr + (1 if BATCH_STRIDE_INP_IS_1 else batch_stride_inp
) * pid_batch + rm * (1 if STRIDE_INP_0_IS_1 else stride_inp_0)
B = output_ptr + (1 if BATCH_STRIDE_OUT_IS_1 else batch_stride_out
) * pid_batch + rm * (1 if STRIDE_OUT_0_IS_1 else stride_out_0)
mask = rm < size_inp_0
a = tl.load(A, mask=mask)
tl.store(B, a, mask=mask)
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/chengzeyi/stable-fast/blob/3a6f35c7045f8f6812515957ca62ef37260ff080/src/sfast/triton/ops/copy.py |
52b19649-738b-4b5d-b8bd-609bca2dcadc | preprocess_cumsum_gk.py | berlino/seq_icl | src/models/sequence/rnn/gla_triton/inter_chunk_contribution/preprocess_cumsum_gk.py | 9b9223d15348b5a415fb453ed988ed5f7ab9fbdc | 0 | @triton.jit
def stable_log_sigmoid(x):
max_value = tl.where(x < 0, x, 0)
abs_value = tl.where(x > 0, x, -x)
return max_value - tl.log(1 + tl.exp(-abs_value))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"Apache"
] | https://github.com/berlino/seq_icl/blob/9b9223d15348b5a415fb453ed988ed5f7ab9fbdc/src/models/sequence/rnn/gla_triton/inter_chunk_contribution/preprocess_cumsum_gk.py |
1da3bedd-0ea9-4a1e-b787-49c4893f39be | fused_moe_a16w4.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/fused_moe_a16w4.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _fused_moe_kernel_a16w4_subchannel(A, B, C, scale_b_ptr,
zero_points_ptr, topk_weights_ptr, sorted_token_ids_ptr, expert_ids_ptr,
num_tokens_post_padded_ptr, N, K, EM, num_valid_tokens, stride_am,
stride_ak, stride_be, stride_bn, stride_bk, stride_cm, stride_cn,
stride_scale_be, stride_scale_bn, stride_scale_bk, stride_zero_points_e,
stride_zero_points_n, stride_zero_points_k, BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, GROUP_SIZE_M:
tl.constexpr, MUL_ROUTED_WEIGHT: tl.constexpr, top_k: tl.constexpr,
add_zero_points: tl.constexpr):
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(EM, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % num_pid_in_group % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
num_tokens_post_padded = tl.load(num_tokens_post_padded_ptr)
if pid_m * BLOCK_SIZE_M >= num_tokens_post_padded:
return
offs_token_id = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_token = tl.load(sorted_token_ids_ptr + offs_token_id)
token_mask = offs_token < num_valid_tokens
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N * 2) // 2) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_token[:, None] // top_k * stride_am + offs_k[None, :
] * stride_ak)
off_experts = tl.load(expert_ids_ptr + pid_m)
b_ptrs = B + off_experts * stride_be + (offs_k[:, None] * stride_bk +
offs_bn[None, :] * stride_bn)
if add_zero_points:
offs_zp_n = (pid_n * BLOCK_SIZE_N * 2 + tl.arange(0, 2 * BLOCK_SIZE_N)
) % (2 * N)
_ZERO_POINT0 = tl.zeros([1], dtype=zero_points_ptr.dtype.element_ty)
_A0 = tl.zeros([1, 1], dtype=A.dtype.element_ty)
_B0 = tl.zeros([1, 1], dtype=B.dtype.element_ty)
_SCALE0 = tl.zeros([1], dtype=scale_b_ptr.dtype.element_ty)
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N * 2), dtype=tl.float32)
l_shifter = (1 - tl.arange(0, BLOCK_SIZE_N * 2) % 2) * 4
for k in range(tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=token_mask[:, None] & (offs_k[None, :] < K -
k * BLOCK_SIZE_K), other=_A0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
other=_B0)
b = (b << l_shifter[None, :]).to(tl.int8).__rshift__(4)
if add_zero_points:
zp_ptrs = (zero_points_ptr + off_experts * stride_zero_points_e +
offs_zp_n * stride_zero_points_n + k)
zero_points_vals = tl.load(zp_ptrs)
b = b - zero_points_vals[None, :]
offs_scale_n = pid_n * BLOCK_SIZE_N * 2 + tl.arange(0, 2 * BLOCK_SIZE_N
)
scale_b_ptrs = (scale_b_ptr + off_experts * stride_scale_be +
offs_scale_n * stride_scale_bn + k)
scales_val = tl.load(scale_b_ptrs, mask=offs_scale_n < 2 * N, other
=_SCALE0)
b = b * scales_val[None, :]
accumulator += tl.dot(a, b, out_dtype=tl.float32)
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if MUL_ROUTED_WEIGHT:
moe_weight = tl.load(topk_weights_ptr + offs_token, mask=token_mask,
other=0.0)
accumulator = accumulator * moe_weight[:, None]
accumulator = accumulator.to(A.dtype.element_ty)
offs_cn = pid_n * BLOCK_SIZE_N * 2 + tl.arange(0, BLOCK_SIZE_N * 2)
c_ptrs = C + stride_cm * offs_token[:, None] + stride_cn * offs_cn[None, :]
c_mask = token_mask[:, None] & (offs_cn[None, :] < N * 2)
tl.store(c_ptrs, accumulator, mask=c_mask)
| {
"Data Type": [
"int8"
],
"Functionality": [
"Matrix Multiplication",
"Attention Mechanisms"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": [
"High Throughput"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/fused_moe_a16w4.py |
72381e7b-efbe-42ec-bcc7-02dd2d8675ed | y_0.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/direct/y_0.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def zeroth_order_bwd(coord_ptr: tl.tensor, coord_grad_ptr: tl.tensor,
sph_grad_ptr: tl.tensor, block_size: tl.constexpr, coord_numel: tl.
constexpr, output_numel: tl.constexpr, col_offset: tl.constexpr,
output_stride: tl.constexpr):
block_id = tl.program_id(0)
| {
"Data Type": [],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/direct/y_0.py |
96d3e5c8-a2b2-4caf-a2d2-f0b0671b6574 | quantize.py | pytorch/FBGEMM | fbgemm_gpu/fbgemm_gpu/triton/quantize.py | fe980ab54a6e28818d81c8694b6564e7f804418b | 0 | @triton.jit
def _compute_exp(group_max, rounding_mode, rand_bits, MBITS: tl.constexpr):
"""Compute shared exponent of group using specified rounding mode.
Args:
group_max (Tensor): Group of values to compute exponent of.
rounding_mode (int or RoundingMode): Which rounding mode to use.
rand_bits (int): Random integer values used for stochastic rounding.
mbits (int): Number of mantissa bits in target mx4 format.
Returns:
Tensor: Shared exponent of group.
