Dataset Viewer
Auto-converted to Parquet
corpus
stringclasses
4 values
category
stringclasses
9 values
dataset
stringclasses
23 values
task
stringclasses
69 values
prompt
stringclasses
51 values
model
stringclasses
29 values
ckpt_num
int64
500
14.3k
score
float64
-0.09
100
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p0
Pregunta: {{question}} Resposta:
1B
500
22.782
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
1B
500
22.952
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
1B
500
27.048
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p0
Pregunta: {{question}} Resposta:
1B
500
28.788
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
1B
500
25.042
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
1B
500
26.263
pre-HPLT 3.0 CD
Language-specific & world knowledge
catalanqa
catalanqa_p0
Context: {{context}} Pregunta: {{question}} Resposta:
1B
500
1.312
pre-HPLT 3.0 CD
Language-specific & world knowledge
catalanqa
catalanqa_p1
{{context}} Pregunta: {{question}} Respecte al passatge anterior, la resposta correcta a la pregunta és
1B
500
1.528
pre-HPLT 3.0 CD
Language-specific & world knowledge
catalanqa
catalanqa_p2
Llegeix el següent passatge i contesta la pregunta. Passatge: {{context}} Pregunta: {{question}} Resposta:
1B
500
1.639
pre-HPLT 3.0 CD
Reading comprehension
catbelebele
catbelebele_p0
Passatge: {{flores_passage}} Pregunta: {{question.strip()}} A. {{mc_answer1}} B. {{mc_answer2}} C. {{mc_answer3}} D. {{mc_answer4}} Resposta:
1B
500
22.889
pre-HPLT 3.0 CD
Reading comprehension
catbelebele
catbelebele_p1
Llegeix el passatge i respon a la pregunta: {{flores_passage}} {{question.strip()}} Opció A: {{mc_answer1}} Opció B: {{mc_answer2}} Opció C: {{mc_answer3}} Opció D: {{mc_answer4}} És la resposta correcta A, B, C o D?
1B
500
25.667
pre-HPLT 3.0 CD
Reading comprehension
catbelebele
catbelebele_p2
{{flores_passage}} En base al passatge anterior, respon a la pregunta: {{question}} A: {{mc_answer1}} B: {{mc_answer2}} C: {{mc_answer3}} D: {{mc_answer4}} Quina és la resposta correcta?
1B
500
22.889
pre-HPLT 3.0 CD
Language knowledge
catcola
catcola_p0
{{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
1B
500
0
pre-HPLT 3.0 CD
Language knowledge
catcola
catcola_p1
Frase: {{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
1B
500
0
pre-HPLT 3.0 CD
Language knowledge
catcola
catcola_p2
Determina si la següent frase té sentit: {{Sentence}} Resposta:
1B
500
0
pre-HPLT 3.0 CD
Commonsense reasoning
cocoteros_va
cocoteros_va_p0
Genera una frase curta amb estes paraules: {{keywords}}. El context és: {{context}} Resposta:
1B
500
0.145
pre-HPLT 3.0 CD
Commonsense reasoning
cocoteros_va
cocoteros_va_p1
Escriu una frase curta amb aquestes paraules clau: {{keywords}}. Tingues en compte el següent context: {{context}}. Resposta:
1B
500
0.097
pre-HPLT 3.0 CD
Commonsense reasoning
cocoteros_va
cocoteros_va_p2
Construeix una oració tenint en compte el següent context: {{context}}. Utilitza les paraules clau: {{keywords}}. Resposta:
1B
500
0.101
pre-HPLT 3.0 CD
Commonsense reasoning
copa_ca
copa_ca_p0
{{premise[:-1].strip() + " " + {"cause": "perquè", "effect": "i per tant"}[question]}}
1B
500
55.6
pre-HPLT 3.0 CD
Commonsense reasoning
copa_ca
copa_ca_p1
{{premise[:-1].strip() + " " + {"cause": "atès que", "effect": "així que"}[question]}}
1B
500
54.6
pre-HPLT 3.0 CD
Commonsense reasoning
copa_ca
copa_ca_p2
