name
stringlengths
7
15
uuid
stringlengths
36
36
split
stringclasses
1 value
lean4_statement
stringlengths
75
2.06k
full_text_no_abbrv
stringlengths
223
2.05k
full_text
stringlengths
226
2.1k
lean4_proof
stringclasses
1 value
informal_statement
stringlengths
4
898
informal_solution
stringlengths
4
282
tags
sequencelengths
0
3
coq_statement
stringclasses
1 value
isabelle_statement
stringclasses
1 value
putnam_2022_b1
0a162932-31ec-5537-8931-76c768859a2e
train
theorem putnam_2022_b1 (P : Polynomial β„€) (b : β„• β†’ ℝ) (Pconst : P.coeff 0 = 0) (Podd : Odd (P.coeff 1)) (hB : βˆ€ x : ℝ, HasSum (fun i => b i * x ^ i) (Real.exp (aeval x P))) : βˆ€ k : β„•, b k β‰  0 := sorry
import Mathlib open Polynomial /-- Suppose that $P(x)=a_1x+a_2x^2+\cdots+a_nx^n$ is a polynomial with integer coefficients, with $a_1$ odd. Suppose that $e^{P(x)}=b_0+b_1x+b_2x^2+\dots$ for all $x$. Prove that $b_k$ is nonzero for all $k \geq 0$. -/ theorem putnam_2022_b1 (P : Polynomial β„€) (b : β„• β†’ ℝ) (Pconst : P.coeff 0 = 0) (Podd : Odd (P.coeff 1)) (hB : βˆ€ x : ℝ, HasSum (fun i => b i * x ^ i) (Real.exp (aeval x P))) : βˆ€ k : β„•, b k β‰  0 := by
import Mathlib open Polynomial /-- Suppose that $P(x)=a_1x+a_2x^2+\cdots+a_nx^n$ is a polynomial with integer coefficients, with $a_1$ odd. Suppose that $e^{P(x)}=b_0+b_1x+b_2x^2+\dots$ for all $x$. Prove that $b_k$ is nonzero for all $k \geq 0$. -/ theorem putnam_2022_b1 (P : Polynomial β„€) (b : β„• β†’ ℝ) (Pconst : P.coeff 0 = 0) (Podd : Odd (P.coeff 1)) (hB : βˆ€ x : ℝ, HasSum (fun i => b i * x ^ i) (Real.exp (aeval x P))) : βˆ€ k : β„•, b k β‰  0 := sorry
Suppose that $P(x)=a_1x+a_2x^2+\cdots+a_nx^n$ is a polynomial with integer coefficients, with $a_1$ odd. Suppose that $e^{P(x)}=b_0+b_1x+b_2x^2+\dots$ for all $x$. Prove that $b_k$ is nonzero for all $k \geq 0$.
null
[ "analysis", "algebra" ]
null
null
putnam_1979_b2
43dceb56-b7c4-5924-92b3-0712a5daff68
train
abbrev putnam_1979_b2_solution : ℝ Γ— ℝ β†’ ℝ := sorry -- fun (a, b) => (Real.exp (-1))*(b^b/a^a)^(1/(b-a)) /-- If $0 < a < b$, find $$\lim_{t \to 0} \left( \int_{0}^{1}(bx + a(1-x))^t dx \right)^{\frac{1}{t}}$$ in terms of $a$ and $b$. -/ theorem putnam_1979_b2 : βˆ€ a b : ℝ, 0 < a ∧ a < b β†’ Tendsto (fun t : ℝ => (∫ x in Icc 0 1, (b*x + a*(1 - x))^t)^(1/t)) (𝓝[β‰ ] 0) (𝓝 (putnam_1979_b2_solution (a, b))) := sorry
import Mathlib open Set Topology Filter -- fun (a, b) => (Real.exp (-1))*(b^b/a^a)^(1/(b-a)) /-- If $0 < a < b$, find $$\lim_{t \to 0} \left( \int_{0}^{1}(bx + a(1-x))^t dx \right)^{\frac{1}{t}}$$ in terms of $a$ and $b$. -/ theorem putnam_1979_b2 : βˆ€ a b : ℝ, 0 < a ∧ a < b β†’ Tendsto (fun t : ℝ => (∫ x in Icc 0 1, (b*x + a*(1 - x))^t)^(1/t)) (𝓝[β‰ ] 0) (𝓝 (putnam_1979_b2_solution (a, b))) := by
import Mathlib open Set Topology Filter noncomputable abbrev putnam_1979_b2_solution : ℝ Γ— ℝ β†’ ℝ := sorry -- fun (a, b) => (Real.exp (-1))*(b^b/a^a)^(1/(b-a)) /-- If $0 < a < b$, find $$\lim_{t \to 0} \left( \int_{0}^{1}(bx + a(1-x))^t dx \right)^{\frac{1}{t}}$$ in terms of $a$ and $b$. -/ theorem putnam_1979_b2 : βˆ€ a b : ℝ, 0 < a ∧ a < b β†’ Tendsto (fun t : ℝ => (∫ x in Icc 0 1, (b*x + a*(1 - x))^t)^(1/t)) (𝓝[β‰ ] 0) (𝓝 (putnam_1979_b2_solution (a, b))) := sorry
If $0 < a < b$, find $$\lim_{t \to 0} \left( \int_{0}^{1}(bx + a(1-x))^t dx \right)^{\frac{1}{t}}$$ in terms of $a$ and $b$.
The limit equals $$e^{-1}\left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}}.$$
[ "analysis" ]
null
null
putnam_1990_b1
715a79e8-e37f-5f36-831c-6ea7a98a53d2
train
abbrev putnam_1990_b1_solution : Set (ℝ β†’ ℝ) := sorry -- {fun x : ℝ => (Real.sqrt 1990) * Real.exp x, fun x : ℝ => -(Real.sqrt 1990) * Real.exp x} /-- Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, $(f(x))^2=\int_0^x [(f(t))^2+(f'(t))^2]\,dt+1990$. -/ theorem putnam_1990_b1 (P : (ℝ β†’ ℝ) β†’ Prop) (P_def : βˆ€ f, P f ↔ βˆ€ x, (f x) ^ 2 = (∫ t in (0 : ℝ)..x, (f t) ^ 2 + (deriv f t) ^ 2) + 1990) (f : ℝ β†’ ℝ) : (ContDiff ℝ 1 f ∧ P f) ↔ f ∈ putnam_1990_b1_solution := sorry
import Mathlib open Filter Topology Nat -- {fun x : ℝ => (Real.sqrt 1990) * Real.exp x, fun x : ℝ => -(Real.sqrt 1990) * Real.exp x} /-- Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, $(f(x))^2=\int_0^x [(f(t))^2+(f'(t))^2]\,dt+1990$. -/ theorem putnam_1990_b1 (P : (ℝ β†’ ℝ) β†’ Prop) (P_def : βˆ€ f, P f ↔ βˆ€ x, (f x) ^ 2 = (∫ t in (0 : ℝ)..x, (f t) ^ 2 + (deriv f t) ^ 2) + 1990) (f : ℝ β†’ ℝ) : (ContDiff ℝ 1 f ∧ P f) ↔ f ∈ putnam_1990_b1_solution := by
import Mathlib open Filter Topology Nat abbrev putnam_1990_b1_solution : Set (ℝ β†’ ℝ) := sorry -- {fun x : ℝ => (Real.sqrt 1990) * Real.exp x, fun x : ℝ => -(Real.sqrt 1990) * Real.exp x} /-- Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, $(f(x))^2=\int_0^x [(f(t))^2+(f'(t))^2]\,dt+1990$. -/ theorem putnam_1990_b1 (P : (ℝ β†’ ℝ) β†’ Prop) (P_def : βˆ€ f, P f ↔ βˆ€ x, (f x) ^ 2 = (∫ t in (0 : ℝ)..x, (f t) ^ 2 + (deriv f t) ^ 2) + 1990) (f : ℝ β†’ ℝ) : (ContDiff ℝ 1 f ∧ P f) ↔ f ∈ putnam_1990_b1_solution := sorry
Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, $(f(x))^2=\int_0^x [(f(t))^2+(f'(t))^2]\,dt+1990$.
Show that there are two such functions, namely $f(x)=\sqrt{1990}e^x$, and $f(x)=-\sqrt{1990}e^x$.
[ "analysis" ]
null
null
putnam_1964_b6
b959f8d9-c5b8-5ed9-9f55-753078197239
train
theorem putnam_1964_b6 (D : Set (EuclideanSpace ℝ (Fin 2))) (hD : D = {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≀ 1}) (cong : Set (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hcong : βˆ€ A B, cong A B ↔ βˆƒ f : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ βˆ€ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w)) : (Β¬βˆƒ A B : Set (Fin 2 β†’ ℝ), cong A B ∧ A ∩ B = βˆ… ∧ A βˆͺ B = D) := sorry
import Mathlib open Set Function Filter Topology /-- Let $D$ be the unit disk in the plane. Show that we cannot find congruent sets $A, B$ with $A \cap B = \emptyset$ and $A \cup B = D$. -/ theorem putnam_1964_b6 (D : Set (EuclideanSpace ℝ (Fin 2))) (hD : D = {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≀ 1}) (cong : Set (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hcong : βˆ€ A B, cong A B ↔ βˆƒ f : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ βˆ€ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w)) : (Β¬βˆƒ A B : Set (Fin 2 β†’ ℝ), cong A B ∧ A ∩ B = βˆ… ∧ A βˆͺ B = D) := by
import Mathlib open Set Function Filter Topology /-- Let $D$ be the unit disk in the plane. Show that we cannot find congruent sets $A, B$ with $A \cap B = \emptyset$ and $A \cup B = D$. -/ theorem putnam_1964_b6 (D : Set (EuclideanSpace ℝ (Fin 2))) (hD : D = {v : EuclideanSpace ℝ (Fin 2) | dist 0 v ≀ 1}) (cong : Set (EuclideanSpace ℝ (Fin 2)) β†’ Set (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (hcong : βˆ€ A B, cong A B ↔ βˆƒ f : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)), B = f '' A ∧ βˆ€ v w : EuclideanSpace ℝ (Fin 2), dist v w = dist (f v) (f w)) : (Β¬βˆƒ A B : Set (Fin 2 β†’ ℝ), cong A B ∧ A ∩ B = βˆ… ∧ A βˆͺ B = D) := sorry
Let $D$ be the unit disk in the plane. Show that we cannot find congruent sets $A, B$ with $A \cap B = \emptyset$ and $A \cup B = D$.
null
[ "geometry" ]
null
null
putnam_1977_a5
1d6a5585-c2dc-587b-a954-e586bfb216da
train
theorem putnam_1977_a5 (p m n : β„•) (hp : Nat.Prime p) (hmgen : m β‰₯ n) : (choose (p * m) (p * n) ≑ choose m n [MOD p]) := sorry
import Mathlib open RingHom Set Nat /-- Let $p$ be a prime and $m \geq n$ be non-negative integers. Show that $\binom{pm}{pn} = \binom{m}{n} \pmod p$, where $\binom{m}{n}$ is the binomial coefficient. -/ theorem putnam_1977_a5 (p m n : β„•) (hp : Nat.Prime p) (hmgen : m β‰₯ n) : (choose (p * m) (p * n) ≑ choose m n [MOD p]) := by
import Mathlib open RingHom Set Nat /-- Let $p$ be a prime and $m \geq n$ be non-negative integers. Show that $\binom{pm}{pn} = \binom{m}{n} \pmod p$, where $\binom{m}{n}$ is the binomial coefficient. -/ theorem putnam_1977_a5 (p m n : β„•) (hp : Nat.Prime p) (hmgen : m β‰₯ n) : (choose (p * m) (p * n) ≑ choose m n [MOD p]) := sorry
Let $p$ be a prime and $m \geq n$ be non-negative integers. Show that $\binom{pm}{pn} = \binom{m}{n} \pmod p$, where $\binom{m}{n}$ is the binomial coefficient.
null
[ "algebra", "number_theory" ]
null
null
putnam_2001_a1
ebad0c32-b841-509f-a9a5-bc6bf3f39640
train
theorem putnam_2001_a1 (S : Type*) [Mul S] (hS : βˆ€ a b : S, (a * b) * a = b) : βˆ€ a b : S, a * (b * a) = b := sorry
import Mathlib open Topology Filter /-- Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\in S$, $a*b\in S$. Assume $(a*b)*a=b$ for all $a,b\in S$. Prove that $a*(b*a)=b$ for all $a,b\in S$. -/ theorem putnam_2001_a1 (S : Type*) [Mul S] (hS : βˆ€ a b : S, (a * b) * a = b) : βˆ€ a b : S, a * (b * a) = b := by
import Mathlib open Topology Filter /-- Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\in S$, $a*b\in S$. Assume $(a*b)*a=b$ for all $a,b\in S$. Prove that $a*(b*a)=b$ for all $a,b\in S$. -/ theorem putnam_2001_a1 (S : Type*) [Mul S] (hS : βˆ€ a b : S, (a * b) * a = b) : βˆ€ a b : S, a * (b * a) = b := sorry
Consider a set $S$ and a binary operation $*$, i.e., for each $a,b\in S$, $a*b\in S$. Assume $(a*b)*a=b$ for all $a,b\in S$. Prove that $a*(b*a)=b$ for all $a,b\in S$.
null
[ "abstract_algebra" ]
null
null
putnam_1992_a5
c800428c-6194-5432-969a-403fb0f86e81
train
theorem putnam_1992_a5 (a : β„• β†’ β„•) (ha : a = fun n ↦ ite (Even {i | (digits 2 n).get i = 1}.ncard) 0 1) : Β¬βˆƒ k > 0, βˆƒ m > 0, βˆ€ j ≀ m - 1, a (k + j) = a (k + m + j) ∧ a (k + m + j) = a (k + 2 * m + j) := sorry
import Mathlib open Topology Filter Nat Function /-- For each positive integer $n$, let $a_n = 0$ (or $1$) if the number of $1$'s in the binary representation of $n$ is even (or odd), respectively. Show that there do not exist positive integers $k$ and $m$ such that \[ a_{k+j} = a_{k+m+j} = a_{k+2m+j}, \] for $0 \leq j \leq m-1$. -/ theorem putnam_1992_a5 (a : β„• β†’ β„•) (ha : a = fun n ↦ ite (Even {i | (digits 2 n).get i = 1}.ncard) 0 1) : Β¬βˆƒ k > 0, βˆƒ m > 0, βˆ€ j ≀ m - 1, a (k + j) = a (k + m + j) ∧ a (k + m + j) = a (k + 2 * m + j) := by
import Mathlib open Topology Filter Nat Function /-- For each positive integer $n$, let $a_n = 0$ (or $1$) if the number of $1$'s in the binary representation of $n$ is even (or odd), respectively. Show that there do not exist positive integers $k$ and $m$ such that \[ a_{k+j} = a_{k+m+j} = a_{k+2m+j}, \] for $0 \leq j \leq m-1$. -/ theorem putnam_1992_a5 (a : β„• β†’ β„•) (ha : a = fun n ↦ ite (Even {i | (digits 2 n).get i = 1}.ncard) 0 1) : Β¬βˆƒ k > 0, βˆƒ m > 0, βˆ€ j ≀ m - 1, a (k + j) = a (k + m + j) ∧ a (k + m + j) = a (k + 2 * m + j) := sorry
For each positive integer $n$, let $a_n = 0$ (or $1$) if the number of $1$'s in the binary representation of $n$ is even (or odd), respectively. Show that there do not exist positive integers $k$ and $m$ such that \[ a_{k+j} = a_{k+m+j} = a_{k+2m+j}, \] for $0 \leq j \leq m-1$.
null
[ "algebra" ]
null
null
putnam_1998_b5
7e7dcc74-533b-5947-bb0b-3374e385d154
train
abbrev putnam_1998_b5_solution : β„• := sorry -- 1 /-- Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is, \[N=1111\cdots 11.\] Find the thousandth digit after the decimal point of $\sqrt N$. -/ theorem putnam_1998_b5 (N : β„•) (hN : N = βˆ‘ i in Finset.range 1998, 10^i) : putnam_1998_b5_solution = (Nat.floor (10^1000 * Real.sqrt N)) % 10 := sorry
import Mathlib open Set Function Metric -- 1 /-- Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is, \[N=1111\cdots 11.\] Find the thousandth digit after the decimal point of $\sqrt N$. -/ theorem putnam_1998_b5 (N : β„•) (hN : N = βˆ‘ i in Finset.range 1998, 10^i) : putnam_1998_b5_solution = (Nat.floor (10^1000 * Real.sqrt N)) % 10 := by
import Mathlib open Set Function Metric abbrev putnam_1998_b5_solution : β„• := sorry -- 1 /-- Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is, \[N=1111\cdots 11.\] Find the thousandth digit after the decimal point of $\sqrt N$. -/ theorem putnam_1998_b5 (N : β„•) (hN : N = βˆ‘ i in Finset.range 1998, 10^i) : putnam_1998_b5_solution = (Nat.floor (10^1000 * Real.sqrt N)) % 10 := sorry
Let $N$ be the positive integer with 1998 decimal digits, all of them 1; that is, \[N=1111\cdots 11.\] Find the thousandth digit after the decimal point of $\sqrt N$.