"""
MBITS_FP32: tl.constexpr = 23
M_ROUND: tl.constexpr = (1 << MBITS_FP32 - MBITS - 1) - 1
RAND_MASK: tl.constexpr = (1 << MBITS_FP32 - MBITS) - 1
if rounding_mode == 0:
return tl.floor(tl.log2(group_max) + 0.5)
if rounding_mode == 1:
return _floor_log2(group_max)
elif rounding_mode == 2:
group_max = group_max.to(tl.int32, bitcast=True) + M_ROUND
return _floor_log2(group_max)
elif rounding_mode == 3:
group_max = group_max.to(tl.int32, bitcast=True) + (RAND_MASK &
rand_bits)
return _floor_log2(group_max)
else:
return tl.ceil(tl.log2(group_max))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"BSD",
"MIT"
] | https://github.com/pytorch/FBGEMM/blob/fe980ab54a6e28818d81c8694b6564e7f804418b/fbgemm_gpu/fbgemm_gpu/triton/quantize.py |
30aea82c-19d0-417f-9cf2-abd252b59a7d | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/abc/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_abc_bwd_kernel_intra_V(q, k, z, dA, dq, dk, s_k_h, s_k_t, s_k_d,
T: tl.constexpr, K: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr,
BK: tl.constexpr, NC: tl.constexpr):
i_k, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
i_t, i_i = i_c // NC, i_c % NC
p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_zn = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), ((i_t *
BT + i_i * BC) * K + i_k * BK,), (BK,), (0,))
b_zn = tl.load(p_zn, boundary_check=(0,))
b_z = tl.load(p_z, boundary_check=(0, 1))
b_zq = tl.exp(b_zn[None, :] - b_z)
b_dq = tl.zeros([BC, BK], dtype=tl.float32)
for i_j in range(0, i_i):
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT + i_i * BC, i_j * BC), (BC, BC), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_kz = tl.exp(b_k - b_zn[None, :]).to(b_k.dtype)
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dq += tl.dot(b_dA, b_kz, allow_tf32=False)
b_dq *= b_zq
o_i = tl.arange(0, BC)
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC + tl.arange(0, BC)
) * BT + i_i * BC
m_dA = i_t * BT + i_i * BC + tl.arange(0, BC) < T
for j in range(0, BC):
p_kj = tl.make_block_ptr(k + i_bh * s_k_h, (T * K,), (1,), ((i_t *
BT + i_i * BC + j) * K + i_k * BK,), (BK,), (0,))
b_dA = tl.load(dA + o_dA + j, mask=m_dA, other=0)
b_kj = tl.load(p_kj, boundary_check=(0,)).to(tl.float32)
m_i = o_i[:, None] >= j
b_dq += tl.where(m_i, b_dA[:, None] * tl.exp(b_kj[None, :] - b_z), 0.0)
p_dq = tl.make_block_ptr(dq + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1))
tl.debug_barrier()
p_k = tl.make_block_ptr(k + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (i_t *
BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
p_zn = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (s_k_d,), ((i_t *
BT + i_i * BC + BC - 1) * K + i_k * BK,), (BK,), (0,))
b_zn = tl.load(p_zn, boundary_check=(0,))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_kz = tl.exp(b_k - b_zn[None, :])
b_dk = tl.zeros([BC, BK], dtype=tl.float32)
for i_j in range(i_i + 1, NC):
p_q = tl.make_block_ptr(q + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_z = tl.make_block_ptr(z + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_j * BC, i_k * BK), (BC, BK), (1, 0))
p_dA = tl.make_block_ptr(dA + i_bh * T * BT, (T, BT), (BT, 1), (i_t *
BT + i_j * BC, i_i * BC), (BC, BC), (1, 0))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_z = tl.load(p_z, boundary_check=(0, 1))
b_qz = (b_q * tl.exp(b_zn[None, :] - b_z)).to(b_q.dtype)
b_dA = tl.load(p_dA, boundary_check=(0, 1))
b_dk += tl.dot(tl.trans(b_dA), b_qz, allow_tf32=False)
b_dk *= b_kz
o_dA = i_bh * T * BT + (i_t * BT + i_i * BC) * BT + i_i * BC + tl.arange(
0, BC)
for j in range(0, BC):
p_qj = tl.make_block_ptr(q + i_bh * s_k_h, (T * K,), (1,), ((i_t *
BT + i_i * BC + j) * K + i_k * BK,), (BK,), (0,))
p_zj = tl.make_block_ptr(z + i_bh * s_k_h, (T * K,), (1,), ((i_t *
BT + i_i * BC + j) * K + i_k * BK,), (BK,), (0,))
b_dA = tl.load(dA + o_dA + j * BT, mask=i_t * BT + i_i * BC + j < T,
other=0)
b_qj = tl.load(p_qj, boundary_check=(0,)).to(tl.float32)
b_zj = tl.load(p_zj, boundary_check=(0,)).to(tl.float32)
m_i = o_i[:, None] <= j
b_dk += tl.where(m_i, b_dA[:, None] * b_qj[None, :] * tl.exp(b_k -
b_zj[None, :]), 0.0)
p_dk = tl.make_block_ptr(dk + i_bh * s_k_h, (T, K), (s_k_t, s_k_d), (
i_t * BT + i_i * BC, i_k * BK), (BC, BK), (1, 0))
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/abc/chunk.py |
0e7cd672-1e72-48ba-b85f-b3d9b3529a63 | rtn_kernel.py | ArthurinRUC/libquant | libquant/triton/rtn_kernel.py | f2a42a78a96e867862d24d931b70500332ece5cb | 0 | @triton.jit
def quant_rtn_triton(mat: tl.tensor, scale: tl.tensor, zero_point: tl.
tensor, quant_dim: int, nbits: int, per_channel: bool, per_tensor: bool,
use_zero_point: bool, group_size: int, scale_dtype: tl.dtype,
zero_dtype: tl.dtype, quant_dtype: tl.dtype, device: tl.dtype) ->tl.Tuple[
tl.tensor, tl.tensor]:
origin_shape = mat.shape
if group_size is None:
group_size = origin_shape[-1]
mat = mat.reshape(-1, group_size)
if use_zero_point:
qmin, qmax = 0, 2 ** nbits - 1
xmin, xmax = tl.min(mat, axis=quant_dim), tl.max(mat, axis=quant_dim)
scale = (xmax - xmin).div(qmax).clamp(min=1e-05).to(scale_dtype).to(
device)
zero_point = (-xmin / scale).to(zero_dtype).to(device)
if not per_channel and not per_tensor:
scale = scale.unsqueeze(1)
zero_point = zero_point.unsqueeze(1)
x = mat.div(scale).add(zero_point).round().clamp(qmin, qmax).to(
quant_dtype).to(device)
else:
qmin, qmax = -2 ** (nbits - 1), 2 ** (nbits - 1) - 1
xabsmax = tl.max(tl.abs(mat), axis=quant_dim)
scale = xabsmax.div(qmax).clamp(min=1e-05).to(scale_dtype).to(device)
if not per_channel and not per_tensor:
scale = scale.unsqueeze(1)
x = mat.div(scale).round().clamp(qmin, qmax).to(quant_dtype).to(device)
return x.reshape(origin_shape), scale
| {
"Data Type": [
"fp32",
"int8"
],
"Functionality": [
"Quantization"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/ArthurinRUC/libquant/blob/f2a42a78a96e867862d24d931b70500332ece5cb/libquant/triton/rtn_kernel.py |
d19a6587-227e-47d3-82af-4397af3e33c3 | glu_kernels.py | BobMcDear/attorch | attorch/glu_kernels.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.autotune(configs=element_wise_kernel_configs(), key=['size'])
@triton.jit
def glu_backward_kernel(output_grad_pointer, input1_pointer, input2_pointer,
input1_grad_pointer, input2_grad_pointer, size, param, act_func: tl.
constexpr, BLOCK_SIZE: tl.constexpr):
"""
Calculates the input gradient of the gated linear unit.
Args:
output_grad_pointer: Pointer to the unit's output gradients.
The output gradients must be contiguous and contain size elements.
input1_pointer: Pointer to the first half of the input that was gated.
The first half must be contiguous and contain size elements.
input2_pointer: Pointer to the second half of the input that was gated.
The second half must be contiguous and contain size elements.
input1_grad_pointer: Pointer to a container the first half's gradients are written to.
The container must be contiguous and contain size elements.
input2_grad_pointer: Pointer to a container the second half's gradients are written to.
The container must be contiguous and contain size elements.
size: Number of elements in each half of the input.
param: Parameter in the case of parameterized activation functions.
act_func: Name of activation function to apply.
Options are 'sigmoid', 'tanh', 'relu', 'gelu', 'silu',
'relu6', 'hardsigmoid', 'hardswish', 'selu', 'mish', and 'leaky_relu'.
BLOCK_SIZE: Block size.