{{premise[:-1].strip() + {"cause": " a causa que", "effect": ", i com a resultat,"}[question]}}
1B
500
54.8
pre-HPLT 3.0 CD
Reading comprehension
coqcat
coqcat_p0
{{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Q: "+questions[i]+"\n\n"+"A: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Q: "+questions[-1]+"\n\n"+"A:"}}
1B
500
4.826
pre-HPLT 3.0 CD
Reading comprehension
coqcat
coqcat_p1
Llegeix el següent passatge i contesta la pregunta\n\nPassatge: {{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
1B
500
9.243
pre-HPLT 3.0 CD
Reading comprehension
coqcat
coqcat_p2
Llegeix el següent passatge i contesta la pregunta\n\nPassatge: {{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
1B
500
9.243
pre-HPLT 3.0 CD
Machine translation
flores_en-ca
flores_en-ca_p0
Translate the following sentence into Catalan: {{sentence_eng_Latn}} Catalan:
1B
500
0
pre-HPLT 3.0 CD
Machine translation
flores_en-ca
flores_en-ca_p1
Translate the sentence from English to Catalan. Source sentence (English): {{sentence_eng_Latn}} Target sentence (Catalan):
1B
500
0.001
pre-HPLT 3.0 CD
Machine translation
flores_en-ca
flores_en-ca_p2
The following sentence is written in English. Translate it into Catalan. English: {{sentence_eng_Latn}} Catalan:
1B
500
0
pre-HPLT 3.0 CD
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p0
Pregunta: {{question}} Resposta:
1B
500
0
pre-HPLT 3.0 CD
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p1
Respon amb claredat i precisió a la pregunta següent {{question}} Resposta:
1B
500
0
pre-HPLT 3.0 CD
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p2
Respon a la següent pregunta: {{question}} Raona la teva resposta:
1B
500
0
pre-HPLT 3.0 CD
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p0
question_stem
1B
500
25
pre-HPLT 3.0 CD
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p1
{{question_stem}} A. {{choices['text'][0]}} B. {{choices['text'][1]}} C. {{choices['text'][2]}} D. {{choices['text'][3]}} Resposta:
1B
500
27.4
pre-HPLT 3.0 CD
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p2
{{question_stem}} Opció A: {{choices['text'][0]}} Opció B: {{choices['text'][1]}} C: {{choices['text'][2]}} Opció D: {{choices['text'][3]}} És la resposta correcta A, B, C o D?
1B
500
24.8
pre-HPLT 3.0 CD
Paraphrase detection
parafraseja
parafraseja_p0
null
1B
500
51.15
pre-HPLT 3.0 CD
Paraphrase detection
parafraseja
parafraseja_p1
Determina si les dues oracions següents expressen la mateixa idea o no. Oració 1: {{sentence1}} Oració 2: {{sentence2}} Resposta:
1B
500
49.6
pre-HPLT 3.0 CD
Paraphrase detection
parafraseja
parafraseja_p2
Oració 1: {{sentence1}} Oració 2: {{sentence2}} Pregunta: Les oracions 1 i 2 expressen el mateix significat? Sí o no? Resposta:
1B
500
49.6
pre-HPLT 3.0 CD
Paraphrase detection
paws_ca
paws_ca_p0
null
1B
500
48.9
pre-HPLT 3.0 CD
Paraphrase detection
paws_ca
paws_ca_p1
Determina si les dues oracions següents expressen la mateixa idea o no. Oració 1: {{sentence1}} Oració 2: {{sentence2}} Resposta:
1B
500
54.65
pre-HPLT 3.0 CD
Paraphrase detection
paws_ca
paws_ca_p2
Oració 1: {{sentence1}} Oració 2: {{sentence2}} Pregunta: Les oracions 1 i 2 expressen el mateix significat? Sí o no? Resposta:
1B
500
54.65
pre-HPLT 3.0 CD
Commonsense reasoning
piqa_ca
piqa_ca_p0
Pregunta: {{goal}} Resposta:
1B
500
51.143
pre-HPLT 3.0 CD
Commonsense reasoning
piqa_ca
piqa_ca_p1
{{goal}} A. {{sol1}} B. {{sol2}} Resposta:
1B
500
49.51
pre-HPLT 3.0 CD
Commonsense reasoning
piqa_ca