Show that the thousandth digit is 1.
[ "number_theory" ]
null
null
putnam_1974_a4
034d1284-8d0e-5bd2-8876-d8bc215abec4
train
abbrev putnam_1974_a4_solution : β„• β†’ β„š := sorry -- (fun n ↦ (1 : β„š) / (2 ^ (n - 1)) * (n * (n - 1).choose ⌊n / 2βŒ‹β‚Š)) /-- Evaluate in closed form: $\frac{1}{2^{n-1}} \sum_{k < n/2} (n-2k)*{n \choose k}$. -/ theorem putnam_1974_a4 (n : β„•) (hn : 0 < n) : (1 : β„š) / (2 ^ (n - 1)) * βˆ‘ k in Finset.Icc 0 ⌊n / 2βŒ‹β‚Š, (n - 2 * k) * (n.choose k) = putnam_1974_a4_solution n := sorry
import Mathlib open Set Nat -- (fun n ↦ (1 : β„š) / (2 ^ (n - 1)) * (n * (n - 1).choose ⌊n / 2βŒ‹β‚Š)) /-- Evaluate in closed form: $\frac{1}{2^{n-1}} \sum_{k < n/2} (n-2k)*{n \choose k}$. -/ theorem putnam_1974_a4 (n : β„•) (hn : 0 < n) : (1 : β„š) / (2 ^ (n - 1)) * βˆ‘ k in Finset.Icc 0 ⌊n / 2βŒ‹β‚Š, (n - 2 * k) * (n.choose k) = putnam_1974_a4_solution n := by
import Mathlib open Set Nat noncomputable abbrev putnam_1974_a4_solution : β„• β†’ β„š := sorry -- (fun n ↦ (1 : β„š) / (2 ^ (n - 1)) * (n * (n - 1).choose ⌊n / 2βŒ‹β‚Š)) /-- Evaluate in closed form: $\frac{1}{2^{n-1}} \sum_{k < n/2} (n-2k)*{n \choose k}$. -/ theorem putnam_1974_a4 (n : β„•) (hn : 0 < n) : (1 : β„š) / (2 ^ (n - 1)) * βˆ‘ k in Finset.Icc 0 ⌊n / 2βŒ‹β‚Š, (n - 2 * k) * (n.choose k) = putnam_1974_a4_solution n := sorry
Evaluate in closed form: $\frac{1}{2^{n-1}} \sum_{k < n/2} (n-2k)*{n \choose k}$.
Show that the solution is $\frac{n}{2^{n-1}} * {(n-1) \choose \left[ (n-1)/2 \right]}$.
[ "algebra" ]
null
null
putnam_1999_b3
2a72d4f6-0cf0-5ab0-9d9a-ec013caa2eb4
train
abbrev putnam_1999_b3_solution : ℝ := sorry -- 3 /-- Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let \[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\] where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate \[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\] -/ theorem putnam_1999_b3 (A : Set (ℝ Γ— ℝ)) (hA : A = {xy | 0 ≀ xy.1 ∧ xy.1 < 1 ∧ 0 ≀ xy.2 ∧ xy.2 < 1}) (S : ℝ β†’ ℝ β†’ ℝ) (hS : S = fun x y => βˆ‘' m : β„•, βˆ‘' n : β„•, if (m > 0 ∧ n > 0 ∧ 1/2 ≀ m/n ∧ m/n ≀ 2) then x^m * y^n else 0) : Tendsto (fun xy : (ℝ Γ— ℝ) => (1 - xy.1 * xy.2^2) * (1 - xy.1^2 * xy.2) * (S xy.1 xy.2)) (𝓝[A] ⟨1,1⟩) (𝓝 putnam_1999_b3_solution) := sorry
import Mathlib open Filter Topology Metric -- 3 /-- Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let \[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\] where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate \[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\] -/ theorem putnam_1999_b3 (A : Set (ℝ Γ— ℝ)) (hA : A = {xy | 0 ≀ xy.1 ∧ xy.1 < 1 ∧ 0 ≀ xy.2 ∧ xy.2 < 1}) (S : ℝ β†’ ℝ β†’ ℝ) (hS : S = fun x y => βˆ‘' m : β„•, βˆ‘' n : β„•, if (m > 0 ∧ n > 0 ∧ 1/2 ≀ m/n ∧ m/n ≀ 2) then x^m * y^n else 0) : Tendsto (fun xy : (ℝ Γ— ℝ) => (1 - xy.1 * xy.2^2) * (1 - xy.1^2 * xy.2) * (S xy.1 xy.2)) (𝓝[A] ⟨1,1⟩) (𝓝 putnam_1999_b3_solution) := by
import Mathlib open Filter Topology Metric abbrev putnam_1999_b3_solution : ℝ := sorry -- 3 /-- Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let \[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\] where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate \[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\] -/ theorem putnam_1999_b3 (A : Set (ℝ Γ— ℝ)) (hA : A = {xy | 0 ≀ xy.1 ∧ xy.1 < 1 ∧ 0 ≀ xy.2 ∧ xy.2 < 1}) (S : ℝ β†’ ℝ β†’ ℝ) (hS : S = fun x y => βˆ‘' m : β„•, βˆ‘' n : β„•, if (m > 0 ∧ n > 0 ∧ 1/2 ≀ m/n ∧ m/n ≀ 2) then x^m * y^n else 0) : Tendsto (fun xy : (ℝ Γ— ℝ) => (1 - xy.1 * xy.2^2) * (1 - xy.1^2 * xy.2) * (S xy.1 xy.2)) (𝓝[A] ⟨1,1⟩) (𝓝 putnam_1999_b3_solution) := sorry
Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let \[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\] where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate \[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\]
Show that the answer is 3.
[ "algebra" ]
null
null
putnam_1977_a4
4968e0fb-e488-5088-ba26-fef9d050f0a7
train
abbrev putnam_1977_a4_solution : RatFunc ℝ := sorry -- RatFunc.X / (1 - RatFunc.X) /-- Find $\sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+1}}}$ as a rational function of $x$ for $x \in (0, 1)$. -/ theorem putnam_1977_a4 : βˆ€ x ∈ Ioo 0 1, putnam_1977_a4_solution.eval (id ℝ) x = βˆ‘' n : β„•, x ^ 2 ^ n / (1 - x ^ 2 ^ (n + 1)) := sorry
import Mathlib open RingHom Set -- RatFunc.X / (1 - RatFunc.X) /-- Find $\sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+1}}}$ as a rational function of $x$ for $x \in (0, 1)$. -/ theorem putnam_1977_a4 : βˆ€ x ∈ Ioo 0 1, putnam_1977_a4_solution.eval (id ℝ) x = βˆ‘' n : β„•, x ^ 2 ^ n / (1 - x ^ 2 ^ (n + 1)) := by
import Mathlib open RingHom Set noncomputable abbrev putnam_1977_a4_solution : RatFunc ℝ := sorry -- RatFunc.X / (1 - RatFunc.X) /-- Find $\sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+1}}}$ as a rational function of $x$ for $x \in (0, 1)$. -/ theorem putnam_1977_a4 : βˆ€ x ∈ Ioo 0 1, putnam_1977_a4_solution.eval (id ℝ) x = βˆ‘' n : β„•, x ^ 2 ^ n / (1 - x ^ 2 ^ (n + 1)) := sorry
Find $\sum_{n=0}^{\infty} \frac{x^{2^n}}{1 - x^{2^{n+1}}}$ as a rational function of $x$ for $x \in (0, 1)$.
Prove that the sum equals $\frac{x}{1 - x}$.
[ "algebra", "analysis" ]
null
null
putnam_2012_a6
21cc9756-17f7-5d54-a411-73a189584e9e
train
abbrev putnam_2012_a6_solution : Prop := sorry -- True /-- Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2$. Suppose that, for every rectangular region $R$ of area $1$, the double integral of $f(x,y)$ over $R$ equals $0$. Must $f(x,y)$ be identically $0$? -/ theorem putnam_2012_a6 (p : ((ℝ Γ— ℝ) β†’ ℝ) β†’ Prop) (hp : βˆ€ f, p f ↔ Continuous f ∧ βˆ€ x1 x2 y1 y2 : ℝ, x2 > x1 β†’ y2 > y1 β†’ (x2 - x1) * (y2 - y1) = 1 β†’ ∫ x in x1..x2, ∫ y in y1..y2, f (x, y) = 0) : ((βˆ€ f x y, p f β†’ f (x, y) = 0) ↔ putnam_2012_a6_solution) := sorry
import Mathlib open Matrix Function -- Note: this formalization differs from the original problem wording in only allowing axis-aligned rectangles. The problem is solvable given this weaker hypothesis. -- True /-- Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2$. Suppose that, for every rectangular region $R$ of area $1$, the double integral of $f(x,y)$ over $R$ equals $0$. Must $f(x,y)$ be identically $0$? -/ theorem putnam_2012_a6 (p : ((ℝ Γ— ℝ) β†’ ℝ) β†’ Prop) (hp : βˆ€ f, p f ↔ Continuous f ∧ βˆ€ x1 x2 y1 y2 : ℝ, x2 > x1 β†’ y2 > y1 β†’ (x2 - x1) * (y2 - y1) = 1 β†’ ∫ x in x1..x2, ∫ y in y1..y2, f (x, y) = 0) : ((βˆ€ f x y, p f β†’ f (x, y) = 0) ↔ putnam_2012_a6_solution) := by
import Mathlib open Matrix Function -- Note: this formalization differs from the original problem wording in only allowing axis-aligned rectangles. The problem is solvable given this weaker hypothesis. abbrev putnam_2012_a6_solution : Prop := sorry -- True /-- Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2$. Suppose that, for every rectangular region $R$ of area $1$, the double integral of $f(x,y)$ over $R$ equals $0$. Must $f(x,y)$ be identically $0$? -/ theorem putnam_2012_a6 (p : ((ℝ Γ— ℝ) β†’ ℝ) β†’ Prop) (hp : βˆ€ f, p f ↔ Continuous f ∧ βˆ€ x1 x2 y1 y2 : ℝ, x2 > x1 β†’ y2 > y1 β†’ (x2 - x1) * (y2 - y1) = 1 β†’ ∫ x in x1..x2, ∫ y in y1..y2, f (x, y) = 0) : ((βˆ€ f x y, p f β†’ f (x, y) = 0) ↔ putnam_2012_a6_solution) := sorry
Let $f(x,y)$ be a continuous, real-valued function on $\mathbb{R}^2$. Suppose that, for every rectangular region $R$ of area $1$, the double integral of $f(x,y)$ over $R$ equals $0$. Must $f(x,y)$ be identically $0$?
Prove that $f(x,y)$ must be identically $0$.
[ "analysis" ]
null
null
putnam_1978_a6
dfd0faab-74f5-5b30-8344-f98238d7d79f
train
theorem putnam_1978_a6 (S : Finset (EuclideanSpace ℝ (Fin 2))) (n : β„•) (hn : n = S.card) (npos : n > 0) : ({pair : Set (EuclideanSpace ℝ (Fin 2)) | βˆƒ P ∈ S, βˆƒ Q ∈ S, pair = {P, Q} ∧ dist P Q = 1}.ncard < 2 * (n : ℝ) ^ ((3 : ℝ) / 2)) := sorry
import Mathlib open Set Real /-- Given $n$ distinct points in the plane, prove that fewer than $2n^{3/2}$ pairs of these points are a distance of $1$ apart. -/ theorem putnam_1978_a6 (S : Finset (EuclideanSpace ℝ (Fin 2))) (n : β„•) (hn : n = S.card) (npos : n > 0) : ({pair : Set (EuclideanSpace ℝ (Fin 2)) | βˆƒ P ∈ S, βˆƒ Q ∈ S, pair = {P, Q} ∧ dist P Q = 1}.ncard < 2 * (n : ℝ) ^ ((3 : ℝ) / 2)) := by
import Mathlib open Set Real /-- Given $n$ distinct points in the plane, prove that fewer than $2n^{3/2}$ pairs of these points are a distance of $1$ apart. -/ theorem putnam_1978_a6 (S : Finset (EuclideanSpace ℝ (Fin 2))) (n : β„•) (hn : n = S.card) (npos : n > 0) : ({pair : Set (EuclideanSpace ℝ (Fin 2)) | βˆƒ P ∈ S, βˆƒ Q ∈ S, pair = {P, Q} ∧ dist P Q = 1}.ncard < 2 * (n : ℝ) ^ ((3 : ℝ) / 2)) := sorry
Given $n$ distinct points in the plane, prove that fewer than $2n^{3/2}$ pairs of these points are a distance of $1$ apart.
null
[ "geometry", "combinatorics" ]
null
null
putnam_2010_a1
6f593012-f770-5642-9906-b1a3b5a86bf7
train
abbrev putnam_2010_a1_solution : β„• β†’ β„• := sorry -- (fun n : β„• => Nat.ceil ((n : ℝ) / 2)) /-- Given a positive integer $n$, what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is \emph{at least} $3$.] -/ theorem putnam_2010_a1 (n : β„•) (kboxes : β„• β†’ Prop) (npos : n > 0) (hkboxes : βˆ€ k : β„•, kboxes k = (βˆƒ boxes : Finset.Icc 1 n β†’ Fin k, βˆ€ i j : Fin k, βˆ‘ x in Finset.univ.filter (boxes Β· = i), (x : β„•) = βˆ‘ x in Finset.univ.filter (boxes Β· = j), (x : β„•))) : IsGreatest kboxes (putnam_2010_a1_solution n) := sorry
import Mathlib -- (fun n : β„• => Nat.ceil ((n : ℝ) / 2)) /-- Given a positive integer $n$, what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is \emph{at least} $3$.] -/ theorem putnam_2010_a1 (n : β„•) (kboxes : β„• β†’ Prop) (npos : n > 0) (hkboxes : βˆ€ k : β„•, kboxes k = (βˆƒ boxes : Finset.Icc 1 n β†’ Fin k, βˆ€ i j : Fin k, βˆ‘ x in Finset.univ.filter (boxes Β· = i), (x : β„•) = βˆ‘ x in Finset.univ.filter (boxes Β· = j), (x : β„•))) : IsGreatest kboxes (putnam_2010_a1_solution n) := by
import Mathlib noncomputable abbrev putnam_2010_a1_solution : β„• β†’ β„• := sorry -- (fun n : β„• => Nat.ceil ((n : ℝ) / 2)) /-- Given a positive integer $n$, what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is \emph{at least} $3$.] -/ theorem putnam_2010_a1 (n : β„•) (kboxes : β„• β†’ Prop) (npos : n > 0) (hkboxes : βˆ€ k : β„•, kboxes k = (βˆƒ boxes : Finset.Icc 1 n β†’ Fin k, βˆ€ i j : Fin k, βˆ‘ x in Finset.univ.filter (boxes Β· = i), (x : β„•) = βˆ‘ x in Finset.univ.filter (boxes Β· = j), (x : β„•))) : IsGreatest kboxes (putnam_2010_a1_solution n) := sorry
Given a positive integer $n$, what is the largest $k$ such that the numbers $1,2,\dots,n$ can be put into $k$ boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest $k$ is \emph{at least} $3$.]
Show that the largest such $k$ is $\lceil \frac{n}{2} \rceil$.
[ "algebra" ]
null
null
putnam_1972_a5
2b1b56c2-f1c6-58b5-b399-21f9bd3f79d4
train
theorem putnam_1972_a5 (n : β„•) (hn : n > 1) : Β¬((n : β„€) ∣ 2^n - 1) := sorry
import Mathlib open EuclideanGeometry Filter Topology Set /-- Show that if $n$ is an integer greater than $1$, then $n$ does not divide $2^n - 1$. -/ theorem putnam_1972_a5 (n : β„•) (hn : n > 1) : Β¬((n : β„€) ∣ 2^n - 1) := by
import Mathlib open EuclideanGeometry Filter Topology Set /-- Show that if $n$ is an integer greater than $1$, then $n$ does not divide $2^n - 1$. -/ theorem putnam_1972_a5 (n : β„•) (hn : n > 1) : Β¬((n : β„€) ∣ 2^n - 1) := sorry
Show that if $n$ is an integer greater than $1$, then $n$ does not divide $2^n - 1$.
null
[ "number_theory" ]
null
null
putnam_1971_a2
6b5a1953-92c9-57c3-9376-cb4fbd79d624
train
abbrev putnam_1971_a2_solution : Set (Polynomial ℝ) := sorry -- {Polynomial.X} /-- Determine all polynomials $P(x)$ such that $P(x^2 + 1) = (P(x))^2 + 1$ and $P(0) = 0$. -/ theorem putnam_1971_a2 (P : Polynomial ℝ) : (P.eval 0 = 0 ∧ (βˆ€ x : ℝ, P.eval (x^2 + 1) = (P.eval x)^2 + 1)) ↔ P ∈ putnam_1971_a2_solution := sorry
import Mathlib open Set -- {Polynomial.X} /-- Determine all polynomials $P(x)$ such that $P(x^2 + 1) = (P(x))^2 + 1$ and $P(0) = 0$. -/ theorem putnam_1971_a2 (P : Polynomial ℝ) : (P.eval 0 = 0 ∧ (βˆ€ x : ℝ, P.eval (x^2 + 1) = (P.eval x)^2 + 1)) ↔ P ∈ putnam_1971_a2_solution := by
import Mathlib open Set abbrev putnam_1971_a2_solution : Set (Polynomial ℝ) := sorry -- {Polynomial.X} /-- Determine all polynomials $P(x)$ such that $P(x^2 + 1) = (P(x))^2 + 1$ and $P(0) = 0$. -/ theorem putnam_1971_a2 (P : Polynomial ℝ) : (P.eval 0 = 0 ∧ (βˆ€ x : ℝ, P.eval (x^2 + 1) = (P.eval x)^2 + 1)) ↔ P ∈ putnam_1971_a2_solution := sorry
Determine all polynomials $P(x)$ such that $P(x^2 + 1) = (P(x))^2 + 1$ and $P(0) = 0$.