"""
pid = tl.program_id(axis=0)
offset = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offset < size
output_grad = tl.load(output_grad_pointer + offset, mask=mask)
input1 = tl.load(input1_pointer + offset, mask=mask)
input2 = tl.load(input2_pointer + offset, mask=mask)
input1_grad = output_grad * apply_act_func(input2, None, None, None,
param, act_func, False)
input2_grad = output_grad * input1 * apply_act_func_grad(1, input2,
None, None, None, param, act_func, False)
tl.store(input1_grad_pointer + offset, input1_grad, mask=mask)
tl.store(input2_grad_pointer + offset, input2_grad, mask=mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [],
"Parallelization Strategy": [],
"Performance Objective": []
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/glu_kernels.py |
14d6b032-07e3-479f-afba-018a5bb6e96f | modulation.py | ai-compiler-study/triton-kernels | triton_kernels/ops/modulation.py | 2308e5e9d965059fe2d19b4d535debac4970b69e | 0 | @triton.jit
def triton_modulation_scale_shift(x_ptr, modulation_ptr, output_ptr,
batch_size, head_size, modulation_size, is_mod1, XBLOCK: tl.constexpr):
pid = tl.program_id(0)
xoffset = pid * XBLOCK + tl.arange(0, XBLOCK)[:]
batch_idx = xoffset // batch_size
head_dim_idx = xoffset % head_size
modulation_offset = head_dim_idx + modulation_size * batch_idx
x = tl.load(x_ptr + xoffset, None)
if is_mod1:
shift = tl.load(modulation_ptr + (modulation_offset + head_size * 0
), None, eviction_policy='evict_last')
scale = tl.load(modulation_ptr + (modulation_offset + head_size * 1
), None, eviction_policy='evict_last')
else:
shift = tl.load(modulation_ptr + (modulation_offset + head_size * 3
), None, eviction_policy='evict_last')
scale = tl.load(modulation_ptr + (modulation_offset + head_size * 4
), None, eviction_policy='evict_last')
output = (scale + 1.0) * x + shift
tl.store(output_ptr + xoffset, output, None)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Elementwise Operations",
"Normalization"
],
"Memory Access Pattern": [
"Coalesced",
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Low Latency"
]
} | [
"MIT"
] | https://github.com/ai-compiler-study/triton-kernels/blob/2308e5e9d965059fe2d19b4d535debac4970b69e/triton_kernels/ops/modulation.py |
f5fa9512-df93-43c8-be9e-b332055b0317 | sampling.py | falkaer/multi-scale-music | seq/sampling.py | a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d | 0 | @triton.jit
def _logsumexp(X, OUT, xm_stride, xn_stride, out_stride, N, BLOCK_N: tl.
constexpr):
rm = tl.program_id(0)
alpha = tl.zeros((1,), tl.float32) + -float('inf')
res = tl.zeros((1,), tl.float32)
for bn in range(0, N, BLOCK_N):
rn = bn + tl.arange(0, BLOCK_N)
Xmn = X + rm * xm_stride + rn * xn_stride
x = tl.load(Xmn, mask=rn < N, other=-float('inf'))
c = tl.max(x, axis=0)
res = tl.where(c > alpha, res * tl.exp(alpha - c), res)
alpha = tl.where(c > alpha, c, alpha)
res += tl.sum(tl.exp(x - alpha), axis=0)
out = tl.log(res) + alpha
rm = tl.program_id(0) + tl.arange(0, 1)
OUT = OUT + rm * out_stride
tl.store(OUT, out)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/falkaer/multi-scale-music/blob/a7794ddfb3bbd95b70acf3fe72a08d8a1d47564d/seq/sampling.py |
c95d09f9-2474-4dce-8b77-528236596854 | softmax.py | dame-cell/Triformer | triformer/softmax.py | 0712537d576166b93fa09aa9509b2661b9ed8a68 | 0 | @triton.jit
def softmax_kernel_backward(grad_out_ptr, probs_ptr, grad_in_ptr,
grad_stride, probs_stride, out_stride, seq_len, BLOCK_SIZE: tl.
constexpr, num_warps: tl.constexpr):
batch_idx = tl.program_id(0)
probs_start_ptr = probs_ptr + batch_idx * probs_stride
grad_start_ptr = grad_in_ptr + batch_idx * grad_stride
pos_offsets = tl.arange(0, BLOCK_SIZE)
probs_ptrs = probs_start_ptr + pos_offsets
grad_ptrs = grad_start_ptr + pos_offsets
valid_mask = pos_offsets < seq_len
probs_vals = tl.load(probs_ptrs, mask=valid_mask, other=0.0)
grad_vals = tl.load(grad_ptrs, mask=valid_mask, other=0.0)
grad_times_probs = probs_vals * grad_vals
final_grad = grad_times_probs - probs_vals * tl.sum(grad_times_probs,
axis=0)
out_start_ptr = grad_out_ptr + batch_idx * out_stride
out_ptrs = out_start_ptr + pos_offsets
tl.store(out_ptrs, final_grad, mask=valid_mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Softmax",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/dame-cell/Triformer/blob/0712537d576166b93fa09aa9509b2661b9ed8a68/triformer/softmax.py |
3f008594-2d5f-43ff-9467-54adf244ea10 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/hgrn/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def chunk_hgrn_bwd_kernel_o(g, gc, o, dx, dg, s_b, s_t, s_d, T: tl.
constexpr, D: tl.constexpr, BT: tl.constexpr, BD: tl.constexpr):
i_d, i_b = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
for i_t in range(tl.cdiv(T, BT) - 1, -1, -1):
p_g = tl.make_block_ptr(g + i_b * s_b, (T, D), (s_t, s_d), (i_t *
BT, i_d * BD), (BT, BD), (1, 0))
p_gc = tl.make_block_ptr(gc + i_b * s_b, (T, D), (s_t, s_d), (i_t *
BT, i_d * BD), (BT, BD), (1, 0))
p_o = tl.make_block_ptr(o + i_b * s_b, (T, D), (s_t, s_d), (i_t *
BT - 1, i_d * BD), (BT, BD), (1, 0))
p_dx = tl.make_block_ptr(dx + i_b * s_b, (T, D), (s_t, s_d), (i_t *
BT, i_d * BD), (BT, BD), (1, 0))
p_dg = tl.make_block_ptr(dg + i_b * s_b, (T, D), (s_t, s_d), (i_t *
BT, i_d * BD), (BT, BD), (1, 0))
mask_t = mask & ((i_t + 1) * BT < T)
b_ht = tl.load(dx + i_b * T * D + (i_t + 1) * BT * D + o_d, mask=
mask_t, other=0).to(tl.float32)
b_g = tl.load(p_g, boundary_check=(0, 1)).to(tl.float32)
b_gc = tl.load(p_gc, boundary_check=(0, 1)).to(tl.float32)
b_o = tl.load(p_o, boundary_check=(0, 1)).to(tl.float32)
b_dx = tl.load(p_dx, boundary_check=(0, 1)).to(tl.float32)
b_dx = b_dx + tl.exp(b_gc) * b_ht[None, :]
b_dg = b_o * b_dx * tl.exp(b_g)
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), boundary_check=(0, 1))
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation",
"Recurrent Neural Networks"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/hgrn/chunk.py |
943d5d1b-75b2-49d6-8775-f5cd28ee9e60 | cumsum.py | sustcsonglin/flash-linear-attention | fla/ops/utils/cumsum.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BT': 16}, num_warps=2), triton.