piqa_ca_p2
{{goal}} A. {{sol1}} B. {{sol2}} Quina és la resposta correcta?
1B
500
49.51
pre-HPLT 3.0 CD
Commonsense reasoning
siqa_ca
siqa_ca_p0
Pregunta: {{context}} {{question}} Resposta:
1B
500
34.033
pre-HPLT 3.0 CD
Commonsense reasoning
siqa_ca
siqa_ca_p1
Passatge: {{context}} Pregunta: {{question}} A. {{answerA}} B. {{answerB}} C. {{answerC}} Resposta:
1B
500
32.907
pre-HPLT 3.0 CD
Commonsense reasoning
siqa_ca
siqa_ca_p2
Llegeix el passatge i respon a la pregunta: {{context}} {{question}} Opció A: {{answerA}} Opció B: {{answerB}} Opció C: {{answerC}} És la resposta correcta A, B o C?
1B
500
30.962
pre-HPLT 3.0 CD
Entailment
teca
teca_p0
null
1B
500
35.616
pre-HPLT 3.0 CD
Entailment
teca
teca_p1
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Indica la relació entre la premissa i la hipòtesi:
1B
500
32.121
pre-HPLT 3.0 CD
Entailment
teca
teca_p2
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Quina és la relació entre la premissa i la hipòtesi? A. En acord B. Neutres entre si C. En contradicció Resposta:
1B
500
33.302
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_gen
veritasqa_ca_gen_p0
Respon a la següent pregunta: {{question}} Resposta:
1B
500
0
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_gen
veritasqa_ca_gen_p1
Respon amb claredat i precisió a la pregunta següent: {{question}} Resposta:
1B
500
0.01
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_gen
veritasqa_ca_gen_p2
Proporciona una resposta detallada per a la pregunta següent: {{question}} Resposta:
1B
500
0
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_mc1
veritasqa_ca_mc1_p0
Pregunta: {{question}} Resposta:
1B
500
27.195
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_mc1
veritasqa_ca_mc1_p1
def mc1_p1(doc): choices = doc["mc1_targets"]["choices"] formatted_choices = "\n".join( [f"Opción {LETTERS[i]}: {choice}" for i, choice in enumerate(choices)] ) letters = LETTERS[: len(choices)] return f"Pregunta: {doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(letters[:-1])} o {letters[-1]}?\nResposta:"
1B
500
8.499
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_mc1
veritasqa_ca_mc1_p2
def mc1_p2(doc): choices = doc["mc1_targets"]["choices"] formatted_choices = "".join(list(map(lambda choice: f"\n- {choice}", choices))) return f"Pregunta: {doc['question']}\nTria la resposta correcta de la llista:\n{formatted_choices}\nQuina és la resposta correcta?\nResposta:"
1B
500
24.646
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_mc2
veritasqa_ca_mc2_p0
Pregunta: {{question}} Resposta:
1B
500
55.51
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_mc2
veritasqa_ca_mc2_p1
def mc2_p1(doc): choices = doc["mc2_targets"]["choices"] formatted_choices = "\n".join( [f"Opción {LETTERS[i]}: {choice}" for i, choice in enumerate(choices)] ) letters = LETTERS[: len(choices)] return f"Pregunta: {doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(letters[:-1])} o {letters[-1]}?\nResposta:"
1B
500
64.327
pre-HPLT 3.0 CD
Truthfulness
veritasqa_ca_mc2
veritasqa_ca_mc2_p2
def mc2_p2(doc): choices = doc["mc2_targets"]["choices"] formatted_choices = "".join(list(map(lambda choice: f"\n- {choice}", choices))) return f"Pregunta: {doc['question']}\nTria la resposta correcta de la llista:\n{formatted_choices}\nQuina és la resposta correcta?\nResposta:"
1B
500
52.98
pre-HPLT 3.0 CD
Entailment
wnli_ca
wnli_ca_p0
{{sentence1}} Pregunta: {{sentence2}} Cert o Fals? Resposta:
1B
500