Show that the only such polynomial is the identity function.
[ "algebra" ]
null
null
putnam_1968_b2
1a400940-171a-566c-939c-a8d9beeec997
train
theorem putnam_1968_b2 {G : Type*} [Group G] (hG : Finite G) (A : Set G) (hA : A.ncard > (Nat.card G : β„š)/2) : βˆ€ g : G, βˆƒ x ∈ A, βˆƒ y ∈ A, g = x * y := sorry
import Mathlib open Finset Polynomial /-- Let $G$ be a finite group (with a multiplicative operation), and $A$ be a subset of $G$ that contains more than half of $G$'s elements. Prove that every element of $G$ can be expressed as the product of two elements of $A$. -/ theorem putnam_1968_b2 {G : Type*} [Group G] (hG : Finite G) (A : Set G) (hA : A.ncard > (Nat.card G : β„š)/2) : βˆ€ g : G, βˆƒ x ∈ A, βˆƒ y ∈ A, g = x * y := by
import Mathlib open Finset Polynomial /-- Let $G$ be a finite group (with a multiplicative operation), and $A$ be a subset of $G$ that contains more than half of $G$'s elements. Prove that every element of $G$ can be expressed as the product of two elements of $A$. -/ theorem putnam_1968_b2 {G : Type*} [Group G] (hG : Finite G) (A : Set G) (hA : A.ncard > (Nat.card G : β„š)/2) : βˆ€ g : G, βˆƒ x ∈ A, βˆƒ y ∈ A, g = x * y := sorry
Let $G$ be a finite group (with a multiplicative operation), and $A$ be a subset of $G$ that contains more than half of $G$'s elements. Prove that every element of $G$ can be expressed as the product of two elements of $A$.
null
[ "abstract_algebra" ]
null
null
putnam_1971_b6
82b8c24c-f1c2-5883-bf42-3ff0ee616fec
train
theorem putnam_1971_b6 (Ξ΄ : β„€ β†’ β„€) (hΞ΄ : Ξ΄ = fun n => sSup {t | Odd t ∧ t ∣ n}) : βˆ€ x : β„€, x > 0 β†’ |βˆ‘ i in Finset.Icc 1 x, (Ξ΄ i)/(i : β„š) - 2*x/3| < 1 := sorry
import Mathlib open Set MvPolynomial /-- Let $\delta(x) be the greatest odd divisor of the positive integer $x$. Show that $|\sum_{n = 1}^x \delta(n)/n - 2x/3| < 1$ for all positive integers $x$. -/ theorem putnam_1971_b6 (Ξ΄ : β„€ β†’ β„€) (hΞ΄ : Ξ΄ = fun n => sSup {t | Odd t ∧ t ∣ n}) : βˆ€ x : β„€, x > 0 β†’ |βˆ‘ i in Finset.Icc 1 x, (Ξ΄ i)/(i : β„š) - 2*x/3| < 1 := by
import Mathlib open Set MvPolynomial /-- Let $\delta(x) be the greatest odd divisor of the positive integer $x$. Show that $|\sum_{n = 1}^x \delta(n)/n - 2x/3| < 1$ for all positive integers $x$. -/ theorem putnam_1971_b6 (Ξ΄ : β„€ β†’ β„€) (hΞ΄ : Ξ΄ = fun n => sSup {t | Odd t ∧ t ∣ n}) : βˆ€ x : β„€, x > 0 β†’ |βˆ‘ i in Finset.Icc 1 x, (Ξ΄ i)/(i : β„š) - 2*x/3| < 1 := sorry
Let $\delta(x) be the greatest odd divisor of the positive integer $x$. Show that $|\sum_{n = 1}^x \delta(n)/n - 2x/3| < 1$ for all positive integers $x$.
null
[ "number_theory" ]
null
null
putnam_2002_a2
33ff015a-9a99-5267-a913-fc05c0233593
train
theorem putnam_2002_a2 (unit_sphere : Set (EuclideanSpace ℝ (Fin 3))) (hsphere : unit_sphere = sphere 0 1) (hemi : EuclideanSpace ℝ (Fin 3) β†’ Set (EuclideanSpace ℝ (Fin 3))) (hhemi : hemi = fun V ↦ {P : EuclideanSpace ℝ (Fin 3) | βŸͺP, V⟫_ℝ β‰₯ 0}) : (βˆ€ (S : Set (EuclideanSpace ℝ (Fin 3))), S βŠ† unit_sphere ∧ S.encard = 5 β†’ βˆƒ V : EuclideanSpace ℝ (Fin 3), V β‰  0 ∧ (S ∩ hemi V).encard β‰₯ 4) := sorry
import Mathlib open Nat Metric open scoped InnerProductSpace /-- Given any five points on a sphere, show that some four of them must lie on a closed hemisphere. -/ theorem putnam_2002_a2 (unit_sphere : Set (EuclideanSpace ℝ (Fin 3))) (hsphere : unit_sphere = sphere 0 1) (hemi : EuclideanSpace ℝ (Fin 3) β†’ Set (EuclideanSpace ℝ (Fin 3))) (hhemi : hemi = fun V ↦ {P : EuclideanSpace ℝ (Fin 3) | βŸͺP, V⟫_ℝ β‰₯ 0}) : (βˆ€ (S : Set (EuclideanSpace ℝ (Fin 3))), S βŠ† unit_sphere ∧ S.encard = 5 β†’ βˆƒ V : EuclideanSpace ℝ (Fin 3), V β‰  0 ∧ (S ∩ hemi V).encard β‰₯ 4) := by
import Mathlib open Nat Metric open scoped InnerProductSpace /-- Given any five points on a sphere, show that some four of them must lie on a closed hemisphere. -/ theorem putnam_2002_a2 (unit_sphere : Set (EuclideanSpace ℝ (Fin 3))) (hsphere : unit_sphere = sphere 0 1) (hemi : EuclideanSpace ℝ (Fin 3) β†’ Set (EuclideanSpace ℝ (Fin 3))) (hhemi : hemi = fun V ↦ {P : EuclideanSpace ℝ (Fin 3) | βŸͺP, V⟫_ℝ β‰₯ 0}) : (βˆ€ (S : Set (EuclideanSpace ℝ (Fin 3))), S βŠ† unit_sphere ∧ S.encard = 5 β†’ βˆƒ V : EuclideanSpace ℝ (Fin 3), V β‰  0 ∧ (S ∩ hemi V).encard β‰₯ 4) := sorry
Given any five points on a sphere, show that some four of them must lie on a closed hemisphere.
null
[ "geometry" ]
null
null
putnam_1993_b3
e0a38cb0-28ef-5577-8d94-9cddbadbaf90
train
abbrev putnam_1993_b3_solution : β„š Γ— β„š := sorry -- (5 / 4, -1 / 4) /-- Two real numbers $x$ and $y$ are chosen at random in the interval $(0,1)$ with respect to the uniform distribution. What is the probability that the closest integer to $x/y$ is even? Express the answer in the form $r+s\pi$, where $r$ and $s$ are rational numbers. -/ theorem putnam_1993_b3 : let (r, s) := putnam_1993_b3_solution; (MeasureTheory.volume {p : Fin 2 β†’ ℝ | 0 < p ∧ p < 1 ∧ Even (round (p 0 / p 1))} ).toReal = r + s * Real.pi := sorry
import Mathlib -- (5 / 4, -1 / 4) /-- Two real numbers $x$ and $y$ are chosen at random in the interval $(0,1)$ with respect to the uniform distribution. What is the probability that the closest integer to $x/y$ is even? Express the answer in the form $r+s\pi$, where $r$ and $s$ are rational numbers. -/ theorem putnam_1993_b3 : let (r, s) := putnam_1993_b3_solution; (MeasureTheory.volume {p : Fin 2 β†’ ℝ | 0 < p ∧ p < 1 ∧ Even (round (p 0 / p 1))} ).toReal = r + s * Real.pi := by
import Mathlib abbrev putnam_1993_b3_solution : β„š Γ— β„š := sorry -- (5 / 4, -1 / 4) /-- Two real numbers $x$ and $y$ are chosen at random in the interval $(0,1)$ with respect to the uniform distribution. What is the probability that the closest integer to $x/y$ is even? Express the answer in the form $r+s\pi$, where $r$ and $s$ are rational numbers. -/ theorem putnam_1993_b3 : let (r, s) := putnam_1993_b3_solution; (MeasureTheory.volume {p : Fin 2 β†’ ℝ | 0 < p ∧ p < 1 ∧ Even (round (p 0 / p 1))} ).toReal = r + s * Real.pi := sorry
Two real numbers $x$ and $y$ are chosen at random in the interval $(0,1)$ with respect to the uniform distribution. What is the probability that the closest integer to $x/y$ is even? Express the answer in the form $r+s\pi$, where $r$ and $s$ are rational numbers.
Show that the limit is $(5-\pi)/4$. That is, $r=5/4$ and $s=-1/4$.
[ "probability", "number_theory", "geometry" ]
null
null
putnam_2005_b6
64b4bbbc-8289-5418-aedd-1b695ad3084a
train
theorem putnam_2005_b6 (n : β„•) (v : Equiv.Perm (Fin n) β†’ β„•) (npos : n β‰₯ 1) (hv : βˆ€ p : Equiv.Perm (Fin n), v p = Set.encard {i : Fin n | p i = i}) : (βˆ‘ p : Equiv.Perm (Fin n), (Equiv.Perm.signAux p : β„€) / (v p + 1 : ℝ)) = (-1) ^ (n + 1) * (n / (n + 1 : ℝ)) := sorry
import Mathlib open Nat Set /-- Let $S_n$ denote the set of all permutations of the numbers $1,2,\dots,n$. For $\pi \in S_n$, let $\sigma(\pi)=1$ if $\pi$ is an even permutation and $\sigma(\pi)=-1$ if $\pi$ is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of $\pi$. Show that $\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1}\frac{n}{n+1}$. -/ theorem putnam_2005_b6 (n : β„•) (v : Equiv.Perm (Fin n) β†’ β„•) (npos : n β‰₯ 1) (hv : βˆ€ p : Equiv.Perm (Fin n), v p = Set.encard {i : Fin n | p i = i}) : (βˆ‘ p : Equiv.Perm (Fin n), (Equiv.Perm.signAux p : β„€) / (v p + 1 : ℝ)) = (-1) ^ (n + 1) * (n / (n + 1 : ℝ)) := by
import Mathlib open Nat Set /-- Let $S_n$ denote the set of all permutations of the numbers $1,2,\dots,n$. For $\pi \in S_n$, let $\sigma(\pi)=1$ if $\pi$ is an even permutation and $\sigma(\pi)=-1$ if $\pi$ is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of $\pi$. Show that $\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1}\frac{n}{n+1}$. -/ theorem putnam_2005_b6 (n : β„•) (v : Equiv.Perm (Fin n) β†’ β„•) (npos : n β‰₯ 1) (hv : βˆ€ p : Equiv.Perm (Fin n), v p = Set.encard {i : Fin n | p i = i}) : (βˆ‘ p : Equiv.Perm (Fin n), (Equiv.Perm.signAux p : β„€) / (v p + 1 : ℝ)) = (-1) ^ (n + 1) * (n / (n + 1 : ℝ)) := sorry
Let $S_n$ denote the set of all permutations of the numbers $1,2,\dots,n$. For $\pi \in S_n$, let $\sigma(\pi)=1$ if $\pi$ is an even permutation and $\sigma(\pi)=-1$ if $\pi$ is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of $\pi$. Show that $\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1}\frac{n}{n+1}$.
null
[ "linear_algebra", "algebra" ]
null
null
putnam_1980_b1
83e138c8-4f27-570e-a433-5ab468a30e9f
train
abbrev putnam_1980_b1_solution : Set ℝ := sorry -- {c : ℝ | c β‰₯ 1 / 2} /-- For which real numbers $c$ is $(e^x+e^{-x})/2 \leq e^{cx^2}$ for all real $x$? -/ theorem putnam_1980_b1 (c : ℝ) : (βˆ€ x : ℝ, (exp x + exp (-x)) / 2 ≀ exp (c * x ^ 2)) ↔ c ∈ putnam_1980_b1_solution := sorry
import Mathlib open Real -- {c : ℝ | c β‰₯ 1 / 2} /-- For which real numbers $c$ is $(e^x+e^{-x})/2 \leq e^{cx^2}$ for all real $x$? -/ theorem putnam_1980_b1 (c : ℝ) : (βˆ€ x : ℝ, (exp x + exp (-x)) / 2 ≀ exp (c * x ^ 2)) ↔ c ∈ putnam_1980_b1_solution := by
import Mathlib open Real abbrev putnam_1980_b1_solution : Set ℝ := sorry -- {c : ℝ | c β‰₯ 1 / 2} /-- For which real numbers $c$ is $(e^x+e^{-x})/2 \leq e^{cx^2}$ for all real $x$? -/ theorem putnam_1980_b1 (c : ℝ) : (βˆ€ x : ℝ, (exp x + exp (-x)) / 2 ≀ exp (c * x ^ 2)) ↔ c ∈ putnam_1980_b1_solution := sorry
For which real numbers $c$ is $(e^x+e^{-x})/2 \leq e^{cx^2}$ for all real $x$?
Show that the inequality holds if and only if $c \geq 1/2$.
[ "analysis" ]
null
null
putnam_2011_a2
0780d3f8-f6a6-5094-91db-e3a4b790d8fe
train
abbrev putnam_2011_a2_solution : ℝ := sorry -- 3/2 /-- Let $a_1,a_2,\dots$ and $b_1,b_2,\dots$ be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1} a_n - 2$ for$n=2,3,\dots$. Assume that the sequence $(b_j)$ is bounded. Prove tha \[ S = \sum_{n=1}^\infty \frac{1}{a_1...a_n} \] converges, and evaluate $S$. -/ theorem putnam_2011_a2 (a b : β„• β†’ ℝ) (habn : βˆ€ n : β„•, a n > 0 ∧ b n > 0) (hab1 : a 0 = 1 ∧ b 0 = 1) (hb : βˆ€ n β‰₯ 1, b n = b (n-1) * a n - 2) (hbnd : βˆƒ B : ℝ, βˆ€ n : β„•, |b n| ≀ B) : Tendsto (fun n => βˆ‘ i : Fin n, 1/(∏ j : Fin (i + 1), (a j))) atTop (𝓝 putnam_2011_a2_solution) := sorry
import Mathlib open Topology Filter -- 3/2 /-- Let $a_1,a_2,\dots$ and $b_1,b_2,\dots$ be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1} a_n - 2$ for$n=2,3,\dots$. Assume that the sequence $(b_j)$ is bounded. Prove tha \[ S = \sum_{n=1}^\infty \frac{1}{a_1...a_n} \] converges, and evaluate $S$. -/ theorem putnam_2011_a2 (a b : β„• β†’ ℝ) (habn : βˆ€ n : β„•, a n > 0 ∧ b n > 0) (hab1 : a 0 = 1 ∧ b 0 = 1) (hb : βˆ€ n β‰₯ 1, b n = b (n-1) * a n - 2) (hbnd : βˆƒ B : ℝ, βˆ€ n : β„•, |b n| ≀ B) : Tendsto (fun n => βˆ‘ i : Fin n, 1/(∏ j : Fin (i + 1), (a j))) atTop (𝓝 putnam_2011_a2_solution) := by
import Mathlib open Topology Filter noncomputable abbrev putnam_2011_a2_solution : ℝ := sorry -- 3/2 /-- Let $a_1,a_2,\dots$ and $b_1,b_2,\dots$ be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1} a_n - 2$ for$n=2,3,\dots$. Assume that the sequence $(b_j)$ is bounded. Prove tha \[ S = \sum_{n=1}^\infty \frac{1}{a_1...a_n} \] converges, and evaluate $S$. -/ theorem putnam_2011_a2 (a b : β„• β†’ ℝ) (habn : βˆ€ n : β„•, a n > 0 ∧ b n > 0) (hab1 : a 0 = 1 ∧ b 0 = 1) (hb : βˆ€ n β‰₯ 1, b n = b (n-1) * a n - 2) (hbnd : βˆƒ B : ℝ, βˆ€ n : β„•, |b n| ≀ B) : Tendsto (fun n => βˆ‘ i : Fin n, 1/(∏ j : Fin (i + 1), (a j))) atTop (𝓝 putnam_2011_a2_solution) := sorry
Let $a_1,a_2,\dots$ and $b_1,b_2,\dots$ be sequences of positive real numbers such that $a_1 = b_1 = 1$ and $b_n = b_{n-1} a_n - 2$ for$n=2,3,\dots$. Assume that the sequence $(b_j)$ is bounded. Prove tha \[ S = \sum_{n=1}^\infty \frac{1}{a_1...a_n} \] converges, and evaluate $S$.