Config({'BT': 32}, num_warps=4), triton.Config({'BT': 32}, num_warps=2),
triton.Config({'BT': 64}, num_warps=8), triton.Config({'BT': 64},
num_warps=4)], key=[])
@triton.jit
def chunk_global_cumsum_scalar_kernel(s, o, offsets, T: tl.constexpr, H: tl
.constexpr, BT: tl.constexpr, HEAD_FIRST: tl.constexpr, USE_OFFSETS: tl
.constexpr):
i_bh = tl.program_id(0)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
bos, eos = tl.load(offsets + i_b).to(tl.int32), tl.load(offsets +
i_b + 1).to(tl.int32)
else:
bos, eos = i_b * T, i_b * T + T
T = eos - bos
b_z = tl.zeros([], dtype=tl.float32)
for i_t in range(tl.cdiv(T, BT)):
if HEAD_FIRST:
p_s = tl.make_block_ptr(s + i_bh * T, (T,), (1,), (i_t * BT,),
(BT,), (0,))
p_o = tl.make_block_ptr(o + i_bh * T, (T,), (1,), (i_t * BT,),
(BT,), (0,))
else:
p_s = tl.make_block_ptr(s + bos * H + i_h, (T,), (H,), (i_t *
BT,), (BT,), (0,))
p_o = tl.make_block_ptr(o + bos * H + i_h, (T,), (H,), (i_t *
BT,), (BT,), (0,))
b_s = tl.load(p_s, boundary_check=(0,)).to(tl.float32)
b_o = tl.cumsum(b_s, axis=0) + b_z[None]
b_z += tl.sum(b_s, axis=0)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0,))
| {
"Data Type": [
"fp32"
],
"Functionality": [],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/utils/cumsum.py |
d4e4674a-0ac2-49d8-bf16-e5324188a47b | triton_ops.py | huyz2023/2by4-pretrain | sparse/triton_ops.py | 9e330125dea71e5a3dee235f4efb8869f9e4cdd0 | 0 | @triton.jit
def _soft_threshold24_triton(dense_ptr, sparse_ptr, mask_ptr,
dense_row_stride, sparse_row_stride, mask_row_stride, dense_col_stride,
sparse_col_stride, mask_col_stride, m, k, BLOCK_SIZE: tl.constexpr,
ARRAY_LAYOUT: tl.constexpr):
if ARRAY_LAYOUT == 'row':
row_idx = tl.program_id(0)
col_idx = tl.program_id(1) * 4 * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE
) * 4
mask = col_idx < k
elif ARRAY_LAYOUT == 'col':
row_idx = tl.arange(0, BLOCK_SIZE) + tl.program_id(0) * BLOCK_SIZE
col_idx = tl.program_id(1) * 4
mask = row_idx < m
dense_40 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx +
0) * dense_col_stride, mask=mask)
dense_41 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx +
1) * dense_col_stride, mask=mask)
dense_42 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx +
2) * dense_col_stride, mask=mask)
dense_43 = tl.load(dense_ptr + row_idx * dense_row_stride + (col_idx +
3) * dense_col_stride, mask=mask)
dense_40, dense_41, dense_42, dense_43, m0, m1, m2, m3 = _soft_threshold(
dense_40, dense_41, dense_42, dense_43)
tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 0) *
sparse_col_stride, dense_40, mask=mask & m0)
tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 1) *
sparse_col_stride, dense_41, mask=mask & m1)
tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 2) *
sparse_col_stride, dense_42, mask=mask & m2)
tl.store(sparse_ptr + row_idx * sparse_row_stride + (col_idx + 3) *
sparse_col_stride, dense_43, mask=mask & m3)
tl.store(mask_ptr + row_idx * mask_row_stride + (col_idx + 0) *
mask_col_stride, m0, mask=mask & m0)
tl.store(mask_ptr + row_idx * mask_row_stride + (col_idx + 1) *
mask_col_stride, m1, mask=mask & m1)
tl.store(mask_ptr + row_idx * mask_row_stride + (col_idx + 2) *
mask_col_stride, m2, mask=mask & m2)
tl.store(mask_ptr + row_idx * mask_row_stride + (col_idx + 3) *
mask_col_stride, m3, mask=mask & m3)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions",
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"BSD"
] | https://github.com/huyz2023/2by4-pretrain/blob/9e330125dea71e5a3dee235f4efb8869f9e4cdd0/sparse/triton_ops.py |
05304651-6ea3-4b33-a724-8242f59e5ec0 | mamba_ssm.py | Charlie-XIAO/sparse-vllm | vllm/model_executor/layers/mamba/ops/mamba_ssm.py | d228909a30b0c245c35417fb7d2acdf9a3690042 | 0 | @triton.jit
def softplus(dt):
dt = tl.where(dt <= 20.0, tl.math.log1p(tl.exp(dt)), dt)
return dt
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Activation Functions"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"Apache"
] | https://github.com/Charlie-XIAO/sparse-vllm/blob/d228909a30b0c245c35417fb7d2acdf9a3690042/vllm/model_executor/layers/mamba/ops/mamba_ssm.py |
a24a6db0-d013-472f-aa2f-4b7f7c770497 | causal_product_bwd.py | calclavia/Triton-Transformer | ttx/attention/causal_product_bwd.py | d1d1e5b5651cf7959866b0198d90a665e1f45354 | 0 | @triton.jit
def causal_product_bwd_kernel(q_ptr, k_ptr, v_ptr, grad_out, grad_Q_ptr,
grad_K_ptr, grad_V_ptr, batch, length, dim, vdim, **meta):
BLOCK_SIZE = meta['BLOCK_SIZE']
pid = tl.program_id(axis=0)
state = tl.zeros((BLOCK_SIZE, BLOCK_SIZE), dtype=tl.float32)
cur_qk_pos = pid * matrix_size * dim
cur_v_pos = pid * matrix_size * vdim
dim_ptrs = tl.arange(0, BLOCK_SIZE)
qkmask = dim_ptrs < dim
vmask = dim_ptrs < vdim
for _ in range(0, length, 1):
qk_row_offsets = cur_qk_pos + dim_ptrs
v_row_offsets = cur_v_pos + dim_ptrs
k = tl.load(k_ptr + qk_row_offsets, mask=qkmask, other=0)
v = tl.load(v_ptr + v_row_offsets, mask=vmask, other=0)
context = tl.dot(k[:, None], v[None, :])
state += context
g = tl.load(grad_out + v_row_offsets, mask=vmask, other=0)
grad_q = tl.dot(state, g[:, None])
tl.store(grad_Q_ptr + qk_row_offsets[:, None], grad_q, mask=qkmask[
:, None])
cur_qk_pos += dim
cur_v_pos += vdim
"""
state *= 0
for _ in range(0, length, 1):
# Move back one row
cur_pos -= dim
# Offset for a single row in Q, K, V
row_offsets = cur_pos + dim_ptrs
# Load the current row of Q, K, V vectors. All are vectors of shape [dim]
q = tl.load(q_ptr + row_offsets, mask=mask, other=0)
k = tl.load(k_ptr + row_offsets, mask=mask, other=0)
v = tl.load(v_ptr + row_offsets, mask=vmask, other=0)
# Load gradient
g = tl.load(grad_out + row_offsets, mask=vmask, other=0)
# Compute context [D, M] matrix from [D, 1] x [1, M]
context = tl.dot(q[:, None], g[None, :])
# state += context
# Compute gradients [1, D] x [D, M] => [1, M]
grad_v = tl.dot(k[None, :], context)
grad_v = tl.reshape(grad_v, (meta['BLOCK_SIZE'],))
# grad_v = tl.dot(k[None, :], state)
# Enabling the follownig leads to a hang
# grad_k = tl.dot(state, v[:, None])
# print(grad_v.shape)
# print(grad_k.shape)
# Store the result of this row
# tl.store(grad_V_ptr + row_offsets[None,
# :], grad_v, mask=vmask[None, :])
tl.store(grad_V_ptr + row_offsets, grad_v, mask=vmask)
# tl.store(grad_K_ptr + row_offsets[:, None], grad_k, mask=mask[:, None])
"""
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms",
"Backpropagation"
],
"Memory Access Pattern": [
"Tiled",
"Strided Access"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound",
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/calclavia/Triton-Transformer/blob/d1d1e5b5651cf7959866b0198d90a665e1f45354/ttx/attention/causal_product_bwd.py |
e1a91636-50d2-4089-a5a6-18102bcab37e | k_layer_norm.py | cpuhrsch/torchfused | torchfused/triton/k_layer_norm.py | 6c40ed160dcecbe7825f268f7c86bccd359e0ebf | 0 | @triton.jit
def _layer_norm_fw(X, Y, W, B, M, V, stride, N, eps, **META):
"""
Fused layernorm kernel over a 3d tensor.
The layer norm is applied over the last dimension.