43.662
pre-HPLT 3.0 CD
Entailment
wnli_ca
wnli_ca_p1
Llegeix el text i contesta si l'afirmació és veritable o falsa. Texto: {{sentence1}} Afirmación: {{sentence2}} Resposta:
1B
500
47.887
pre-HPLT 3.0 CD
Entailment
wnli_ca
wnli_ca_p2
{{sentence1}} Pregunta: {{sentence2}}. Resposta:
1B
500
63.38
pre-HPLT 3.0 CD
Entailment
xnli_ca
xnli_ca_p0
null
1B
500
37.871
pre-HPLT 3.0 CD
Entailment
xnli_ca
xnli_ca_p1
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Indica la relació entre la premissa i la hipòtesi:
1B
500
33.855
pre-HPLT 3.0 CD
Entailment
xnli_ca
xnli_ca_p2
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Quina és la relació entre la premissa i la hipòtesi? A. En acord B. Neutres entre si C. En contradicció Resposta:
1B
500
33.333
pre-HPLT 3.0 CD
Reading comprehension
xquad_ca
xquad_ca_p0
Context: {{context}} Pregunta: {{question}} Resposta:
1B
500
0.93
pre-HPLT 3.0 CD
Reading comprehension
xquad_ca
xquad_ca_p1
{{context}} Pregunta: {{question}} Respecte al passatge anterior, la resposta correcta a la pregunta és
1B
500
0.584
pre-HPLT 3.0 CD
Reading comprehension
xquad_ca
xquad_ca_p2
Llegeix el següent passatge i contesta la pregunta. Passatge: {{context}} Pregunta: {{question}} Resposta:
1B
500
1.116
pre-HPLT 3.0 CD
Commonsense reasoning
xstorycloze_ca
xstorycloze_ca_p0
{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}
1B
500
52.283
pre-HPLT 3.0 CD
Commonsense reasoning
xstorycloze_ca
xstorycloze_ca_p1
Llegeix la següent història: {{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}} Tria la continuació correcta: - {{sentence_quiz1}} - {{sentence_quiz2}}
1B
500
52.151
pre-HPLT 3.0 CD
Commonsense reasoning
xstorycloze_ca
xstorycloze_ca_p2
{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4] | join(' ') }} Què ocorre després? A. {{ sentence_quiz1}} B. {{sentence_quiz2}} Resposta:
1B
500
52.813
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p0
Pregunta: {{question}} Resposta:
2B
1,000
22.355
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
2B
1,000
22.611
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
2B
1,000
26.877
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p0
Pregunta: {{question}} Resposta:
2B
1,000
31.776
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
2B
1,000
24.958
pre-HPLT 3.0 CD
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
2B
1,000
24.916
pre-HPLT 3.0 CD
Language-specific & world knowledge
catalanqa
catalanqa_p0
Context: {{context}} Pregunta: {{question}} Resposta:
2B
1,000
3.233
pre-HPLT 3.0 CD
Language-specific & world knowledge
catalanqa
catalanqa_p1
{{context}} Pregunta: {{question}} Respecte al passatge anterior, la resposta correcta a la pregunta és
2B
1,000
2.214
pre-HPLT 3.0 CD
Language-specific & world knowledge
catalanqa
catalanqa_p2
Llegeix el següent passatge i contesta la pregunta. Passatge: {{context}} Pregunta: {{question}} Resposta:
2B
1,000
3.878
pre-HPLT 3.0 CD
Reading comprehension
catbelebele
catbelebele_p0
Passatge: {{flores_passage}} Pregunta: {{question.strip()}} A. {{mc_answer1}} B. {{mc_answer2}} C. {{mc_answer3}} D. {{mc_answer4}} Resposta:
2B
1,000
22.778
pre-HPLT 3.0 CD
Reading comprehension
catbelebele
catbelebele_p1
Llegeix el passatge i respon a la pregunta: {{flores_passage}} {{question.strip()}} Opció A: {{mc_answer1}} Opció B: {{mc_answer2}} Opció C: {{mc_answer3}} Opció D: {{mc_answer4}} És la resposta correcta A, B, C o D?
2B
1,000
27.889
pre-HPLT 3.0 CD