Show that the solution is $S = 3/2$.
[ "analysis" ]
null
null
putnam_1988_b2
2b29edb7-5a43-59dd-8e74-92e0e440a7de
train
abbrev putnam_1988_b2_solution : Prop := sorry -- True /-- Prove or disprove: If $x$ and $y$ are real numbers with $y \geq 0$ and $y(y+1) \leq (x+1)^2$, then $y(y-1) \leq x^2$. -/ theorem putnam_1988_b2 : (βˆ€ x y : ℝ, (y β‰₯ 0 ∧ y * (y + 1) ≀ (x + 1) ^ 2) β†’ (y * (y - 1) ≀ x ^ 2)) ↔ putnam_1988_b2_solution := sorry
import Mathlib open Set Filter Topology -- True /-- Prove or disprove: If $x$ and $y$ are real numbers with $y \geq 0$ and $y(y+1) \leq (x+1)^2$, then $y(y-1) \leq x^2$. -/ theorem putnam_1988_b2 : (βˆ€ x y : ℝ, (y β‰₯ 0 ∧ y * (y + 1) ≀ (x + 1) ^ 2) β†’ (y * (y - 1) ≀ x ^ 2)) ↔ putnam_1988_b2_solution := by
import Mathlib open Set Filter Topology abbrev putnam_1988_b2_solution : Prop := sorry -- True /-- Prove or disprove: If $x$ and $y$ are real numbers with $y \geq 0$ and $y(y+1) \leq (x+1)^2$, then $y(y-1) \leq x^2$. -/ theorem putnam_1988_b2 : (βˆ€ x y : ℝ, (y β‰₯ 0 ∧ y * (y + 1) ≀ (x + 1) ^ 2) β†’ (y * (y - 1) ≀ x ^ 2)) ↔ putnam_1988_b2_solution := sorry
Prove or disprove: If $x$ and $y$ are real numbers with $y \geq 0$ and $y(y+1) \leq (x+1)^2$, then $y(y-1) \leq x^2$.
Show that this is true.
[ "algebra" ]
null
null
putnam_1998_a6
a5c572a5-bf9e-50d4-a6e2-787b3ecb21cc
train
theorem putnam_1998_a6 (A B C : EuclideanSpace ℝ (Fin 2)) (hint : βˆ€ i : Fin 2, βˆƒ a b c : β„€, A i = a ∧ B i = b ∧ C i = c) (htriangle : A β‰  B ∧ A β‰  C ∧ B β‰  C) (harea : (dist A B + dist B C) ^ 2 < 8 * (MeasureTheory.volume (convexHull ℝ {A, B, C})).toReal + 1) (threesquare : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (threesquare_def : threesquare = fun P Q R ↦ dist Q P = dist Q R ∧ βŸͺP - Q, R - Q⟫_ℝ = 0) : (threesquare A B C ∨ threesquare B C A ∨ threesquare C A B) := sorry
import Mathlib open Set Function Metric open scoped InnerProductSpace /-- Let $A, B, C$ denote distinct points with integer coordinates in $\mathbb R^2$. Prove that if \[(|AB|+|BC|)^2<8\cdot [ABC]+1\] then $A, B, C$ are three vertices of a square. Here $|XY|$ is the length of segment $XY$ and $[ABC]$ is the area of triangle $ABC$. -/ theorem putnam_1998_a6 (A B C : EuclideanSpace ℝ (Fin 2)) (hint : βˆ€ i : Fin 2, βˆƒ a b c : β„€, A i = a ∧ B i = b ∧ C i = c) (htriangle : A β‰  B ∧ A β‰  C ∧ B β‰  C) (harea : (dist A B + dist B C) ^ 2 < 8 * (MeasureTheory.volume (convexHull ℝ {A, B, C})).toReal + 1) (threesquare : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (threesquare_def : threesquare = fun P Q R ↦ dist Q P = dist Q R ∧ βŸͺP - Q, R - Q⟫_ℝ = 0) : (threesquare A B C ∨ threesquare B C A ∨ threesquare C A B) := by
import Mathlib open Set Function Metric open scoped InnerProductSpace /-- Let $A, B, C$ denote distinct points with integer coordinates in $\mathbb R^2$. Prove that if \[(|AB|+|BC|)^2<8\cdot [ABC]+1\] then $A, B, C$ are three vertices of a square. Here $|XY|$ is the length of segment $XY$ and $[ABC]$ is the area of triangle $ABC$. -/ theorem putnam_1998_a6 (A B C : EuclideanSpace ℝ (Fin 2)) (hint : βˆ€ i : Fin 2, βˆƒ a b c : β„€, A i = a ∧ B i = b ∧ C i = c) (htriangle : A β‰  B ∧ A β‰  C ∧ B β‰  C) (harea : (dist A B + dist B C) ^ 2 < 8 * (MeasureTheory.volume (convexHull ℝ {A, B, C})).toReal + 1) (threesquare : (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ (EuclideanSpace ℝ (Fin 2)) β†’ Prop) (threesquare_def : threesquare = fun P Q R ↦ dist Q P = dist Q R ∧ βŸͺP - Q, R - Q⟫_ℝ = 0) : (threesquare A B C ∨ threesquare B C A ∨ threesquare C A B) := sorry
Let $A, B, C$ denote distinct points with integer coordinates in $\mathbb R^2$. Prove that if \[(|AB|+|BC|)^2<8\cdot [ABC]+1\] then $A, B, C$ are three vertices of a square. Here $|XY|$ is the length of segment $XY$ and $[ABC]$ is the area of triangle $ABC$.
null
[ "geometry" ]
null
null
putnam_2014_a6
b888a781-cd7c-56af-bc63-896f0383b7d4
train
abbrev putnam_2014_a6_solution : β„• β†’ β„• := sorry -- (fun n : β„• => n ^ n) /-- Let \( n \) be a positive integer. What is the largest \( k \) for which there exist \( n \times n \) matrices \( M_1, \ldots, M_k \) and \( N_1, \ldots, N_k \) with real entries such that for all \( i \) and \( j \), the matrix product \( M_i N_j \) has a zero entry somewhere on its diagonal if and only if \( i \neq j \)? -/ theorem putnam_2014_a6 (n : β„•) (kex : β„• β†’ Prop) (npos : n > 0) (hkex : βˆ€ k β‰₯ 1, kex k = βˆƒ M N : Fin k β†’ Matrix (Fin n) (Fin n) ℝ, βˆ€ i j : Fin k, ((βˆƒ p : Fin n, (M i * N j) p p = 0) ↔ i β‰  j)) : (putnam_2014_a6_solution n β‰₯ 1 ∧ kex (putnam_2014_a6_solution n)) ∧ (βˆ€ k β‰₯ 1, kex k β†’ k ≀ putnam_2014_a6_solution n) := sorry
import Mathlib open Topology Filter Nat -- (fun n : β„• => n ^ n) /-- Let \( n \) be a positive integer. What is the largest \( k \) for which there exist \( n \times n \) matrices \( M_1, \ldots, M_k \) and \( N_1, \ldots, N_k \) with real entries such that for all \( i \) and \( j \), the matrix product \( M_i N_j \) has a zero entry somewhere on its diagonal if and only if \( i \neq j \)? -/ theorem putnam_2014_a6 (n : β„•) (kex : β„• β†’ Prop) (npos : n > 0) (hkex : βˆ€ k β‰₯ 1, kex k = βˆƒ M N : Fin k β†’ Matrix (Fin n) (Fin n) ℝ, βˆ€ i j : Fin k, ((βˆƒ p : Fin n, (M i * N j) p p = 0) ↔ i β‰  j)) : (putnam_2014_a6_solution n β‰₯ 1 ∧ kex (putnam_2014_a6_solution n)) ∧ (βˆ€ k β‰₯ 1, kex k β†’ k ≀ putnam_2014_a6_solution n) := by
import Mathlib open Topology Filter Nat abbrev putnam_2014_a6_solution : β„• β†’ β„• := sorry -- (fun n : β„• => n ^ n) /-- Let \( n \) be a positive integer. What is the largest \( k \) for which there exist \( n \times n \) matrices \( M_1, \ldots, M_k \) and \( N_1, \ldots, N_k \) with real entries such that for all \( i \) and \( j \), the matrix product \( M_i N_j \) has a zero entry somewhere on its diagonal if and only if \( i \neq j \)? -/ theorem putnam_2014_a6 (n : β„•) (kex : β„• β†’ Prop) (npos : n > 0) (hkex : βˆ€ k β‰₯ 1, kex k = βˆƒ M N : Fin k β†’ Matrix (Fin n) (Fin n) ℝ, βˆ€ i j : Fin k, ((βˆƒ p : Fin n, (M i * N j) p p = 0) ↔ i β‰  j)) : (putnam_2014_a6_solution n β‰₯ 1 ∧ kex (putnam_2014_a6_solution n)) ∧ (βˆ€ k β‰₯ 1, kex k β†’ k ≀ putnam_2014_a6_solution n) := sorry
Let \( n \) be a positive integer. What is the largest \( k \) for which there exist \( n \times n \) matrices \( M_1, \ldots, M_k \) and \( N_1, \ldots, N_k \) with real entries such that for all \( i \) and \( j \), the matrix product \( M_i N_j \) has a zero entry somewhere on its diagonal if and only if \( i \neq j \)?
Show that the solution has the form k \<= n ^ n.
[ "linear_algebra" ]
null
null
putnam_2012_b4
7cd76619-32c0-5d20-8810-f3dddfb69f0e
train
abbrev putnam_2012_b4_solution : Prop := sorry -- True /-- Suppose that $a_0 = 1$ and that $a_{n+1} = a_n + e^{-a_n}$ for $n=0,1,2,\dots$. Does $a_n - \log n$ have a finite limit as $n \to \infty$? (Here $\log n = \log_e n = \ln n$.) -/ theorem putnam_2012_b4 (a : β„• β†’ ℝ) (ha0 : a 0 = 1) (han : βˆ€ n : β„•, a (n + 1) = a n + exp (-a n)) : ((βˆƒ L : ℝ, Tendsto (fun n ↦ a n - Real.log n) atTop (𝓝 L)) ↔ putnam_2012_b4_solution) := sorry
import Mathlib open Matrix Function Real Topology Filter -- True /-- Suppose that $a_0 = 1$ and that $a_{n+1} = a_n + e^{-a_n}$ for $n=0,1,2,\dots$. Does $a_n - \log n$ have a finite limit as $n \to \infty$? (Here $\log n = \log_e n = \ln n$.) -/ theorem putnam_2012_b4 (a : β„• β†’ ℝ) (ha0 : a 0 = 1) (han : βˆ€ n : β„•, a (n + 1) = a n + exp (-a n)) : ((βˆƒ L : ℝ, Tendsto (fun n ↦ a n - Real.log n) atTop (𝓝 L)) ↔ putnam_2012_b4_solution) := by
import Mathlib open Matrix Function Real Topology Filter noncomputable abbrev putnam_2012_b4_solution : Prop := sorry -- True /-- Suppose that $a_0 = 1$ and that $a_{n+1} = a_n + e^{-a_n}$ for $n=0,1,2,\dots$. Does $a_n - \log n$ have a finite limit as $n \to \infty$? (Here $\log n = \log_e n = \ln n$.) -/ theorem putnam_2012_b4 (a : β„• β†’ ℝ) (ha0 : a 0 = 1) (han : βˆ€ n : β„•, a (n + 1) = a n + exp (-a n)) : ((βˆƒ L : ℝ, Tendsto (fun n ↦ a n - Real.log n) atTop (𝓝 L)) ↔ putnam_2012_b4_solution) := sorry
Suppose that $a_0 = 1$ and that $a_{n+1} = a_n + e^{-a_n}$ for $n=0,1,2,\dots$. Does $a_n - \log n$ have a finite limit as $n \to \infty$? (Here $\log n = \log_e n = \ln n$.)
Prove that the sequence has a finite limit.
[ "analysis" ]
null
null
putnam_2018_a3
7edcecf8-44d9-5ec4-b517-79fe2288ffc9
train
abbrev putnam_2018_a3_solution : ℝ := sorry -- 480/49 /-- Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real numbers $x_1, x_2, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos(x_i) = 0$. -/ theorem putnam_2018_a3 : IsGreatest {βˆ‘ i, Real.cos (3 * x i) | (x : Fin 10 β†’ ℝ) (hx : βˆ‘ i, Real.cos (x i) = 0)} putnam_2018_a3_solution := sorry
import Mathlib -- 480/49 /-- Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real numbers $x_1, x_2, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos(x_i) = 0$. -/ theorem putnam_2018_a3 : IsGreatest {βˆ‘ i, Real.cos (3 * x i) | (x : Fin 10 β†’ ℝ) (hx : βˆ‘ i, Real.cos (x i) = 0)} putnam_2018_a3_solution := by
import Mathlib noncomputable abbrev putnam_2018_a3_solution : ℝ := sorry -- 480/49 /-- Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real numbers $x_1, x_2, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos(x_i) = 0$. -/ theorem putnam_2018_a3 : IsGreatest {βˆ‘ i, Real.cos (3 * x i) | (x : Fin 10 β†’ ℝ) (hx : βˆ‘ i, Real.cos (x i) = 0)} putnam_2018_a3_solution := sorry
Determine the greatest possible value of $\sum_{i=1}^{10} \cos(3x_i)$ for real numbers $x_1, x_2, \ldots, x_{10}$ satisfying $\sum_{i=1}^{10} \cos(x_i) = 0$.
Show that the solution is $\frac{480}{49}$
[ "number_theory" ]
null
null
putnam_2008_a4
be14528f-0340-54ed-996b-9a37c60a6cc6
train
abbrev putnam_2008_a4_solution : Prop := sorry -- False /-- Define $f : \mathbb{R} \to \mathbb{R} by $f(x) = x$ if $x \leq e$ and $f(x) = x * f(\ln(x))$ if $x > e$. Does $\sum_{n=1}^{\infty} 1/(f(n))$ converge? -/ theorem putnam_2008_a4 (f : ℝ β†’ ℝ) (hf : f = fun x => if x ≀ Real.exp 1 then x else x * (f (Real.log x))) : (βˆƒ r : ℝ, Tendsto (fun N : β„• => βˆ‘ n in Finset.range N, 1/(f (n + 1))) atTop (𝓝 r)) ↔ putnam_2008_a4_solution := sorry
import Mathlib open Filter Topology -- False /-- Define $f : \mathbb{R} \to \mathbb{R} by $f(x) = x$ if $x \leq e$ and $f(x) = x * f(\ln(x))$ if $x > e$. Does $\sum_{n=1}^{\infty} 1/(f(n))$ converge? -/ theorem putnam_2008_a4 (f : ℝ β†’ ℝ) (hf : f = fun x => if x ≀ Real.exp 1 then x else x * (f (Real.log x))) : (βˆƒ r : ℝ, Tendsto (fun N : β„• => βˆ‘ n in Finset.range N, 1/(f (n + 1))) atTop (𝓝 r)) ↔ putnam_2008_a4_solution := by
import Mathlib open Filter Topology abbrev putnam_2008_a4_solution : Prop := sorry -- False /-- Define $f : \mathbb{R} \to \mathbb{R} by $f(x) = x$ if $x \leq e$ and $f(x) = x * f(\ln(x))$ if $x > e$. Does $\sum_{n=1}^{\infty} 1/(f(n))$ converge? -/ theorem putnam_2008_a4 (f : ℝ β†’ ℝ) (hf : f = fun x => if x ≀ Real.exp 1 then x else x * (f (Real.log x))) : (βˆƒ r : ℝ, Tendsto (fun N : β„• => βˆ‘ n in Finset.range N, 1/(f (n + 1))) atTop (𝓝 r)) ↔ putnam_2008_a4_solution := sorry
Define $f : \mathbb{R} \to \mathbb{R} by $f(x) = x$ if $x \leq e$ and $f(x) = x * f(\ln(x))$ if $x > e$. Does $\sum_{n=1}^{\infty} 1/(f(n))$ converge?