Compute
y = (x - E(x))/(sqrt(var(x) + epsilon)) * gamma + beta
"""
y = _layer_norm_non_affine(X, M, V, stride, N, eps, META)
y = _affine(W, B, N, y, META)
_store(y, Y, stride, N, META)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"BSD"
] | https://github.com/cpuhrsch/torchfused/blob/6c40ed160dcecbe7825f268f7c86bccd359e0ebf/torchfused/triton/k_layer_norm.py |
9bdd2ff5-9f28-4614-bdb9-b519f0ff99ea | paged_attn_v1.py | AlibabaPAI/FLASHNN | flashnn/triton_kernels/paged_attn_v1.py | 528a9301587f5fb135b25d973a87ba0a40a703a7 | 0 | @triton.jit
def _single_query_cached_kv_attention_v1(out, q, k_cache, v_cache,
head_mapping, scale, block_tables, seq_lens, max_num_blocks_per_seq,
stride_qm, stride_qn, stride_om, stride_on, stride_km, stride_kn,
stride_kk, SLOT_SIZE: tl.constexpr, HEAD_SIZE: tl.constexpr):
head_idx = tl.program_id(axis=0)
token_idx = tl.program_id(axis=1)
kv_head_idx = tl.load(head_mapping + head_idx)
offs_q = token_idx * stride_qm + head_idx * stride_qn + tl.arange(0,
HEAD_SIZE)
q = tl.load(q + offs_q)
q = (q * scale).to(tl.float16)
seq_len = tl.load(seq_lens + token_idx)
qkv = tl.zeros([SLOT_SIZE, HEAD_SIZE], dtype=tl.float32)
m_prev = tl.zeros([1, 1], tl.float32) - float('inf')
d_prev = tl.zeros([1, 1], tl.float32)
slot_offs = tl.arange(0, SLOT_SIZE)
head_size_offs = tl.arange(0, HEAD_SIZE)
block_base_ptrs = block_tables + token_idx * max_num_blocks_per_seq
kv_base_offs = kv_head_idx * stride_kn + slot_offs[:, None
] * stride_kk + head_size_offs[None, :]
for i in range(0, tl.cdiv(seq_len, SLOT_SIZE)):
block_idx = tl.load(block_base_ptrs + i)
mask = (slot_offs[:, None] < seq_len - i * SLOT_SIZE) & (head_size_offs
[None, :] < HEAD_SIZE)
kv_offs = block_idx * stride_km + kv_base_offs
k = tl.load(k_cache + kv_offs, mask=mask, other=0.0)
v = tl.load(v_cache + kv_offs, mask=mask, other=0.0)
x_i = tl.sum(q[None, :] * k, axis=1)[:, None]
x_i = tl.where(slot_offs[:, None] < seq_len - i * SLOT_SIZE, x_i,
float('-inf'))
m_i = tl.maximum(m_prev, tl.max(x_i, axis=0))
d_i = d_prev * tl.exp(m_prev - m_i) + tl.sum(tl.exp(x_i - m_i), axis=0)
qkv = qkv * (d_prev * tl.exp(m_prev - m_i) / d_i) + tl.exp(x_i - m_i
) / d_i * v
m_prev = m_i
d_prev = d_i
offs_q = token_idx * stride_om + head_idx * stride_on + tl.arange(0,
HEAD_SIZE)
tl.store(out + offs_q, tl.sum(qkv, axis=0))
| {
"Data Type": [
"fp16"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled",
"Strided Access"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound",
"Memory-Bound"
]
} | [
"Apache"
] | https://github.com/AlibabaPAI/FLASHNN/blob/528a9301587f5fb135b25d973a87ba0a40a703a7/flashnn/triton_kernels/paged_attn_v1.py |
2bb44c20-7403-4987-8920-de61d4b20097 | triton_kernels.py | IntelLabs/EquiTriton | src/equitriton/sph_harm/triton_kernels.py | 1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c | 0 | @triton.jit
def _triton_second_order_bwd(x_ptr: tl.tensor, y_ptr: tl.tensor, z_ptr: tl.
tensor, g_x_ptr: tl.tensor, g_y_ptr: tl.tensor, g_z_ptr: tl.tensor,
g_1_0_ptr: tl.tensor, g_1_1_ptr: tl.tensor, g_1_2_ptr: tl.tensor,
g_2_0_ptr: tl.tensor, g_2_1_ptr: tl.tensor, g_2_2_ptr: tl.tensor,
g_2_3_ptr: tl.tensor, g_2_4_ptr: tl.tensor, BLOCK_SIZE: tl.constexpr,
vector_length: tl.constexpr):
sqrt_3 = 3 ** 0.5
sqrt_5 = 5 ** 0.5
sqrt_15 = 15 ** 0.5
block_id = tl.program_id(0)
offset = tl.arange(0, BLOCK_SIZE) + BLOCK_SIZE * block_id
x_row_start = x_ptr + offset
y_row_start = y_ptr + offset
z_row_start = z_ptr + offset
x = tl.load(x_row_start, mask=offset < vector_length)
y = tl.load(y_row_start, mask=offset < vector_length)
z = tl.load(z_row_start, mask=offset < vector_length)
g_1_0 = tl.load(g_1_0_ptr + offset, mask=offset < vector_length)
g_1_1 = tl.load(g_1_1_ptr + offset, mask=offset < vector_length)
g_1_2 = tl.load(g_1_2_ptr + offset, mask=offset < vector_length)
g_x = sqrt_3 * g_1_0
g_y = sqrt_3 * g_1_1
g_z = sqrt_3 * g_1_2
g_2_0 = tl.load(g_2_0_ptr + offset, mask=offset < vector_length)
g_2_1 = tl.load(g_2_1_ptr + offset, mask=offset < vector_length)
g_2_2 = tl.load(g_2_2_ptr + offset, mask=offset < vector_length)
g_2_3 = tl.load(g_2_3_ptr + offset, mask=offset < vector_length)
g_2_4 = tl.load(g_2_4_ptr + offset, mask=offset < vector_length)
g_x += sqrt_15 * z * g_2_0
g_z += sqrt_15 * x * g_2_0
g_x += sqrt_15 * y * g_2_1
g_y += sqrt_15 * x * g_2_1
g_y += sqrt_15 * z * g_2_2
g_z += sqrt_15 * y * g_2_2
g_x += -1.0 * sqrt_5 * x * g_2_3
g_y += 2.0 * sqrt_5 * y * g_2_3
g_z += -1.0 * sqrt_5 * z * g_2_3
g_x += -1.0 * sqrt_15 * x * g_2_4
g_z += sqrt_15 * z * g_2_4
tl.store(g_x_ptr + offset, g_x, mask=offset < vector_length)
tl.store(g_y_ptr + offset, g_y, mask=offset < vector_length)
tl.store(g_z_ptr + offset, g_z, mask=offset < vector_length)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"Compute Bound"
]
} | [
"Apache"
] | https://github.com/IntelLabs/EquiTriton/blob/1cbf04f69b512a5c1d8ff4880dbf6e17fe089d4c/src/equitriton/sph_harm/triton_kernels.py |
cc1b6b08-4b84-41f0-8801-561eb1ccdb1d | kernels.py | pytorch-labs/tritonbench | tritonbench/operators/jagged_mean/kernels.py | 3a5dccb159834968567a2e45e561dc1aeaa8f8a8 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_RAGGED': b_r,
'BLOCK_SIZE_M': b_m}, num_warps=w, num_stages=s) for b_r, b_m, w, s in
itertools.product(BLOCK_SIZES_RAGGED, BLOCK_SIZES_M, NUM_WARPS,
NUM_STAGES)], key=['M'])
@triton.jit
def triton_jagged_mean_kernel_variable_length_loop_buffer_then_sum(
input_ptr_values, input_ptr_offsets, output_ptr, M, BLOCK_SIZE_RAGGED:
tl.constexpr, BLOCK_SIZE_M: tl.constexpr):
pid = tl.program_id(axis=0)
pid_ragged = pid // tl.cdiv(M, BLOCK_SIZE_M)
pid_m = pid % tl.cdiv(M, BLOCK_SIZE_M)
buffer = tl.zeros((BLOCK_SIZE_RAGGED, BLOCK_SIZE_M), dtype=tl.float32)
block_start_m = pid_m * BLOCK_SIZE_M
offsets_m = block_start_m + tl.arange(0, BLOCK_SIZE_M)
mask_m = offsets_m < M
ragged_start, ragged_end = tl.load(input_ptr_offsets + pid_ragged
), tl.load(input_ptr_offsets + (pid_ragged + 1))
ragged_len = ragged_end - ragged_start
for block_start_ragged in range(ragged_start, ragged_end, BLOCK_SIZE_RAGGED
):
offsets_ragged = block_start_ragged + tl.arange(0, BLOCK_SIZE_RAGGED)
mask_ragged = offsets_ragged < ragged_end
idxs = offsets_ragged[:, None] * M + offsets_m
mask = mask_ragged[:, None] & mask_m
buffer += tl.load(input_ptr_values + idxs, mask=mask, other=0)
buffer_sum = tl.sum(buffer, axis=0)
buffer_view = buffer_sum.reshape((BLOCK_SIZE_M,))
buffer_view_mean = buffer_view * (1 / ragged_len)
output_offsets = offsets_m + pid_ragged * M
output_mask = output_offsets < M * (pid_ragged + 1)
tl.store(output_ptr + output_offsets, buffer_view_mean, mask=output_mask)
| {
"Data Type": [
"fp32",
"fp16"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"BSD"
] | https://github.com/pytorch-labs/tritonbench/blob/3a5dccb159834968567a2e45e561dc1aeaa8f8a8/tritonbench/operators/jagged_mean/kernels.py |
c2c30b99-5b11-48aa-a966-7d545ba2a465 | cvmm.py | dtadpole/nanoGPT_lightning | cvmm.py | 5db66f7714a9a40191f4f208ecbb650ad8c93cc6 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N':
64, 'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=
4, num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 4}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 8}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 16}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 64}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4,
num_warps=4), triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32,
'BLOCK_SIZE_K': 16, 'GROUP_SIZE_M': 8, 'K_BLOCKS': 32}, num_stages=4,
num_warps=4)], key=['M', 'N', 'K', 'float32_out', 'allow_tf32',
'op_float16'], reset_to_zero=['c_ptr'])
@triton.jit
def cvmm_backward_kernel3(a_ptr, b_ptr, c_ptr, index_ptr, sel_ptr,
out_index_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn,
stride_co, stride_cm, stride_cn, stride_index, stride_sel,
stride_out_index, out_index_is_none: tl.constexpr, float32_out: tl.