Reading comprehension
catbelebele
catbelebele_p2
{{flores_passage}} En base al passatge anterior, respon a la pregunta: {{question}} A: {{mc_answer1}} B: {{mc_answer2}} C: {{mc_answer3}} D: {{mc_answer4}} Quina és la resposta correcta?
2B
1,000
22.889
pre-HPLT 3.0 CD
Language knowledge
catcola
catcola_p0
{{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
2B
1,000
0
pre-HPLT 3.0 CD
Language knowledge
catcola
catcola_p1
Frase: {{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
2B
1,000
0
pre-HPLT 3.0 CD
Language knowledge
catcola
catcola_p2
Determina si la següent frase té sentit: {{Sentence}} Resposta:
2B
1,000
0
pre-HPLT 3.0 CD
Commonsense reasoning
cocoteros_va
cocoteros_va_p0
Genera una frase curta amb estes paraules: {{keywords}}. El context és: {{context}} Resposta:
2B
1,000
0.282
pre-HPLT 3.0 CD
Commonsense reasoning
cocoteros_va
cocoteros_va_p1
Escriu una frase curta amb aquestes paraules clau: {{keywords}}. Tingues en compte el següent context: {{context}}. Resposta:
2B
1,000
0.339
pre-HPLT 3.0 CD
Commonsense reasoning
cocoteros_va
cocoteros_va_p2
Construeix una oració tenint en compte el següent context: {{context}}. Utilitza les paraules clau: {{keywords}}. Resposta:
2B
1,000
0.385
pre-HPLT 3.0 CD
Commonsense reasoning
copa_ca
copa_ca_p0
{{premise[:-1].strip() + " " + {"cause": "perquè", "effect": "i per tant"}[question]}}
2B
1,000
56.8
pre-HPLT 3.0 CD
Commonsense reasoning
copa_ca
copa_ca_p1
{{premise[:-1].strip() + " " + {"cause": "atès que", "effect": "així que"}[question]}}
2B
1,000
55.6
pre-HPLT 3.0 CD
Commonsense reasoning
copa_ca
copa_ca_p2
{{premise[:-1].strip() + {"cause": " a causa que", "effect": ", i com a resultat,"}[question]}}
2B
1,000
57.6
pre-HPLT 3.0 CD
Reading comprehension
coqcat
coqcat_p0
{{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Q: "+questions[i]+"\n\n"+"A: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Q: "+questions[-1]+"\n\n"+"A:"}}
2B
1,000
13.206
pre-HPLT 3.0 CD
Reading comprehension
coqcat
coqcat_p1
Llegeix el següent passatge i contesta la pregunta\n\nPassatge: {{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
2B
1,000
11.385
pre-HPLT 3.0 CD
Reading comprehension
coqcat
coqcat_p2
Llegeix el següent passatge i contesta la pregunta\n\nPassatge: {{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
2B
1,000
11.385
pre-HPLT 3.0 CD
Machine translation
flores_en-ca
flores_en-ca_p0
Translate the following sentence into Catalan: {{sentence_eng_Latn}} Catalan:
2B
1,000
0.006
pre-HPLT 3.0 CD
Machine translation
flores_en-ca
flores_en-ca_p1
Translate the sentence from English to Catalan. Source sentence (English): {{sentence_eng_Latn}} Target sentence (Catalan):
2B
1,000
0.044
pre-HPLT 3.0 CD
Machine translation
flores_en-ca
flores_en-ca_p2
The following sentence is written in English. Translate it into Catalan. English: {{sentence_eng_Latn}} Catalan:
2B
1,000
0.05
pre-HPLT 3.0 CD
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p0
Pregunta: {{question}} Resposta:
2B
1,000
0
pre-HPLT 3.0 CD
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p1
Respon amb claredat i precisió a la pregunta següent {{question}} Resposta:
2B
1,000
0
pre-HPLT 3.0 CD
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p2
Respon a la següent pregunta: {{question}} Raona la teva resposta:
2B
1,000
0
pre-HPLT 3.0 CD
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p0
question_stem
2B
1,000
25.2
End of preview. Expand in Data Studio