Show that the sum does not converge.
[ "algebra" ]
null
null
putnam_1977_b1
eb93e639-9ac5-5029-9000-19f8ff0c0228
train
abbrev putnam_1977_b1_solution : ℝ := sorry -- 2 / 3 /-- Find $\prod_{n=2}^{\infty} \frac{(n^3 - 1)}{(n^3 + 1)}$. -/ theorem putnam_1977_b1 : Tendsto (fun N ↦ ∏ n in Finset.Icc (2 : β„€) N, ((n : ℝ) ^ 3 - 1) / (n ^ 3 + 1)) atTop (𝓝 putnam_1977_b1_solution) := sorry
import Mathlib open RingHom Set Nat Filter Topology -- 2 / 3 /-- Find $\prod_{n=2}^{\infty} \frac{(n^3 - 1)}{(n^3 + 1)}$. -/ theorem putnam_1977_b1 : Tendsto (fun N ↦ ∏ n in Finset.Icc (2 : β„€) N, ((n : ℝ) ^ 3 - 1) / (n ^ 3 + 1)) atTop (𝓝 putnam_1977_b1_solution) := by
import Mathlib open RingHom Set Nat Filter Topology noncomputable abbrev putnam_1977_b1_solution : ℝ := sorry -- 2 / 3 /-- Find $\prod_{n=2}^{\infty} \frac{(n^3 - 1)}{(n^3 + 1)}$. -/ theorem putnam_1977_b1 : Tendsto (fun N ↦ ∏ n in Finset.Icc (2 : β„€) N, ((n : ℝ) ^ 3 - 1) / (n ^ 3 + 1)) atTop (𝓝 putnam_1977_b1_solution) := sorry
Find $\prod_{n=2}^{\infty} \frac{(n^3 - 1)}{(n^3 + 1)}$.
Prove that the product equals $\frac{2}{3}$.
[ "algebra", "analysis" ]
null
null
putnam_2001_b5
fd950abd-7322-5bfc-a9af-00564631651c
train
theorem putnam_2001_b5 (a b : ℝ) (g : ℝ β†’ ℝ) (abint : 0 < a ∧ a < 1 / 2 ∧ 0 < b ∧ b < 1 / 2) (gcont : Continuous g) (hg : βˆ€ x : ℝ, g (g x) = a * g x + b * x) : βˆƒ c : ℝ, βˆ€ x : ℝ, g x = c * x := sorry
import Mathlib open Topology Filter Polynomial Set /-- Let $a$ and $b$ be real numbers in the interval $(0,1/2)$, and let $g$ be a continuous real-valued function such that $g(g(x))=ag(x)+bx$ for all real $x$. Prove that $g(x)=cx$ for some constant $c$. -/ theorem putnam_2001_b5 (a b : ℝ) (g : ℝ β†’ ℝ) (abint : 0 < a ∧ a < 1 / 2 ∧ 0 < b ∧ b < 1 / 2) (gcont : Continuous g) (hg : βˆ€ x : ℝ, g (g x) = a * g x + b * x) : βˆƒ c : ℝ, βˆ€ x : ℝ, g x = c * x := by
import Mathlib open Topology Filter Polynomial Set /-- Let $a$ and $b$ be real numbers in the interval $(0,1/2)$, and let $g$ be a continuous real-valued function such that $g(g(x))=ag(x)+bx$ for all real $x$. Prove that $g(x)=cx$ for some constant $c$. -/ theorem putnam_2001_b5 (a b : ℝ) (g : ℝ β†’ ℝ) (abint : 0 < a ∧ a < 1 / 2 ∧ 0 < b ∧ b < 1 / 2) (gcont : Continuous g) (hg : βˆ€ x : ℝ, g (g x) = a * g x + b * x) : βˆƒ c : ℝ, βˆ€ x : ℝ, g x = c * x := sorry
Let $a$ and $b$ be real numbers in the interval $(0,1/2)$, and let $g$ be a continuous real-valued function such that $g(g(x))=ag(x)+bx$ for all real $x$. Prove that $g(x)=cx$ for some constant $c$.
null
[ "analysis" ]
null
null
putnam_1992_a4
d120fea2-70e1-5cf0-a64c-0ecb4b80ff2e
train
abbrev putnam_1992_a4_solution : β„• β†’ ℝ := sorry -- fun k ↦ ite (Even k) ((-1) ^ (k / 2) * factorial k) 0 /-- Let $f$ be an infinitely differentiable real-valued function defined on the real numbers. If \[ f\left( \frac{1}{n} \right) = \frac{n^2}{n^2 + 1}, \qquad n = 1, 2, 3, \dots, \] compute the values of the derivatives $f^{(k)}(0), k = 1, 2, 3, \dots$. -/ theorem putnam_1992_a4 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ ⊀ f) (hf : βˆ€ n : β„•, n > 0 β†’ f (1 / n) = n ^ 2 / (n ^ 2 + 1)) : (βˆ€ k : β„•, k > 0 β†’ iteratedDeriv k f 0 = putnam_1992_a4_solution k) := sorry
import Mathlib open Topology Filter Nat Function -- fun k ↦ ite (Even k) ((-1) ^ (k / 2) * factorial k) 0 /-- Let $f$ be an infinitely differentiable real-valued function defined on the real numbers. If \[ f\left( \frac{1}{n} \right) = \frac{n^2}{n^2 + 1}, \qquad n = 1, 2, 3, \dots, \] compute the values of the derivatives $f^{(k)}(0), k = 1, 2, 3, \dots$. -/ theorem putnam_1992_a4 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ ⊀ f) (hf : βˆ€ n : β„•, n > 0 β†’ f (1 / n) = n ^ 2 / (n ^ 2 + 1)) : (βˆ€ k : β„•, k > 0 β†’ iteratedDeriv k f 0 = putnam_1992_a4_solution k) := by
import Mathlib open Topology Filter Nat Function abbrev putnam_1992_a4_solution : β„• β†’ ℝ := sorry -- fun k ↦ ite (Even k) ((-1) ^ (k / 2) * factorial k) 0 /-- Let $f$ be an infinitely differentiable real-valued function defined on the real numbers. If \[ f\left( \frac{1}{n} \right) = \frac{n^2}{n^2 + 1}, \qquad n = 1, 2, 3, \dots, \] compute the values of the derivatives $f^{(k)}(0), k = 1, 2, 3, \dots$. -/ theorem putnam_1992_a4 (f : ℝ β†’ ℝ) (hfdiff : ContDiff ℝ ⊀ f) (hf : βˆ€ n : β„•, n > 0 β†’ f (1 / n) = n ^ 2 / (n ^ 2 + 1)) : (βˆ€ k : β„•, k > 0 β†’ iteratedDeriv k f 0 = putnam_1992_a4_solution k) := sorry
Let $f$ be an infinitely differentiable real-valued function defined on the real numbers. If \[ f\left( \frac{1}{n} \right) = \frac{n^2}{n^2 + 1}, \qquad n = 1, 2, 3, \dots, \] compute the values of the derivatives $f^{(k)}(0), k = 1, 2, 3, \dots$.
Prove that \[ f^{(k)}(0) = \begin{cases} (-1)^{k/2}k! & \text{if $k$ is even;} \\ 0 & \text{if $k$ is odd.} \\ \end{cases} \]
[ "analysis" ]
null
null
putnam_2008_a1
6d7df049-6437-5add-92c8-c3ce134af4fe
train
theorem putnam_2008_a1 (f : ℝ β†’ ℝ β†’ ℝ) (hf : βˆ€ x y z : ℝ, f x y + f y z + f z x = 0) : βˆƒ g : ℝ β†’ ℝ, βˆ€ x y : ℝ, f x y = g x - g y := sorry
import Mathlib /-- Let $f:\mathbb{R}^2 \to \mathbb{R}$ be a function such that $f(x,y)+f(y,z)+f(z,x)=0$ for all real numbers $x$, $y$, and $z$. Prove that there exists a function $g:\mathbb{R} \to \mathbb{R}$ such that $f(x,y)=g(x)-g(y)$ for all real numbers $x$ and $y$. -/ theorem putnam_2008_a1 (f : ℝ β†’ ℝ β†’ ℝ) (hf : βˆ€ x y z : ℝ, f x y + f y z + f z x = 0) : βˆƒ g : ℝ β†’ ℝ, βˆ€ x y : ℝ, f x y = g x - g y := by
import Mathlib /-- Let $f:\mathbb{R}^2 \to \mathbb{R}$ be a function such that $f(x,y)+f(y,z)+f(z,x)=0$ for all real numbers $x$, $y$, and $z$. Prove that there exists a function $g:\mathbb{R} \to \mathbb{R}$ such that $f(x,y)=g(x)-g(y)$ for all real numbers $x$ and $y$. -/ theorem putnam_2008_a1 (f : ℝ β†’ ℝ β†’ ℝ) (hf : βˆ€ x y z : ℝ, f x y + f y z + f z x = 0) : βˆƒ g : ℝ β†’ ℝ, βˆ€ x y : ℝ, f x y = g x - g y := sorry
Let $f:\mathbb{R}^2 \to \mathbb{R}$ be a function such that $f(x,y)+f(y,z)+f(z,x)=0$ for all real numbers $x$, $y$, and $z$. Prove that there exists a function $g:\mathbb{R} \to \mathbb{R}$ such that $f(x,y)=g(x)-g(y)$ for all real numbers $x$ and $y$.
null
[ "algebra" ]
null
null
putnam_2005_b3
4b5ad976-c1e1-5623-a4f4-0aee525e6514
train
abbrev putnam_2005_b3_solution : Set (ℝ β†’ ℝ) := sorry -- {f : ℝ β†’ ℝ | βˆƒα΅‰ (c > 0) (d > (0 : ℝ)), (d = 1 β†’ c = 1) ∧ (Ioi 0).EqOn f (fun x ↦ c * x ^ d)} /-- Find all differentiable functions $f:(0,\infty) \to (0,\infty)$ for which there is a positive real number $a$ such that $f'(\frac{a}{x})=\frac{x}{f(x)}$ for all $x>0$. -/ theorem putnam_2005_b3 (f : ℝ β†’ ℝ) (hf : βˆ€ x > 0, 0 < f x) (hf' : DifferentiableOn ℝ f (Ioi 0)) : (βˆƒ a > 0, βˆ€ x > 0, deriv f (a / x) = x / f x) ↔ f ∈ putnam_2005_b3_solution := sorry
import Mathlib open Nat Set -- {f : ℝ β†’ ℝ | βˆƒα΅‰ (c > 0) (d > (0 : ℝ)), (d = 1 β†’ c = 1) ∧ (Ioi 0).EqOn f (fun x ↦ c * x ^ d)} /-- Find all differentiable functions $f:(0,\infty) \to (0,\infty)$ for which there is a positive real number $a$ such that $f'(\frac{a}{x})=\frac{x}{f(x)}$ for all $x>0$. -/ theorem putnam_2005_b3 (f : ℝ β†’ ℝ) (hf : βˆ€ x > 0, 0 < f x) (hf' : DifferentiableOn ℝ f (Ioi 0)) : (βˆƒ a > 0, βˆ€ x > 0, deriv f (a / x) = x / f x) ↔ f ∈ putnam_2005_b3_solution := by
import Mathlib open Nat Set abbrev putnam_2005_b3_solution : Set (ℝ β†’ ℝ) := sorry -- {f : ℝ β†’ ℝ | βˆƒα΅‰ (c > 0) (d > (0 : ℝ)), (d = 1 β†’ c = 1) ∧ (Ioi 0).EqOn f (fun x ↦ c * x ^ d)} /-- Find all differentiable functions $f:(0,\infty) \to (0,\infty)$ for which there is a positive real number $a$ such that $f'(\frac{a}{x})=\frac{x}{f(x)}$ for all $x>0$. -/ theorem putnam_2005_b3 (f : ℝ β†’ ℝ) (hf : βˆ€ x > 0, 0 < f x) (hf' : DifferentiableOn ℝ f (Ioi 0)) : (βˆƒ a > 0, βˆ€ x > 0, deriv f (a / x) = x / f x) ↔ f ∈ putnam_2005_b3_solution := sorry
Find all differentiable functions $f:(0,\infty) \to (0,\infty)$ for which there is a positive real number $a$ such that $f'(\frac{a}{x})=\frac{x}{f(x)}$ for all $x>0$.
Show that the functions are precisely $f(x)=cx^d$ for $c,d>0$ arbitrary except that we must take $c=1$ in case $d=1$.
[ "analysis" ]
null
null
putnam_1969_a6
8e3b26fc-0a0f-519a-9608-8cc135ca43a3
train
theorem putnam_1969_a6 (x : β„• β†’ ℝ) (y : β„• β†’ ℝ) (hy1 : βˆ€ n β‰₯ 2, y n = x (n-1) + 2 * (x n)) (hy2 : βˆƒ c : ℝ, Tendsto y atTop (𝓝 c)) : βˆƒ C : ℝ, Tendsto x atTop (𝓝 C) := sorry
import Mathlib open Matrix Filter Topology Set Nat /-- Let $(x_n)$ be a sequence, and let $y_n = x_{n-1} + 2*x_n$ for $n \geq 2$. Suppose that $(y_n)$ converges, then prove that $(x_n)$ converges. -/ theorem putnam_1969_a6 (x : β„• β†’ ℝ) (y : β„• β†’ ℝ) (hy1 : βˆ€ n β‰₯ 2, y n = x (n-1) + 2 * (x n)) (hy2 : βˆƒ c : ℝ, Tendsto y atTop (𝓝 c)) : βˆƒ C : ℝ, Tendsto x atTop (𝓝 C) := by
import Mathlib open Matrix Filter Topology Set Nat /-- Let $(x_n)$ be a sequence, and let $y_n = x_{n-1} + 2*x_n$ for $n \geq 2$. Suppose that $(y_n)$ converges, then prove that $(x_n)$ converges. -/ theorem putnam_1969_a6 (x : β„• β†’ ℝ) (y : β„• β†’ ℝ) (hy1 : βˆ€ n β‰₯ 2, y n = x (n-1) + 2 * (x n)) (hy2 : βˆƒ c : ℝ, Tendsto y atTop (𝓝 c)) : βˆƒ C : ℝ, Tendsto x atTop (𝓝 C) := sorry
Let $(x_n)$ be a sequence, and let $y_n = x_{n-1} + 2*x_n$ for $n \geq 2$. Suppose that $(y_n)$ converges, then prove that $(x_n)$ converges.
null
[ "analysis" ]
null
null
putnam_1982_a5
f701eba0-626e-520f-bdcc-42a308b147a2
train
theorem putnam_1982_a5 (a b c d : β„€) (hpos : a > 0 ∧ b > 0 ∧ c > 0 ∧ d > 0) (hac : a + c ≀ 1982) (hfrac : (a : ℝ) / b + (c : ℝ) / d < 1) : (1 - (a : ℝ) / b - (c : ℝ) / d > 1 / 1983 ^ 3) := sorry
import Mathlib /-- Let $a, b, c, d$ be positive integers satisfying $a + c \leq 1982$ and $\frac{a}{b} + \frac{c}{d} < 1$. Prove that $1 - \frac{a}{b} - \frac{c}{d} > \frac{1}{1983^3}$. -/ theorem putnam_1982_a5 (a b c d : β„€) (hpos : a > 0 ∧ b > 0 ∧ c > 0 ∧ d > 0) (hac : a + c ≀ 1982) (hfrac : (a : ℝ) / b + (c : ℝ) / d < 1) : (1 - (a : ℝ) / b - (c : ℝ) / d > 1 / 1983 ^ 3) := by
import Mathlib /-- Let $a, b, c, d$ be positive integers satisfying $a + c \leq 1982$ and $\frac{a}{b} + \frac{c}{d} < 1$. Prove that $1 - \frac{a}{b} - \frac{c}{d} > \frac{1}{1983^3}$. -/ theorem putnam_1982_a5 (a b c d : β„€) (hpos : a > 0 ∧ b > 0 ∧ c > 0 ∧ d > 0) (hac : a + c ≀ 1982) (hfrac : (a : ℝ) / b + (c : ℝ) / d < 1) : (1 - (a : ℝ) / b - (c : ℝ) / d > 1 / 1983 ^ 3) := sorry
Let $a, b, c, d$ be positive integers satisfying $a + c \leq 1982$ and $\frac{a}{b} + \frac{c}{d} < 1$. Prove that $1 - \frac{a}{b} - \frac{c}{d} > \frac{1}{1983^3}$.