constexpr, allow_tf32: tl.constexpr, op_float16: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K:
tl.constexpr, GROUP_SIZE_M: tl.constexpr, K_BLOCKS: tl.constexpr):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
pid = tl.program_id(axis=0)
k_block_id = tl.program_id(axis=1)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + pid % group_size_m
pid_n = pid % num_pid_in_group // group_size_m
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
a_ptrs_this = a_ptr + offs_am[:, None] * stride_am
b_ptrs_this = b_ptr + offs_bn[None, :] * stride_bn
block_start_index = k_block_id * BLOCK_SIZE_K * K_BLOCKS
block_end_index = min(block_start_index + BLOCK_SIZE_K * K_BLOCKS, K) - 1
first_mat = tl.load(sel_ptr + stride_sel * block_start_index)
last_mat = tl.load(sel_ptr + stride_sel * block_end_index)
for matrix_index in range(first_mat, last_mat + 1):
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
start_i = block_start_index
end_i = block_end_index + 1
while start_i < end_i:
middle = (start_i + end_i) // 2
middle_matrix = tl.load(sel_ptr + middle * stride_sel)
if middle_matrix < matrix_index:
start_i = middle + 1
else:
end_i = middle
start_i2 = start_i
end_i = block_end_index + 1
while start_i2 < end_i:
middle = (start_i2 + end_i) // 2
middle_matrix = tl.load(sel_ptr + middle * stride_sel)
if middle_matrix <= matrix_index:
start_i2 = middle + 1
else:
end_i = middle
end_i = start_i2
count = end_i - start_i
block_mem_indices_f_base = start_i + tl.arange(0, BLOCK_SIZE_K)
if count > 0:
for k in range((count + BLOCK_SIZE_K - 1) // BLOCK_SIZE_K):
block_mem_indices_f = (block_mem_indices_f_base + k *
BLOCK_SIZE_K)
block_mem_indices = block_mem_indices_f % K
a_index = tl.load(index_ptr + stride_index * block_mem_indices)
if out_index_is_none:
b_index = a_index
else:
b_index = tl.load(out_index_ptr + stride_out_index *
block_mem_indices)
sel_ok = block_mem_indices_f < end_i
a_ptrs = a_ptrs_this + a_index[None, :] * stride_ak
b_ptrs = b_ptrs_this + b_index[:, None] * stride_bk
a = tl.load(a_ptrs, mask=sel_ok[None, :], other=0.0)
b = tl.load(b_ptrs, mask=sel_ok[:, None], other=0.0)
if op_float16:
a = a.to(tl.float16)
b = b.to(tl.float16)
accumulator += tl.dot(a, b, allow_tf32=allow_tf32)
if float32_out:
c = accumulator
else:
c = accumulator.to(tl.float16)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + stride_co * matrix_index + stride_cm * offs_cm[
:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.atomic_add(c_ptrs, c, mask=c_mask)
| {
"Data Type": [
"fp16"
],
"Functionality": [
"Matrix Multiplication"
],
"Memory Access Pattern": [
"Blocked Access",
"Coalesced"
],
"Parallelization Strategy": [
"Thread-Block Mappings"
],
"Performance Objective": [
"High Throughput"
]
} | [
"MIT"
] | https://github.com/dtadpole/nanoGPT_lightning/blob/5db66f7714a9a40191f4f208ecbb650ad8c93cc6/cvmm.py |
fbb2a0d9-7c7c-42af-8046-40b931ce9c09 | flash_triton.py | MayDomine/Burst-Attention | burst_attn/flash_triton.py | b088c554072935074ea9c643de5ee363be5ab1f6 | 0 | @triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128,
'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=
init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128,
'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=
init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K',
'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'])
@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args[
'BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args[
'BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args[
'BLOCK_HEADDIM']})
@triton.jit
def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale,
stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn,
stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm,
stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm,
stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn,
nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr,
IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL:
tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM:
tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
off_hb = tl.program_id(1)
off_b = off_hb // nheads
off_h = off_hb % nheads
Q += off_b * stride_qb + off_h * stride_qh
K += off_b * stride_kb + off_h * stride_kh
V += off_b * stride_vb + off_h * stride_vh
DO += off_b * stride_dob + off_h * stride_doh
DQ += off_b * stride_dqb + off_h * stride_dqh
DK += off_b * stride_dkb + off_h * stride_dkh
DV += off_b * stride_dvb + off_h * stride_dvh
if BIAS_TYPE != 'none':
Bias += off_b * stride_bb + off_h * stride_bh
D += off_hb * seqlen_q_rounded
LSE += off_hb * seqlen_q_rounded
if not SEQUENCE_PARALLEL:
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
for start_n in range(0, num_block_n):
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK,
DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn,
stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn,
seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=
BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM,
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
else:
start_n = tl.program_id(0)
_bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV,
LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn,
stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn,
seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=
BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM,
EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N)
| {
"Data Type": [
"fp16"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Tiled",
"Strided Access"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound",
"Memory-Bound"
]
} | [
"Apache"
] | https://github.com/MayDomine/Burst-Attention/blob/b088c554072935074ea9c643de5ee363be5ab1f6/burst_attn/flash_triton.py |
cbbfcf20-c932-4670-846d-fb6982e7b184 | chunk.py | sustcsonglin/flash-linear-attention | fla/ops/delta_rule/chunk.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.heuristics({'USE_OFFSETS': lambda args: args['offsets'] is not None})
@triton.autotune(configs=[triton.Config({'BK': BK, 'BV': BV}, num_warps=
num_warps, num_stages=num_stages) for BK, BV in [(32, 64), (64, 32), (
64, 64), (64, 128), (128, 64)] for num_warps in [1, 2, 4] for
num_stages in [2, 3, 4]], key=['BT'])
@triton.jit
def chunk_delta_rule_fwd_kernel_prepare_dv(q, k, do, dv, offsets, indices,
scale, T: tl.constexpr, H: tl.constexpr, K: tl.constexpr, V: tl.
constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr,
USE_OFFSETS: tl.constexpr, HEAD_FIRST: tl.constexpr):
i_t, i_bh = tl.program_id(0), tl.program_id(1)
i_b, i_h = i_bh // H, i_bh % H
if USE_OFFSETS:
i_n, i_t = tl.load(indices + i_t * 2).to(tl.int32), tl.load(indices +
i_t * 2 + 1).to(tl.int32)
bos, eos = tl.load(offsets + i_n).to(tl.int32), tl.load(offsets +
i_n + 1).to(tl.int32)
T = eos - bos
else:
bos, eos = i_b * T, i_b * T + T
b_A = tl.zeros([BT, BT], dtype=tl.float32)
for i_k in range(tl.cdiv(K, BK)):
if HEAD_FIRST:
p_q = tl.make_block_ptr(q + i_bh * T * K, (K, T), (1, K), (i_k *
BK, i_t * BT), (BK, BT), (0, 1))
p_k = tl.make_block_ptr(k + i_bh * T * K, (T, K), (K, 1), (i_t *
BT, i_k * BK), (BT, BK), (1, 0))
else:
p_q = tl.make_block_ptr(q + (bos * H + i_h) * K, (K, T), (1, H *
K), (i_k * BK, i_t * BT), (BK, BT), (0, 1))
p_k = tl.make_block_ptr(k + (bos * H + i_h) * K, (T, K), (H * K,
1), (i_t * BT, i_k * BK), (BT, BK), (1, 0))
b_k = tl.load(p_k, boundary_check=(0, 1))
b_q = tl.load(p_q, boundary_check=(0, 1))
b_q = (b_q * scale).to(b_k.dtype)
b_A += tl.dot(b_k, b_q, allow_tf32=False)
b_A = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :],
b_A, 0).to(do.dtype.element_ty)
for i_v in range(tl.cdiv(V, BV)):
if HEAD_FIRST:
p_do = tl.make_block_ptr(do + i_bh * T * V, (T, V), (V, 1), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + i_bh * T * V, (T, V), (V, 1), (
i_t * BT, i_v * BV), (BT, BV), (1, 0))
else:
p_do = tl.make_block_ptr(do + (bos * H + i_h) * V, (T, V), (H *
V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
p_dv = tl.make_block_ptr(dv + (bos * H + i_h) * V, (T, V), (H *
V, 1), (i_t * BT, i_v * BV), (BT, BV), (1, 0))
b_do = tl.load(p_do, boundary_check=(0, 1))
b_dv = tl.dot(b_A, b_do, allow_tf32=False)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Matrix Multiplication",
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access",
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/delta_rule/chunk.py |
a3bb1f0d-12d4-4f1f-af81-35201c7a5bc1 | gemm_streamk_benchmark.py | intel/intel-xpu-backend-for-triton | benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py | 6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2 | 0 | @triton.jit
def linear_tile(tile_id, M: tl.constexpr, N: tl.constexpr, K: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K:
tl.constexpr, GROUP_SIZE_M: tl.constexpr):
pid_m = tile_id // tl.cdiv(N, BLOCK_SIZE_N)
pid_n = tile_id % tl.cdiv(N, BLOCK_SIZE_N)
return pid_m, pid_n
| {
"Data Type": [],
"Functionality": [
"Elementwise Operations"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [],
"Performance Objective": [
"Memory-Bound"
]
} | [
"MIT"
] | https://github.com/intel/intel-xpu-backend-for-triton/blob/6ee08cd29ec3cd8b8eb3f92b9c93977fc6f6e5c2/benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py |
f1703945-6176-40cb-8eaf-73d5f402dbbb | sb_varlen_fwd.py | shawntan/stickbreaking-attention | stickbreaking_attention/sb_varlen/sb_varlen_fwd.py | 8dd32ad5e58f0ee0232fd4782dc53d354ff8d283 | 0 | @triton.jit
def _forward_one_row(seq_block_id, seq_length, qk_scale, M_range, N_range,
D_range, D_mask, cm, Q_head_seq_ptr, stride_qm, stride_qd: tl.constexpr,
K_head_seq_ptr, stride_kn, stride_kd: tl.constexpr, V_head_seq_ptr,
stride_vn, stride_vd: tl.constexpr, O_head_seq_ptr, stride_om,
stride_od: tl.constexpr, R_head_seq_ptr, stride_rm, A_head_seq_ptr,
stride_am, W_head_seq_ptr, stride_wm, stride_wn, BLOCK_D: tl.constexpr,
NO_D_MASK: tl.constexpr, NO_M_MASK: tl.constexpr, NO_N_MASK: tl.
constexpr, ALLOW_TF32: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl
.constexpr, no_grad: tl.constexpr=False, acc_dtype: tl.constexpr=tl.
float32, return_attention: tl.constexpr=False, is_compiling: tl.
constexpr=False, use_cumsum: tl.constexpr=False, attend_current: tl.
constexpr=False):
block_start_offset = BLOCK_M * seq_block_id
M_blk_idxs = block_start_offset + M_range
M_mask = M_blk_idxs < seq_length
NO_M_MASK = block_start_offset + BLOCK_M - 1 < seq_length
N_blk_idxs_start = block_start_offset + BLOCK_M
N_blk_idxs = N_blk_idxs_start + N_range
Q_blk_ptrs = Q_head_seq_ptr + (stride_qm * M_blk_idxs[:, None] +
stride_qd * D_range[None, :])
K_blk_ptrs = K_head_seq_ptr + (stride_kn * N_blk_idxs[:, None] +
stride_kd * D_range[None, :])
V_blk_ptrs = V_head_seq_ptr + (stride_vn * N_blk_idxs[:, None] +
stride_vd * D_range[None, :])
O_blk_ptrs = O_head_seq_ptr + (stride_om * M_blk_idxs[:, None] +
stride_od * D_range[None, :])
R_blk_ptrs = R_head_seq_ptr + stride_rm * M_blk_idxs
A_blk_ptrs = A_head_seq_ptr + stride_am * M_blk_idxs
if NO_D_MASK:
if NO_M_MASK:
q = tl.load(Q_blk_ptrs)
else:
q = tl.load(Q_blk_ptrs, mask=M_mask[:, None], other=0.0)
else:
q = tl.load(Q_blk_ptrs, mask=M_mask[:, None] & D_mask[None, :],
other=0.0)
iters = N_blk_idxs_start // BLOCK_N
neg_log_acc = tl.zeros([BLOCK_M], dtype=acc_dtype)
acc = tl.zeros([BLOCK_M, BLOCK_D], dtype=acc_dtype)
for i in range(iters):
N_blk_idxs -= BLOCK_N
N_blk_idxs_start -= BLOCK_N
K_blk_ptrs -= BLOCK_N * stride_kn
V_blk_ptrs -= BLOCK_N * stride_vn
N_mask = N_blk_idxs < seq_length
k, v = load_kv(K_blk_ptrs, V_blk_ptrs, N_mask=N_mask, NO_N_MASK=
N_blk_idxs_start + BLOCK_N - 1 < seq_length, D_mask=D_mask,
NO_D_MASK=NO_D_MASK)
on_band = i < BLOCK_M // BLOCK_N
p, _, neg_log_acc = compute_block(q, k, qk_scale, neg_log_acc,
M_blk_idxs, N_blk_idxs, cm, on_band, ALLOW_TF32, attend_current
=attend_current, backward=False, is_compiling=is_compiling,
use_cumsum=use_cumsum)
acc = tl.dot(p.to(v.dtype), v, acc, allow_tf32=ALLOW_TF32)
if return_attention:
tl.store(W_head_seq_ptr + stride_wm * M_blk_idxs[:, None] +
stride_wn * N_blk_idxs[None, :], p, mask=(M_blk_idxs <
seq_length)[:, None] & (N_blk_idxs < seq_length)[None, :])
if NO_M_MASK:
tl.store(R_blk_ptrs, tl.math.exp2(neg_log_acc))
tl.store(A_blk_ptrs, neg_log_acc.to(A_head_seq_ptr.type.element_ty))
else:
tl.store(R_blk_ptrs, tl.math.exp2(neg_log_acc), mask=M_mask)
tl.store(A_blk_ptrs, neg_log_acc.to(A_head_seq_ptr.type.element_ty),
mask=M_mask)
if NO_D_MASK:
tl.store(O_blk_ptrs, acc.to(O_head_seq_ptr.type.element_ty), mask=
M_mask[:, None])
else:
tl.store(O_blk_ptrs, acc.to(O_head_seq_ptr.type.element_ty), mask=
M_mask[:, None] & D_mask[None, :])
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Attention Mechanisms"
],
"Memory Access Pattern": [
"Strided Access",
"Coalesced"
],
"Parallelization Strategy": [
"Grid-Stride Loops",
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"Apache"
] | https://github.com/shawntan/stickbreaking-attention/blob/8dd32ad5e58f0ee0232fd4782dc53d354ff8d283/stickbreaking_attention/sb_varlen/sb_varlen_fwd.py |
4655e66d-50dd-4e01-87a7-dbc096fc693b | fused_recurrent.py | sustcsonglin/flash-linear-attention | fla/ops/generalized_delta_rule/iplr/fused_recurrent.py | 5968de9a22c096326b19859cfe05dac36155c31d | 0 | @triton.jit
def fused_recurrent_fwd_kernel(q, k, v, alpha, beta, o, ha, h0, ht, s_k_h,
s_v_h, scale, B, H, T, K: tl.constexpr, V: tl.constexpr, BK: tl.
constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr):
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV)
p_alpha = alpha + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
p_beta = beta + i_bh * s_k_h + i_k * BK + tl.arange(0, BK)
p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV)
p_ha = ha + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV)
mask_bk = i_k * BK + tl.arange(0, BK) < K
mask_bv = i_v * BV + tl.arange(0, BV) < V
mask_kv = mask_bk[None, :] & mask_bv[:, None]
h = tl.zeros([BV, BK], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]
) * V + (i_v * BV + tl.arange(0, BV)[:, None])
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
for _ in range(0, T):
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
b_alpha = tl.load(p_alpha, mask=mask_bk, other=0).to(tl.float32)
b_beta = tl.load(p_beta, mask=mask_bk, other=0).to(tl.float32)
tmp = tl.sum(h * b_alpha[None, :], axis=1)
h += tmp[:, None] * b_beta[None, :] + b_k[None, :] * b_v[:, None]
_o = h * b_q[None, :]
_o = tl.sum(_o, axis=1)
tl.store(p_o, _o.to(p_o.dtype.element_ty), mask=mask_bv)
tl.store(p_ha, tmp.to(p_ha.dtype.element_ty), mask=mask_bv)
p_q += K
p_k += K
p_o += V
p_v += V
p_ha += V
p_alpha += K
p_beta += K
if STORE_FINAL_STATE:
p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]
) * V + (i_v * BV + tl.arange(0, BV)[:, None])
tl.store(p_ht, h.to(p_ht.dtype.element_ty), mask=mask_kv)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Recurrent Neural Networks"
],
"Memory Access Pattern": [
"Strided Access",
"Register Intensive"
],
"Parallelization Strategy": [
"Cooperative Groups"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/sustcsonglin/flash-linear-attention/blob/5968de9a22c096326b19859cfe05dac36155c31d/fla/ops/generalized_delta_rule/iplr/fused_recurrent.py |
5400e181-7552-4332-b506-bdb00f476d7a | layer_norm_kernels.py | BobMcDear/attorch | attorch/layer_norm_kernels.py | da06cb6236bb47195e33fe3986ed21c675ed94cc | 0 | @triton.autotune(configs=warps_kernel_configs(), key=['batch_dim', 'feat_dim'])
@triton.heuristics({'BLOCK_SIZE_BATCH': BLOCK_SIZE_BATCH_heuristic,
'BLOCK_SIZE_FEAT': lambda args: next_power_of_2(args['feat_dim'])})
@triton.jit
def layer_norm_backward_kernel(output_grad_pointer, input_pointer,
mean_pointer, inv_std_pointer, weight_pointer, input_grad_pointer,
weight_grad_pointer, bias_grad_pointer, batch_dim, feat_dim,
output_grad_batch_stride, output_grad_feat_stride, input_batch_stride,
input_feat_stride, input_grad_batch_stride, input_grad_feat_stride,
weight_grad_batch_stride, weight_grad_feat_stride,
bias_grad_batch_stride, bias_grad_feat_stride, scale_by_weight: tl.
constexpr, add_bias: tl.constexpr, BLOCK_SIZE_BATCH: tl.constexpr,
BLOCK_SIZE_FEAT: tl.constexpr):
"""
Calculates the input gradient of layer normalization.
Args:
output_grad_pointer: Pointer to layer normalization's output gradients.
The output gradients must be of shape [batch_dim, feat_dim].
input_pointer: Pointer to the input.
The input must be of shape [batch_dim, feat_dim].
mean_pointer: Pointer to the input's mean.
The mean should be of shape [batch_dim].
inv_std_pointer: Pointer to the input's inverse standard deviation.
The inverse standard deviation should be of shape [batch_dim].
weight_pointer: Pointer to optional weights if affine transform occurred.
The weights, if provided, must be of shape [feat_dim].
input_grad_pointer: Pointer to a container the input's gradients are written to.
The container must be of shape [batch_dim, feat_dim].
weight_grad_pointer: Pointer to an optional container the weights' row-wise gradients
are written to if scale_by_weight is True, which should later be summed.
The container, if provided, must be of shape [batch_dim/BLOCK_SIZE_BATCH, feat_dim].
bias_grad_pointer: Pointer to an optional container the bias vector's row-wise gradients
are written to if scale_by_weight and add_bias are True, which should later be summed.
The container, if provided, must be of shape [batch_dim/BLOCK_SIZE_BATCH, feat_dim].
batch_dim: Batch dimension.
feat_dim: Dimensionality of the features.
output_grad_batch_stride: Stride necessary to jump one element along the
output gradients' batch dimension.
output_grad_feat_stride: Stride necessary to jump one element along the
output gradients' feature dimension.
input_batch_stride: Stride necessary to jump one element along the
input's batch dimension.
input_feat_stride: Stride necessary to jump one element along the
input's feature dimension.
input_grad_batch_stride: Stride necessary to jump one element along the
input gradient container's batch dimension.
input_grad_feat_stride: Stride necessary to jump one element along the
input gradient container's feature dimension.
weight_grad_batch_stride: Stride necessary to jump one element along the
weight gradient container's batch dimension.
weight_grad_feat_stride: Stride necessary to jump one element along the
weight gradient container's feature dimension.
bias_grad_batch_stride: Stride necessary to jump one element along the
weight gradient container's batch dimension.
bias_grad_feat_stride: Stride necessary to jump one element along the
weight gradient container's feature dimension.
scale_by_weight: Flag for scaling the normalized output by weights.
add_bias: Flag for adding a bias vector to the normalized output
if scale_by_weight is True.
BLOCK_SIZE_BATCH: Block size across the batch dimension.
BLOCK_SIZE_FEAT: Block size across the feature dimension.
"""
batch_pid = tl.program_id(axis=0)
batch_offset = batch_pid * BLOCK_SIZE_BATCH + tl.arange(0, BLOCK_SIZE_BATCH
)
feat_offset = tl.arange(0, BLOCK_SIZE_FEAT)
batch_mask = batch_offset < batch_dim
feat_mask = feat_offset < feat_dim
output_grad_pointer += output_grad_batch_stride * batch_offset[:, None
] + output_grad_feat_stride * feat_offset[None, :]
input_pointer += input_batch_stride * batch_offset[:, None
] + input_feat_stride * feat_offset[None, :]
input_grad_pointer += input_grad_batch_stride * batch_offset[:, None
] + input_grad_feat_stride * feat_offset[None, :]
output_grad = tl.load(output_grad_pointer, mask=batch_mask[:, None] &
feat_mask[None, :]).to(tl.float32)
input = tl.load(input_pointer, mask=batch_mask[:, None] & feat_mask[
None, :]).to(tl.float32)
mean = tl.load(mean_pointer + batch_offset, mask=batch_mask)
inv_std = tl.load(inv_std_pointer + batch_offset, mask=batch_mask)
pre_lin = (input - mean[:, None]) * inv_std[:, None]
if scale_by_weight:
weight = tl.load(weight_pointer + feat_offset, mask=feat_mask)
weight_output_grad_prod = weight * output_grad
else:
weight_output_grad_prod = output_grad
term1 = tl.sum(pre_lin * weight_output_grad_prod, axis=1) / feat_dim
term1 = pre_lin * term1[:, None]
term2 = tl.sum(weight_output_grad_prod, axis=1) / feat_dim
input_grad = inv_std[:, None] * (weight_output_grad_prod - (term1 +
term2[:, None]))
tl.store(input_grad_pointer, input_grad, mask=batch_mask[:, None] &
feat_mask[None, :])
if scale_by_weight:
weight_grad_pointer += (weight_grad_batch_stride * batch_pid +
weight_grad_feat_stride * feat_offset)
tl.store(weight_grad_pointer, tl.sum(output_grad * pre_lin, axis=0),
mask=feat_mask)
if add_bias:
bias_grad_pointer += (bias_grad_batch_stride * batch_pid +
bias_grad_feat_stride * feat_offset)
tl.store(bias_grad_pointer, tl.sum(output_grad, axis=0), mask=
feat_mask)
| {
"Data Type": [
"fp32"
],
"Functionality": [
"Normalization",
"Backpropagation"
],
"Memory Access Pattern": [
"Strided Access"
],
"Parallelization Strategy": [
"Cooperative Groups",
"Grid-Stride Loops"
],
"Performance Objective": [
"Compute Bound",
"High Throughput"
]
} | [
"MIT"
] | https://github.com/BobMcDear/attorch/blob/da06cb6236bb47195e33fe3986ed21c675ed94cc/attorch/layer_norm_kernels.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.