HPLT 3.0: Deduplication Strategy Comparison Results

Dataset Description

This dataset contains fine-grained results from our HPLT 3.0 pre-release evaluations comparing different data deduplication stategies for the pre-HPLT 3.0 corpora with the previous HPLT 2.0 version. We compare the following data deduplication strategies to guide our design choices, and guard against data quality regression compared to HPLT 2.0: pre-HPLT 3.0 CD (per-crawl deduplication), pre-HPLT 3.0 GD (global deduplication), and pre-HPLT 3.0 GDR (global deduplication & rehydration). We pretrain 2.2B Llama-style decoder models on 30B tokens for each selected language and evaluate them using HPLT-E, a multilingual evaluation framework for comprehensive multi-prompt k-shot evaluation across 124 tasks and 500+ prompts in nine typologically diverse languages: Spanish (spa_Latn), French (fra_Latn), Czech (ces_Latn), Ukrainian (ukr_Cyrl), Finnish (fin_Latn), Catalan (cat_Latn), Galician (glg_Latn), Basque (eus_Latn), and Norwegian (Bokmål and Nynorsk; nor_Latn).

Please find more details in our paper and GitHub repository.

Uses

This dataset is intended for reproducibility and research purposes. Find an example on how to access the results:

from datasets import load_dataset

dataset = load_dataset("HPLT/2505-deduplication-evals", "spa_Latn", split="results").to_pandas()

Dataset Structure

Dataset Instances

Each dataset instance looks as follows:

{
  'corpus': 'HPLT 2.0',
  'category': 'Commonsense reasoning',
  'dataset': 'xstorycloze_es',
  'task': 'xstorycloze_es_p2',
  'prompt': "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4] | join(' ') }}\n¿Qué ocurre después?\nA. {{ sentence_quiz1}} \nB. {{sentence_quiz2}}\nRespuesta:",
  'model': '1B',
  'ckpt_num': 500,
  'score': 52.813}
}

Dataset Fields

  • corpus: corpus name (pre-HPLT 3.0 CD, pre-HPLT 3.0 GD, pre-HPLT 3.0 GDR, HPLT 2.0)
  • category: task category
  • dataset: evaluation dataset name
  • task: evaluation task (refers to a specific prompt)
  • prompt: prompt used for evaluation
  • model: number of pretraining tokens (B)
  • ckpt_num: number identifier for model
  • score: standard metric performance score

Cite Us

@article{oepen2025hplt,
  title={HPLT\~{} 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono-and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models},
  author={Oepen, Stephan and Arefev, Nikolay and Aulamo, Mikko and Ba{\~n}{\'o}n, Marta and Buljan, Maja and Burchell, Laurie and Charpentier, Lucas and Chen, Pinzhen and Fedorova, Mariya and de Gibert, Ona and others},
  journal={arXiv preprint arXiv:2511.01066},
  year={2025}
}

Contact Us

Downloads last month
20