null
[ "algebra" ]
null
null
putnam_1975_b6
4fb9d4d4-02de-51c4-b5ce-7eb3d501289f
train
theorem putnam_1975_b6 (s : β„• β†’ ℝ) (hs : s = fun (n : β„•) => βˆ‘ i in Finset.Icc 1 n, 1/(i : ℝ)) : (βˆ€ n : β„•, n > 1 β†’ n * (n+1 : ℝ)^(1/(n : ℝ)) < n + s n) ∧ (βˆ€ n : β„•, n > 2 β†’ ((n : ℝ) - 1)*((n : ℝ)^(-1/(n-1 : ℝ))) < n - s n) := sorry
import Mathlib open Polynomial Real Complex Matrix Filter Topology Multiset /-- Show that if $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + 1/n, then $n(n+1)^{1/n} < n + s_n$ whenever $n > 1$ and $(n-1)n^{-1/(n-1)} < n - s_n$ whenever $n > 2$. -/ theorem putnam_1975_b6 (s : β„• β†’ ℝ) (hs : s = fun (n : β„•) => βˆ‘ i in Finset.Icc 1 n, 1/(i : ℝ)) : (βˆ€ n : β„•, n > 1 β†’ n * (n+1 : ℝ)^(1/(n : ℝ)) < n + s n) ∧ (βˆ€ n : β„•, n > 2 β†’ ((n : ℝ) - 1)*((n : ℝ)^(-1/(n-1 : ℝ))) < n - s n) := by
import Mathlib open Polynomial Real Complex Matrix Filter Topology Multiset /-- Show that if $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + 1/n, then $n(n+1)^{1/n} < n + s_n$ whenever $n > 1$ and $(n-1)n^{-1/(n-1)} < n - s_n$ whenever $n > 2$. -/ theorem putnam_1975_b6 (s : β„• β†’ ℝ) (hs : s = fun (n : β„•) => βˆ‘ i in Finset.Icc 1 n, 1/(i : ℝ)) : (βˆ€ n : β„•, n > 1 β†’ n * (n+1 : ℝ)^(1/(n : ℝ)) < n + s n) ∧ (βˆ€ n : β„•, n > 2 β†’ ((n : ℝ) - 1)*((n : ℝ)^(-1/(n-1 : ℝ))) < n - s n) := sorry
Show that if $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + 1/n, then $n(n+1)^{1/n} < n + s_n$ whenever $n > 1$ and $(n-1)n^{-1/(n-1)} < n - s_n$ whenever $n > 2$.
null
[ "analysis" ]
null
null
putnam_1974_a1
ee7be205-62d1-56aa-b1b9-4e43faf1f31e
train
abbrev putnam_1974_a1_solution : β„• := sorry -- 11 /-- Call a set of positive integers 'conspiratorial' if no three of them are pairwise relatively prime. What is the largest number of elements in any conspiratorial subset of the integers 1 through 16? -/ theorem putnam_1974_a1 (conspiratorial : Set β„€ β†’ Prop) (hconspiratorial : βˆ€ S, conspiratorial S ↔ βˆ€ a ∈ S, βˆ€ b ∈ S, βˆ€ c ∈ S, (a > 0 ∧ b > 0 ∧ c > 0) ∧ ((a β‰  b ∧ b β‰  c ∧ a β‰  c) β†’ (Int.gcd a b > 1 ∨ Int.gcd b c > 1 ∨ Int.gcd a c > 1))) : IsGreatest {k | βˆƒ S, S βŠ† Icc 1 16 ∧ conspiratorial S ∧ S.encard = k} putnam_1974_a1_solution := sorry
import Mathlib open Set -- 11 /-- Call a set of positive integers 'conspiratorial' if no three of them are pairwise relatively prime. What is the largest number of elements in any conspiratorial subset of the integers 1 through 16? -/ theorem putnam_1974_a1 (conspiratorial : Set β„€ β†’ Prop) (hconspiratorial : βˆ€ S, conspiratorial S ↔ βˆ€ a ∈ S, βˆ€ b ∈ S, βˆ€ c ∈ S, (a > 0 ∧ b > 0 ∧ c > 0) ∧ ((a β‰  b ∧ b β‰  c ∧ a β‰  c) β†’ (Int.gcd a b > 1 ∨ Int.gcd b c > 1 ∨ Int.gcd a c > 1))) : IsGreatest {k | βˆƒ S, S βŠ† Icc 1 16 ∧ conspiratorial S ∧ S.encard = k} putnam_1974_a1_solution := by
import Mathlib open Set abbrev putnam_1974_a1_solution : β„• := sorry -- 11 /-- Call a set of positive integers 'conspiratorial' if no three of them are pairwise relatively prime. What is the largest number of elements in any conspiratorial subset of the integers 1 through 16? -/ theorem putnam_1974_a1 (conspiratorial : Set β„€ β†’ Prop) (hconspiratorial : βˆ€ S, conspiratorial S ↔ βˆ€ a ∈ S, βˆ€ b ∈ S, βˆ€ c ∈ S, (a > 0 ∧ b > 0 ∧ c > 0) ∧ ((a β‰  b ∧ b β‰  c ∧ a β‰  c) β†’ (Int.gcd a b > 1 ∨ Int.gcd b c > 1 ∨ Int.gcd a c > 1))) : IsGreatest {k | βˆƒ S, S βŠ† Icc 1 16 ∧ conspiratorial S ∧ S.encard = k} putnam_1974_a1_solution := sorry
Call a set of positive integers 'conspiratorial' if no three of them are pairwise relatively prime. What is the largest number of elements in any conspiratorial subset of the integers 1 through 16?
Show that the answer is 11.
[ "number_theory" ]
null
null
putnam_1988_a6
191347d6-3e44-5e26-8377-1ef46aae7197
train
abbrev putnam_1988_a6_solution : Prop := sorry -- True /-- If a linear transformation $A$ on an $n$-dimensional vector space has $n+1$ eigenvectors such that any $n$ of them are linearly independent, does it follow that $A$ is a scalar multiple of the identity? Prove your answer. -/ theorem putnam_1988_a6 : (βˆ€ (F V : Type*) (_ : Field F) (_ : AddCommGroup V) (_ : Module F V) (_ : FiniteDimensional F V) (n : β„•) (A : Module.End F V) (evecs : Set V), (n = FiniteDimensional.finrank F V ∧ evecs βŠ† {v : V | βˆƒ f : F, A.HasEigenvector f v} ∧ evecs.encard = n + 1 ∧ (βˆ€ sevecs : Fin n β†’ V, (Set.range sevecs βŠ† evecs ∧ (Set.range sevecs).encard = n) β†’ LinearIndependent F sevecs)) β†’ (βˆƒ c : F, A = c β€’ LinearMap.id)) ↔ putnam_1988_a6_solution := sorry
import Mathlib open Set Filter Topology -- True /-- If a linear transformation $A$ on an $n$-dimensional vector space has $n+1$ eigenvectors such that any $n$ of them are linearly independent, does it follow that $A$ is a scalar multiple of the identity? Prove your answer. -/ theorem putnam_1988_a6 : (βˆ€ (F V : Type*) (_ : Field F) (_ : AddCommGroup V) (_ : Module F V) (_ : FiniteDimensional F V) (n : β„•) (A : Module.End F V) (evecs : Set V), (n = FiniteDimensional.finrank F V ∧ evecs βŠ† {v : V | βˆƒ f : F, A.HasEigenvector f v} ∧ evecs.encard = n + 1 ∧ (βˆ€ sevecs : Fin n β†’ V, (Set.range sevecs βŠ† evecs ∧ (Set.range sevecs).encard = n) β†’ LinearIndependent F sevecs)) β†’ (βˆƒ c : F, A = c β€’ LinearMap.id)) ↔ putnam_1988_a6_solution := by
import Mathlib open Set Filter Topology abbrev putnam_1988_a6_solution : Prop := sorry -- True /-- If a linear transformation $A$ on an $n$-dimensional vector space has $n+1$ eigenvectors such that any $n$ of them are linearly independent, does it follow that $A$ is a scalar multiple of the identity? Prove your answer. -/ theorem putnam_1988_a6 : (βˆ€ (F V : Type*) (_ : Field F) (_ : AddCommGroup V) (_ : Module F V) (_ : FiniteDimensional F V) (n : β„•) (A : Module.End F V) (evecs : Set V), (n = FiniteDimensional.finrank F V ∧ evecs βŠ† {v : V | βˆƒ f : F, A.HasEigenvector f v} ∧ evecs.encard = n + 1 ∧ (βˆ€ sevecs : Fin n β†’ V, (Set.range sevecs βŠ† evecs ∧ (Set.range sevecs).encard = n) β†’ LinearIndependent F sevecs)) β†’ (βˆƒ c : F, A = c β€’ LinearMap.id)) ↔ putnam_1988_a6_solution := sorry
If a linear transformation $A$ on an $n$-dimensional vector space has $n+1$ eigenvectors such that any $n$ of them are linearly independent, does it follow that $A$ is a scalar multiple of the identity? Prove your answer.
Show that the answer is yes, $A$ must be a scalar multiple of the identity.
[ "linear_algebra" ]
null
null
putnam_1966_a1
ff995b33-22fc-5efb-9320-b20dd5cc09ce
train
theorem putnam_1966_a1 (f : β„€ β†’ β„€) (hf : f = fun n : β„€ => βˆ‘ m in Finset.Icc 0 n, (if Even m then m / 2 else (m - 1)/2)) : βˆ€ x y : β„€, x > 0 ∧ y > 0 ∧ x > y β†’ x * y = f (x + y) - f (x - y) := sorry
import Mathlib /-- Let $a_n$ denote the sequence $0, 1, 1, 2, 2, 3, \dots$, where $a_n = \frac{n}{2}$ if $n$ is even and $\frac{n - 1}{2}$ if n is odd. Furthermore, let $f(n)$ denote the sum of the first $n$ terms of $a_n$. Prove that all positive integers $x$ and $y$ with $x > y$ satisfy $xy = f(x + y) - f(x - y)$. -/ theorem putnam_1966_a1 (f : β„€ β†’ β„€) (hf : f = fun n : β„€ => βˆ‘ m in Finset.Icc 0 n, (if Even m then m / 2 else (m - 1)/2)) : βˆ€ x y : β„€, x > 0 ∧ y > 0 ∧ x > y β†’ x * y = f (x + y) - f (x - y) := by
import Mathlib /-- Let $a_n$ denote the sequence $0, 1, 1, 2, 2, 3, \dots$, where $a_n = \frac{n}{2}$ if $n$ is even and $\frac{n - 1}{2}$ if n is odd. Furthermore, let $f(n)$ denote the sum of the first $n$ terms of $a_n$. Prove that all positive integers $x$ and $y$ with $x > y$ satisfy $xy = f(x + y) - f(x - y)$. -/ theorem putnam_1966_a1 (f : β„€ β†’ β„€) (hf : f = fun n : β„€ => βˆ‘ m in Finset.Icc 0 n, (if Even m then m / 2 else (m - 1)/2)) : βˆ€ x y : β„€, x > 0 ∧ y > 0 ∧ x > y β†’ x * y = f (x + y) - f (x - y) := sorry
Let $a_n$ denote the sequence $0, 1, 1, 2, 2, 3, \dots$, where $a_n = \frac{n}{2}$ if $n$ is even and $\frac{n - 1}{2}$ if n is odd. Furthermore, let $f(n)$ denote the sum of the first $n$ terms of $a_n$. Prove that all positive integers $x$ and $y$ with $x > y$ satisfy $xy = f(x + y) - f(x - y)$.
null
[ "algebra" ]
null
null
putnam_1965_a1
2f004992-d4e7-5932-96fa-2bdb5fe7855d
train
abbrev putnam_1965_a1_solution : ℝ := sorry -- Real.pi / 15 /-- Let $\triangle ABC$ satisfy $\angle CAB < \angle BCA < \frac{\pi}{2} < \angle ABC$. If the bisector of the external angle at $A$ meets line $BC$ at $P$, the bisector of the external angle at $B$ meets line $CA$ at $Q$, and $AP = BQ = AB$, find $\angle CAB$. -/ theorem putnam_1965_a1 (A B C X Y : EuclideanSpace ℝ (Fin 2)) (hABC : Β¬Collinear ℝ {A, B, C}) (hangles : ∠ C A B < ∠ B C A ∧ ∠ B C A < Ο€/2 ∧ Ο€/2 < ∠ A B C) (hX : Collinear ℝ {X, B, C} ∧ ∠ X A B = (Ο€ - ∠ C A B)/2 ∧ dist A X = dist A B) (hY : Collinear ℝ {Y, C, A} ∧ ∠ Y B C = (Ο€ - ∠ A B C)/2 ∧ dist B Y = dist A B) : ∠ C A B = putnam_1965_a1_solution := sorry
import Mathlib open EuclideanGeometry Real -- Real.pi / 15 /-- Let $\triangle ABC$ satisfy $\angle CAB < \angle BCA < \frac{\pi}{2} < \angle ABC$. If the bisector of the external angle at $A$ meets line $BC$ at $P$, the bisector of the external angle at $B$ meets line $CA$ at $Q$, and $AP = BQ = AB$, find $\angle CAB$. -/ theorem putnam_1965_a1 (A B C X Y : EuclideanSpace ℝ (Fin 2)) (hABC : Β¬Collinear ℝ {A, B, C}) (hangles : ∠ C A B < ∠ B C A ∧ ∠ B C A < Ο€/2 ∧ Ο€/2 < ∠ A B C) (hX : Collinear ℝ {X, B, C} ∧ ∠ X A B = (Ο€ - ∠ C A B)/2 ∧ dist A X = dist A B) (hY : Collinear ℝ {Y, C, A} ∧ ∠ Y B C = (Ο€ - ∠ A B C)/2 ∧ dist B Y = dist A B) : ∠ C A B = putnam_1965_a1_solution := by
import Mathlib open EuclideanGeometry Real noncomputable abbrev putnam_1965_a1_solution : ℝ := sorry -- Real.pi / 15 /-- Let $\triangle ABC$ satisfy $\angle CAB < \angle BCA < \frac{\pi}{2} < \angle ABC$. If the bisector of the external angle at $A$ meets line $BC$ at $P$, the bisector of the external angle at $B$ meets line $CA$ at $Q$, and $AP = BQ = AB$, find $\angle CAB$. -/ theorem putnam_1965_a1 (A B C X Y : EuclideanSpace ℝ (Fin 2)) (hABC : Β¬Collinear ℝ {A, B, C}) (hangles : ∠ C A B < ∠ B C A ∧ ∠ B C A < Ο€/2 ∧ Ο€/2 < ∠ A B C) (hX : Collinear ℝ {X, B, C} ∧ ∠ X A B = (Ο€ - ∠ C A B)/2 ∧ dist A X = dist A B) (hY : Collinear ℝ {Y, C, A} ∧ ∠ Y B C = (Ο€ - ∠ A B C)/2 ∧ dist B Y = dist A B) : ∠ C A B = putnam_1965_a1_solution := sorry
Let $\triangle ABC$ satisfy $\angle CAB < \angle BCA < \frac{\pi}{2} < \angle ABC$. If the bisector of the external angle at $A$ meets line $BC$ at $P$, the bisector of the external angle at $B$ meets line $CA$ at $Q$, and $AP = BQ = AB$, find $\angle CAB$.
Show that the solution is $\angle CAB = \frac{\pi}{15}$.
[ "geometry" ]
null
null
putnam_2019_b1
d395469b-9a3a-5dcf-a1c6-c2e88094b924
train
abbrev putnam_2019_b1_solution : β„• β†’ β„• := sorry -- (fun n : β„• => 5 * n + 1) /-- Denote by $\mathbb{Z}^2$ the set of all points $(x,y)$ in the plane with integer coordinates. For each integer $n \geq 0$, let $P_n$ be the subset of $\mathbb{Z}^2$ consisting of the point $(0,0)$ together with all points $(x,y)$ such that $x^2+y^2=2^k$ for some integer $k \leq n$. Determine, as a function of $n$, the number of four-point subsets of $P_n$ whose elements are the vertices of a square. -/ theorem putnam_2019_b1 (n : β„•) (Pn : Set (Fin 2 β†’ β„€)) (pZtoR : (Fin 2 β†’ β„€) β†’ EuclideanSpace ℝ (Fin 2)) (sPnsquare : Finset (Fin 2 β†’ β„€) β†’ Prop) (hPn : Pn = {p | (p 0 = 0 ∧ p 1 = 0) ∨ (βˆƒ k ≀ n, (p 0) ^ 2 + (p 1) ^ 2 = 2 ^ k)}) (hpZtoR : βˆ€ p i, (pZtoR p) i = p i) (sPnsquare_def : βˆ€ sPn : Finset (Fin 2 β†’ β„€), sPnsquare sPn ↔ (sPn.card = 4 ∧ βˆƒ p4 : Fin 4 β†’ (Fin 2 β†’ β„€), Set.range p4 = sPn ∧ (βˆƒ s > 0, βˆ€ i : Fin 4, dist (pZtoR (p4 i) : EuclideanSpace ℝ (Fin 2)) (pZtoR (p4 (i + 1))) = s) ∧ (dist (pZtoR (p4 0)) (pZtoR (p4 2)) = dist (pZtoR (p4 1)) (pZtoR (p4 3))))) : {sPn : Finset (Fin 2 β†’ β„€) | (sPn : Set (Fin 2 β†’ β„€)) βŠ† Pn ∧ sPnsquare sPn}.encard = putnam_2019_b1_solution n := sorry
import Mathlib open Topology Filter -- (fun n : β„• => 5 * n + 1) /-- Denote by $\mathbb{Z}^2$ the set of all points $(x,y)$ in the plane with integer coordinates. For each integer $n \geq 0$, let $P_n$ be the subset of $\mathbb{Z}^2$ consisting of the point $(0,0)$ together with all points $(x,y)$ such that $x^2+y^2=2^k$ for some integer $k \leq n$. Determine, as a function of $n$, the number of four-point subsets of $P_n$ whose elements are the vertices of a square. -/ theorem putnam_2019_b1 (n : β„•) (Pn : Set (Fin 2 β†’ β„€)) (pZtoR : (Fin 2 β†’ β„€) β†’ EuclideanSpace ℝ (Fin 2)) (sPnsquare : Finset (Fin 2 β†’ β„€) β†’ Prop) (hPn : Pn = {p | (p 0 = 0 ∧ p 1 = 0) ∨ (βˆƒ k ≀ n, (p 0) ^ 2 + (p 1) ^ 2 = 2 ^ k)}) (hpZtoR : βˆ€ p i, (pZtoR p) i = p i) (sPnsquare_def : βˆ€ sPn : Finset (Fin 2 β†’ β„€), sPnsquare sPn ↔ (sPn.card = 4 ∧ βˆƒ p4 : Fin 4 β†’ (Fin 2 β†’ β„€), Set.range p4 = sPn ∧ (βˆƒ s > 0, βˆ€ i : Fin 4, dist (pZtoR (p4 i) : EuclideanSpace ℝ (Fin 2)) (pZtoR (p4 (i + 1))) = s) ∧ (dist (pZtoR (p4 0)) (pZtoR (p4 2)) = dist (pZtoR (p4 1)) (pZtoR (p4 3))))) : {sPn : Finset (Fin 2 β†’ β„€) | (sPn : Set (Fin 2 β†’ β„€)) βŠ† Pn ∧ sPnsquare sPn}.encard = putnam_2019_b1_solution n := by
import Mathlib open Topology Filter abbrev putnam_2019_b1_solution : β„• β†’ β„• := sorry -- (fun n : β„• => 5 * n + 1) /-- Denote by $\mathbb{Z}^2$ the set of all points $(x,y)$ in the plane with integer coordinates. For each integer $n \geq 0$, let $P_n$ be the subset of $\mathbb{Z}^2$ consisting of the point $(0,0)$ together with all points $(x,y)$ such that $x^2+y^2=2^k$ for some integer $k \leq n$. Determine, as a function of $n$, the number of four-point subsets of $P_n$ whose elements are the vertices of a square. -/ theorem putnam_2019_b1 (n : β„•) (Pn : Set (Fin 2 β†’ β„€)) (pZtoR : (Fin 2 β†’ β„€) β†’ EuclideanSpace ℝ (Fin 2)) (sPnsquare : Finset (Fin 2 β†’ β„€) β†’ Prop) (hPn : Pn = {p | (p 0 = 0 ∧ p 1 = 0) ∨ (βˆƒ k ≀ n, (p 0) ^ 2 + (p 1) ^ 2 = 2 ^ k)}) (hpZtoR : βˆ€ p i, (pZtoR p) i = p i) (sPnsquare_def : βˆ€ sPn : Finset (Fin 2 β†’ β„€), sPnsquare sPn ↔ (sPn.card = 4 ∧ βˆƒ p4 : Fin 4 β†’ (Fin 2 β†’ β„€), Set.range p4 = sPn ∧ (βˆƒ s > 0, βˆ€ i : Fin 4, dist (pZtoR (p4 i) : EuclideanSpace ℝ (Fin 2)) (pZtoR (p4 (i + 1))) = s) ∧ (dist (pZtoR (p4 0)) (pZtoR (p4 2)) = dist (pZtoR (p4 1)) (pZtoR (p4 3))))) : {sPn : Finset (Fin 2 β†’ β„€) | (sPn : Set (Fin 2 β†’ β„€)) βŠ† Pn ∧ sPnsquare sPn}.encard = putnam_2019_b1_solution n := sorry
Denote by $\mathbb{Z}^2$ the set of all points $(x,y)$ in the plane with integer coordinates. For each integer $n \geq 0$, let $P_n$ be the subset of $\mathbb{Z}^2$ consisting of the point $(0,0)$ together with all points $(x,y)$ such that $x^2+y^2=2^k$ for some integer $k \leq n$. Determine, as a function of $n$, the number of four-point subsets of $P_n$ whose elements are the vertices of a square.
Show that the answer is $5n+1$.
[ "geometry" ]
null
null
putnam_1966_b4
fd2dacf0-d81a-5fd5-8b3c-3e603392301e
train
theorem putnam_1966_b4 (m n : β„•) (S : Finset β„•) (hS : (βˆ€ i ∈ S, i > 0) ∧ S.card = m * n + 1) : βˆƒ T βŠ† S, (T.card = m + 1 ∧ βˆ€ j ∈ T, βˆ€ i ∈ T, i β‰  j β†’ Β¬(j ∣ i)) ∨ (T.card = n + 1 ∧ βˆ€ i ∈ T, βˆ€ j ∈ T, j < i β†’ j ∣ i) := sorry
import Mathlib open Topology Filter /-- Let $a_1, a_2, ...$ be an increasing sequence of $mn + 1$ positive integers. Prove that there exists either a subset of $m + 1$ $a_i$ such that no element of the subset divides any other, or a subset of $n + 1$ $a_i$ such that each element of the subset (except the greatest) divides the next greatest element. -/ theorem putnam_1966_b4 (m n : β„•) (S : Finset β„•) (hS : (βˆ€ i ∈ S, i > 0) ∧ S.card = m * n + 1) : βˆƒ T βŠ† S, (T.card = m + 1 ∧ βˆ€ j ∈ T, βˆ€ i ∈ T, i β‰  j β†’ Β¬(j ∣ i)) ∨ (T.card = n + 1 ∧ βˆ€ i ∈ T, βˆ€ j ∈ T, j < i β†’ j ∣ i) := by
import Mathlib open Topology Filter /-- Let $a_1, a_2, ...$ be an increasing sequence of $mn + 1$ positive integers. Prove that there exists either a subset of $m + 1$ $a_i$ such that no element of the subset divides any other, or a subset of $n + 1$ $a_i$ such that each element of the subset (except the greatest) divides the next greatest element. -/ theorem putnam_1966_b4 (m n : β„•) (S : Finset β„•) (hS : (βˆ€ i ∈ S, i > 0) ∧ S.card = m * n + 1) : βˆƒ T βŠ† S, (T.card = m + 1 ∧ βˆ€ j ∈ T, βˆ€ i ∈ T, i β‰  j β†’ Β¬(j ∣ i)) ∨ (T.card = n + 1 ∧ βˆ€ i ∈ T, βˆ€ j ∈ T, j < i β†’ j ∣ i) := sorry
Let $a_1, a_2, ...$ be an increasing sequence of $mn + 1$ positive integers. Prove that there exists either a subset of $m + 1$ $a_i$ such that no element of the subset divides any other, or a subset of $n + 1$ $a_i$ such that each element of the subset (except the greatest) divides the next greatest element.
null
[ "number_theory", "combinatorics" ]
null
null
putnam_1964_b1
2f557f70-dfbb-50a9-a6cd-09d0a245ec49
train
theorem putnam_1964_b1 (a b : β„• β†’ β„•) (h : βˆ€ n, 0 < a n) (h' : Summable fun n ↦ (1 : ℝ) / a n) (h'' : βˆ€ n, b n = {k | a k ≀ n}.ncard) : Tendsto (fun n ↦ (b n : ℝ) / n) atTop (𝓝 0) := sorry
import Mathlib open Set Function Filter Topology /-- Let $a_n$ be a sequence of positive integers such that $\sum_{n=1}^{\infty} 1/a_n$ converges. For all $n$, let $b_n$ be the number of $a_n$ which are at most $n$. Prove that $\lim_{n \to \infty} b_n/n = 0$. -/ theorem putnam_1964_b1 (a b : β„• β†’ β„•) (h : βˆ€ n, 0 < a n) (h' : Summable fun n ↦ (1 : ℝ) / a n) (h'' : βˆ€ n, b n = {k | a k ≀ n}.ncard) : Tendsto (fun n ↦ (b n : ℝ) / n) atTop (𝓝 0) := by
import Mathlib open Set Function Filter Topology /-- Let $a_n$ be a sequence of positive integers such that $\sum_{n=1}^{\infty} 1/a_n$ converges. For all $n$, let $b_n$ be the number of $a_n$ which are at most $n$. Prove that $\lim_{n \to \infty} b_n/n = 0$. -/ theorem putnam_1964_b1 (a b : β„• β†’ β„•) (h : βˆ€ n, 0 < a n) (h' : Summable fun n ↦ (1 : ℝ) / a n) (h'' : βˆ€ n, b n = {k | a k ≀ n}.ncard) : Tendsto (fun n ↦ (b n : ℝ) / n) atTop (𝓝 0) := sorry
Let $a_n$ be a sequence of positive integers such that $\sum_{n=1}^{\infty} 1/a_n$ converges. For all $n$, let $b_n$ be the number of $a_n$ which are at most $n$. Prove that $\lim_{n \to \infty} b_n/n = 0$.
null
[ "analysis" ]
null
null
putnam_2014_b3
c8b4e812-cf58-5a95-8466-a23392f5b365
train
theorem putnam_2014_b3 (m n : β„•) (A : Matrix (Fin m) (Fin n) β„š) (mnpos : 0 < m ∧ 0 < n) (Aprime : {p : β„• | p.Prime ∧ βˆƒ (i : Fin m) (j : Fin n), |A i j| = p}.encard β‰₯ m + n) : A.rank β‰₯ 2 := sorry
import Mathlib open Topology Filter Nat /-- Let $A$ be an $m \times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries of $A$. Show that the rank of $A$ is at least 2. -/ theorem putnam_2014_b3 (m n : β„•) (A : Matrix (Fin m) (Fin n) β„š) (mnpos : 0 < m ∧ 0 < n) (Aprime : {p : β„• | p.Prime ∧ βˆƒ (i : Fin m) (j : Fin n), |A i j| = p}.encard β‰₯ m + n) : A.rank β‰₯ 2 := by
import Mathlib open Topology Filter Nat /-- Let $A$ be an $m \times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries of $A$. Show that the rank of $A$ is at least 2. -/ theorem putnam_2014_b3 (m n : β„•) (A : Matrix (Fin m) (Fin n) β„š) (mnpos : 0 < m ∧ 0 < n) (Aprime : {p : β„• | p.Prime ∧ βˆƒ (i : Fin m) (j : Fin n), |A i j| = p}.encard β‰₯ m + n) : A.rank β‰₯ 2 := sorry
Let $A$ be an $m \times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries of $A$. Show that the rank of $A$ is at least 2.
null
[ "linear_algebra", "number_theory" ]
null
null
putnam_1990_b5
014c9d3b-2f71-5b66-afd8-0077233c0f07
train
abbrev putnam_1990_b5_solution : Prop := sorry -- True /-- Is there an infinite sequence $a_0,a_1,a_2,\dots$ of nonzero real numbers such that for $n=1,2,3,\dots$ the polynomial $p_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ has exactly $n$ distinct real roots? -/ theorem putnam_1990_b5 : (βˆƒ a : β„• β†’ ℝ, (βˆ€ i, a i β‰  0) ∧ (βˆ€ n β‰₯ 1, (βˆ‘ i in Finset.Iic n, a i β€’ X ^ i : Polynomial ℝ).roots.toFinset.card = n)) ↔ putnam_1990_b5_solution := sorry
import Mathlib open Filter Polynomial Topology Nat -- True /-- Is there an infinite sequence $a_0,a_1,a_2,\dots$ of nonzero real numbers such that for $n=1,2,3,\dots$ the polynomial $p_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ has exactly $n$ distinct real roots? -/ theorem putnam_1990_b5 : (βˆƒ a : β„• β†’ ℝ, (βˆ€ i, a i β‰  0) ∧ (βˆ€ n β‰₯ 1, (βˆ‘ i in Finset.Iic n, a i β€’ X ^ i : Polynomial ℝ).roots.toFinset.card = n)) ↔ putnam_1990_b5_solution := by
import Mathlib open Filter Polynomial Topology Nat abbrev putnam_1990_b5_solution : Prop := sorry -- True /-- Is there an infinite sequence $a_0,a_1,a_2,\dots$ of nonzero real numbers such that for $n=1,2,3,\dots$ the polynomial $p_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ has exactly $n$ distinct real roots? -/ theorem putnam_1990_b5 : (βˆƒ a : β„• β†’ ℝ, (βˆ€ i, a i β‰  0) ∧ (βˆ€ n β‰₯ 1, (βˆ‘ i in Finset.Iic n, a i β€’ X ^ i : Polynomial ℝ).roots.toFinset.card = n)) ↔ putnam_1990_b5_solution := sorry
Is there an infinite sequence $a_0,a_1,a_2,\dots$ of nonzero real numbers such that for $n=1,2,3,\dots$ the polynomial $p_n(x)=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ has exactly $n$ distinct real roots?
Show that the answer is yes, such an infinite sequence exists.
[ "algebra", "analysis" ]
null
null
putnam_1999_b4
7042e16d-925b-53a2-b877-1020e61be3ea
train
theorem putnam_1999_b4 (f : ℝ β†’ ℝ) (hf : ContDiff ℝ 3 f) (hpos: βˆ€ n ≀ 3, βˆ€ x : ℝ, iteratedDeriv n f x > 0) (hle : βˆ€ x : ℝ, iteratedDeriv 3 f x ≀ f x) : βˆ€ x : ℝ, deriv f x < 2 * (f x) := sorry
import Mathlib open Filter Topology Metric /-- Let $f$ be a real function with a continuous third derivative such that $f(x), f'(x), f''(x), f'''(x)$ are positive for all $x$. Suppose that $f'''(x)\leq f(x)$ for all $x$. Show that $f'(x)<2f(x)$ for all $x$. -/ theorem putnam_1999_b4 (f : ℝ β†’ ℝ) (hf : ContDiff ℝ 3 f) (hpos: βˆ€ n ≀ 3, βˆ€ x : ℝ, iteratedDeriv n f x > 0) (hle : βˆ€ x : ℝ, iteratedDeriv 3 f x ≀ f x) : βˆ€ x : ℝ, deriv f x < 2 * (f x) := by
import Mathlib open Filter Topology Metric /-- Let $f$ be a real function with a continuous third derivative such that $f(x), f'(x), f''(x), f'''(x)$ are positive for all $x$. Suppose that $f'''(x)\leq f(x)$ for all $x$. Show that $f'(x)<2f(x)$ for all $x$. -/ theorem putnam_1999_b4 (f : ℝ β†’ ℝ) (hf : ContDiff ℝ 3 f) (hpos: βˆ€ n ≀ 3, βˆ€ x : ℝ, iteratedDeriv n f x > 0) (hle : βˆ€ x : ℝ, iteratedDeriv 3 f x ≀ f x) : βˆ€ x : ℝ, deriv f x < 2 * (f x) := sorry
Let $f$ be a real function with a continuous third derivative such that $f(x), f'(x), f''(x), f'''(x)$ are positive for all $x$. Suppose that $f'''(x)\leq f(x)$ for all $x$. Show that $f'(x)<2f(x)$ for all $x$.
null
[ "analysis" ]
null
null
putnam_1999_a3
c14b2304-e1c8-5e6c-8cc8-3b77cb0e221d
train
theorem putnam_1999_a3 (f : ℝ β†’ ℝ) (hf : f = fun x ↦ 1 / (1 - 2 * x - x ^ 2)) (a : β„• β†’ ℝ) (hf' : βˆ€αΆ  x in 𝓝 0, Tendsto (fun N : β„• ↦ βˆ‘ n in Finset.range N, (a n) * x ^ n) atTop (𝓝 (f x))) (n : β„•) : βˆƒ m : β„•, (a n) ^ 2 + (a (n + 1)) ^ 2 = a m := sorry
import Mathlib open Filter Topology Metric /-- Consider the power series expansion \[\frac{1}{1-2x-x^2} = \sum_{n=0}^\infty a_n x^n.\] Prove that, for each integer $n\geq 0$, there is an integer $m$ such that \[a_n^2 + a_{n+1}^2 = a_m .\] -/ theorem putnam_1999_a3 (f : ℝ β†’ ℝ) (hf : f = fun x ↦ 1 / (1 - 2 * x - x ^ 2)) (a : β„• β†’ ℝ) (hf' : βˆ€αΆ  x in 𝓝 0, Tendsto (fun N : β„• ↦ βˆ‘ n in Finset.range N, (a n) * x ^ n) atTop (𝓝 (f x))) (n : β„•) : βˆƒ m : β„•, (a n) ^ 2 + (a (n + 1)) ^ 2 = a m := by
import Mathlib open Filter Topology Metric /-- Consider the power series expansion \[\frac{1}{1-2x-x^2} = \sum_{n=0}^\infty a_n x^n.\] Prove that, for each integer $n\geq 0$, there is an integer $m$ such that \[a_n^2 + a_{n+1}^2 = a_m .\] -/ theorem putnam_1999_a3 (f : ℝ β†’ ℝ) (hf : f = fun x ↦ 1 / (1 - 2 * x - x ^ 2)) (a : β„• β†’ ℝ) (hf' : βˆ€αΆ  x in 𝓝 0, Tendsto (fun N : β„• ↦ βˆ‘ n in Finset.range N, (a n) * x ^ n) atTop (𝓝 (f x))) (n : β„•) : βˆƒ m : β„•, (a n) ^ 2 + (a (n + 1)) ^ 2 = a m := sorry
Consider the power series expansion \[\frac{1}{1-2x-x^2} = \sum_{n=0}^\infty a_n x^n.\] Prove that, for each integer $n\geq 0$, there is an integer $m$ such that \[a_n^2 + a_{n+1}^2 = a_m .\]
null
[ "algebra" ]
null
null
putnam_2012_a3
b9a62d17-524f-5c75-9bbd-3c7dc1723b2a
train
abbrev putnam_2012_a3_solution : ℝ β†’ ℝ := sorry -- fun x : ℝ => Real.sqrt (1 - x^2) /-- Let $f: [-1, 1] \to \mathbb{R}$ be a continuous function such that \begin{itemize} \item[(i)] $f(x) = \frac{2-x^2}{2} f \left( \frac{x^2}{2-x^2} \right)$ for every $x$ in $[-1, 1]$, \item[(ii)] $f(0) = 1$, and \item[(iii)] $\lim_{x \to 1^-} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite. \end{itemize} Prove that $f$ is unique, and express $f(x)$ in closed form. -/ theorem putnam_2012_a3 (S : Set ℝ) (hS : S = Set.Icc (-1 : ℝ) 1) (fsat : (ℝ β†’ ℝ) β†’ Prop) (hfsat : fsat = fun f : ℝ β†’ ℝ => ContinuousOn f S ∧ (βˆ€ x ∈ S, f x = ((2 - x^2)/2)*f (x^2/(2 - x^2))) ∧ f 0 = 1 ∧ (βˆƒ y : ℝ, leftLim (fun x : ℝ => (f x)/Real.sqrt (1 - x)) 1 = y)) : fsat putnam_2012_a3_solution ∧ βˆ€ f : ℝ β†’ ℝ, fsat f β†’ βˆ€ x ∈ S, f x = putnam_2012_a3_solution x := sorry
import Mathlib open Matrix Function -- Note: uses (ℝ β†’ ℝ) instead of (Set.Icc (-1 : ℝ) 1 β†’ ℝ) -- fun x : ℝ => Real.sqrt (1 - x^2) /-- Let $f: [-1, 1] \to \mathbb{R}$ be a continuous function such that \begin{itemize} \item[(i)] $f(x) = \frac{2-x^2}{2} f \left( \frac{x^2}{2-x^2} \right)$ for every $x$ in $[-1, 1]$, \item[(ii)] $f(0) = 1$, and \item[(iii)] $\lim_{x \to 1^-} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite. \end{itemize} Prove that $f$ is unique, and express $f(x)$ in closed form. -/ theorem putnam_2012_a3 (S : Set ℝ) (hS : S = Set.Icc (-1 : ℝ) 1) (fsat : (ℝ β†’ ℝ) β†’ Prop) (hfsat : fsat = fun f : ℝ β†’ ℝ => ContinuousOn f S ∧ (βˆ€ x ∈ S, f x = ((2 - x^2)/2)*f (x^2/(2 - x^2))) ∧ f 0 = 1 ∧ (βˆƒ y : ℝ, leftLim (fun x : ℝ => (f x)/Real.sqrt (1 - x)) 1 = y)) : fsat putnam_2012_a3_solution ∧ βˆ€ f : ℝ β†’ ℝ, fsat f β†’ βˆ€ x ∈ S, f x = putnam_2012_a3_solution x := by
import Mathlib open Matrix Function -- Note: uses (ℝ β†’ ℝ) instead of (Set.Icc (-1 : ℝ) 1 β†’ ℝ) noncomputable abbrev putnam_2012_a3_solution : ℝ β†’ ℝ := sorry -- fun x : ℝ => Real.sqrt (1 - x^2) /-- Let $f: [-1, 1] \to \mathbb{R}$ be a continuous function such that \begin{itemize} \item[(i)] $f(x) = \frac{2-x^2}{2} f \left( \frac{x^2}{2-x^2} \right)$ for every $x$ in $[-1, 1]$, \item[(ii)] $f(0) = 1$, and \item[(iii)] $\lim_{x \to 1^-} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite. \end{itemize} Prove that $f$ is unique, and express $f(x)$ in closed form. -/ theorem putnam_2012_a3 (S : Set ℝ) (hS : S = Set.Icc (-1 : ℝ) 1) (fsat : (ℝ β†’ ℝ) β†’ Prop) (hfsat : fsat = fun f : ℝ β†’ ℝ => ContinuousOn f S ∧ (βˆ€ x ∈ S, f x = ((2 - x^2)/2)*f (x^2/(2 - x^2))) ∧ f 0 = 1 ∧ (βˆƒ y : ℝ, leftLim (fun x : ℝ => (f x)/Real.sqrt (1 - x)) 1 = y)) : fsat putnam_2012_a3_solution ∧ βˆ€ f : ℝ β†’ ℝ, fsat f β†’ βˆ€ x ∈ S, f x = putnam_2012_a3_solution x := sorry
Let $f: [-1, 1] \to \mathbb{R}$ be a continuous function such that \begin{itemize} \item[(i)] $f(x) = \frac{2-x^2}{2} f \left( \frac{x^2}{2-x^2} \right)$ for every $x$ in $[-1, 1]$, \item[(ii)] $f(0) = 1$, and \item[(iii)] $\lim_{x \to 1^-} \frac{f(x)}{\sqrt{1-x}}$ exists and is finite. \end{itemize} Prove that $f$ is unique, and express $f(x)$ in closed form.
$f(x) = \sqrt{1-x^2}$ for all $x \in [-1,1]$.
[ "analysis", "algebra" ]
null
null
putnam_1989_a2
54c7515d-f54c-5087-8261-31a97bac6c9b
train
abbrev putnam_1989_a2_solution : ℝ β†’ ℝ β†’ ℝ := sorry -- (fun a b : ℝ => (Real.exp (a ^ 2 * b ^ 2) - 1) / (a * b)) /-- Evaluate $\int_0^a \int_0^b e^{\max\{b^2x^2,a^2y^2\}}\,dy\,dx$ where $a$ and $b$ are positive. -/ theorem putnam_1989_a2 (a b : ℝ) (abpos : a > 0 ∧ b > 0) : ∫ x in Set.Ioo 0 a, ∫ y in Set.Ioo 0 b, Real.exp (max (b ^ 2 * x ^ 2) (a ^ 2 * y ^ 2)) = putnam_1989_a2_solution a b := sorry
import Mathlib -- (fun a b : ℝ => (Real.exp (a ^ 2 * b ^ 2) - 1) / (a * b)) /-- Evaluate $\int_0^a \int_0^b e^{\max\{b^2x^2,a^2y^2\}}\,dy\,dx$ where $a$ and $b$ are positive. -/ theorem putnam_1989_a2 (a b : ℝ) (abpos : a > 0 ∧ b > 0) : ∫ x in Set.Ioo 0 a, ∫ y in Set.Ioo 0 b, Real.exp (max (b ^ 2 * x ^ 2) (a ^ 2 * y ^ 2)) = putnam_1989_a2_solution a b := by
import Mathlib noncomputable abbrev putnam_1989_a2_solution : ℝ β†’ ℝ β†’ ℝ := sorry -- (fun a b : ℝ => (Real.exp (a ^ 2 * b ^ 2) - 1) / (a * b)) /-- Evaluate $\int_0^a \int_0^b e^{\max\{b^2x^2,a^2y^2\}}\,dy\,dx$ where $a$ and $b$ are positive. -/ theorem putnam_1989_a2 (a b : ℝ) (abpos : a > 0 ∧ b > 0) : ∫ x in Set.Ioo 0 a, ∫ y in Set.Ioo 0 b, Real.exp (max (b ^ 2 * x ^ 2) (a ^ 2 * y ^ 2)) = putnam_1989_a2_solution a b := sorry
Evaluate $\int_0^a \int_0^b e^{\max\{b^2x^2,a^2y^2\}}\,dy\,dx$ where $a$ and $b$ are positive.
Show that the value of the integral is $(e^{a^2b^2}-1)/(ab)$.
[ "analysis" ]
null
null
putnam_1978_a1
277e9810-c62b-5c72-b632-95c8753b05b9
train
theorem putnam_1978_a1 (S T : Set β„€) (hS : S = {k | βˆƒ j : β„€, 0 ≀ j ∧ j ≀ 33 ∧ k = 3 * j + 1}) (hT : T βŠ† S ∧ T.ncard = 20) : (βˆƒ m ∈ T, βˆƒ n ∈ T, m β‰  n ∧ m + n = 104) := sorry
import Mathlib /-- Let $S = \{1, 4, 7, 10, 13, 16, \dots , 100\}$. Let $T$ be a subset of $20$ elements of $S$. Show that we can find two distinct elements of $T$ with sum $104$. -/ theorem putnam_1978_a1 (S T : Set β„€) (hS : S = {k | βˆƒ j : β„€, 0 ≀ j ∧ j ≀ 33 ∧ k = 3 * j + 1}) (hT : T βŠ† S ∧ T.ncard = 20) : (βˆƒ m ∈ T, βˆƒ n ∈ T, m β‰  n ∧ m + n = 104) := by
import Mathlib /-- Let $S = \{1, 4, 7, 10, 13, 16, \dots , 100\}$. Let $T$ be a subset of $20$ elements of $S$. Show that we can find two distinct elements of $T$ with sum $104$. -/ theorem putnam_1978_a1 (S T : Set β„€) (hS : S = {k | βˆƒ j : β„€, 0 ≀ j ∧ j ≀ 33 ∧ k = 3 * j + 1}) (hT : T βŠ† S ∧ T.ncard = 20) : (βˆƒ m ∈ T, βˆƒ n ∈ T, m β‰  n ∧ m + n = 104) := sorry
Let $S = \{1, 4, 7, 10, 13, 16, \dots , 100\}$. Let $T$ be a subset of $20$ elements of $S$. Show that we can find two distinct elements of $T$ with sum $104$.
null
[ "algebra" ]
null
null
putnam_2003_b5
da006359-d77d-561d-a75b-0aee46035c4a
train
theorem putnam_2003_b5 (A B C : EuclideanSpace ℝ (Fin 2)) (hABC : dist 0 A = 1 ∧ dist 0 B = 1 ∧ dist 0 C = 1 ∧ dist A B = dist A C ∧ dist A B = dist B C) : (βˆƒ f : ℝ β†’ ℝ, βˆ€ P : EuclideanSpace ℝ (Fin 2), dist 0 P < 1 β†’ βˆƒ X Y Z : EuclideanSpace ℝ (Fin 2), dist X Y = dist P A ∧ dist Y Z = dist P B ∧ dist X Z = dist P C ∧ (MeasureTheory.volume (convexHull ℝ {X, Y, Z})).toReal = f (dist 0 P)) := sorry
import Mathlib open MvPolynomial Set Nat /-- Let $A,B$, and $C$ be equidistant points on the circumference of a circle of unit radius centered at $O$, and let $P$ be any point in the circle's interior. Let $a, b, c$ be the distance from $P$ to $A, B, C$, respectively. Show that there is a triangle with side lengths $a, b, c$, and that the area of this triangle depends only on the distance from $P$ to $O$. -/ theorem putnam_2003_b5 (A B C : EuclideanSpace ℝ (Fin 2)) (hABC : dist 0 A = 1 ∧ dist 0 B = 1 ∧ dist 0 C = 1 ∧ dist A B = dist A C ∧ dist A B = dist B C) : (βˆƒ f : ℝ β†’ ℝ, βˆ€ P : EuclideanSpace ℝ (Fin 2), dist 0 P < 1 β†’ βˆƒ X Y Z : EuclideanSpace ℝ (Fin 2), dist X Y = dist P A ∧ dist Y Z = dist P B ∧ dist X Z = dist P C ∧ (MeasureTheory.volume (convexHull ℝ {X, Y, Z})).toReal = f (dist 0 P)) := by
import Mathlib open MvPolynomial Set Nat /-- Let $A,B$, and $C$ be equidistant points on the circumference of a circle of unit radius centered at $O$, and let $P$ be any point in the circle's interior. Let $a, b, c$ be the distance from $P$ to $A, B, C$, respectively. Show that there is a triangle with side lengths $a, b, c$, and that the area of this triangle depends only on the distance from $P$ to $O$. -/ theorem putnam_2003_b5 (A B C : EuclideanSpace ℝ (Fin 2)) (hABC : dist 0 A = 1 ∧ dist 0 B = 1 ∧ dist 0 C = 1 ∧ dist A B = dist A C ∧ dist A B = dist B C) : (βˆƒ f : ℝ β†’ ℝ, βˆ€ P : EuclideanSpace ℝ (Fin 2), dist 0 P < 1 β†’ βˆƒ X Y Z : EuclideanSpace ℝ (Fin 2), dist X Y = dist P A ∧ dist Y Z = dist P B ∧ dist X Z = dist P C ∧ (MeasureTheory.volume (convexHull ℝ {X, Y, Z})).toReal = f (dist 0 P)) := sorry
Let $A,B$, and $C$ be equidistant points on the circumference of a circle of unit radius centered at $O$, and let $P$ be any point in the circle's interior. Let $a, b, c$ be the distance from $P$ to $A, B, C$, respectively. Show that there is a triangle with side lengths $a, b, c$, and that the area of this triangle depends only on the distance from $P$ to $O$.
null
[ "geometry" ]
null
null
putnam_1963_a3
fa9b5963-bd9b-56f4-bd81-fa989896fc68
train
abbrev putnam_1963_a3_solution : (ℝ β†’ ℝ) β†’ β„• β†’ ℝ β†’ ℝ β†’ ℝ := sorry -- fun (f : ℝ β†’ ℝ) (n : β„•) (x : ℝ) (t : ℝ) ↦ (x - t) ^ (n - 1) * (f t) / ((n - 1)! * t ^ n) /-- Find an integral formula (i.e., a function $z$ such that $y(x) = \int_{1}^{x} z(t) dt$) for the solution of the differential equation $$\delta (\delta - 1) (\delta - 2) \cdots (\delta - n + 1) y = f(x)$$ with the initial conditions $y(1) = y'(1) = \cdots = y^{(n-1)}(1) = 0$, where $n \in \mathbb{N}$, $f$ is continuous for all $x \ge 1$, and $\delta$ denotes $x\frac{d}{dx}$. -/ theorem putnam_1963_a3 (P : β„• β†’ (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ)) (hP : P 0 = id ∧ βˆ€ i y, P (i + 1) y = P i (fun x ↦ x * deriv y x - i * y x)) (n : β„•) (hn : 0 < n) (f y : ℝ β†’ ℝ) (hf : ContinuousOn f (Ici 1)) (hy : ContDiffOn ℝ n y (Ici 1)) : (βˆ€ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔ βˆ€ x β‰₯ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t := sorry
import Mathlib open Nat Set Topology Filter -- fun (f : ℝ β†’ ℝ) (n : β„•) (x : ℝ) (t : ℝ) ↦ (x - t) ^ (n - 1) * (f t) / ((n - 1)! * t ^ n) /-- Find an integral formula (i.e., a function $z$ such that $y(x) = \int_{1}^{x} z(t) dt$) for the solution of the differential equation $$\delta (\delta - 1) (\delta - 2) \cdots (\delta - n + 1) y = f(x)$$ with the initial conditions $y(1) = y'(1) = \cdots = y^{(n-1)}(1) = 0$, where $n \in \mathbb{N}$, $f$ is continuous for all $x \ge 1$, and $\delta$ denotes $x\frac{d}{dx}$. -/ theorem putnam_1963_a3 (P : β„• β†’ (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ)) (hP : P 0 = id ∧ βˆ€ i y, P (i + 1) y = P i (fun x ↦ x * deriv y x - i * y x)) (n : β„•) (hn : 0 < n) (f y : ℝ β†’ ℝ) (hf : ContinuousOn f (Ici 1)) (hy : ContDiffOn ℝ n y (Ici 1)) : (βˆ€ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔ βˆ€ x β‰₯ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t := by
import Mathlib open Nat Set Topology Filter noncomputable abbrev putnam_1963_a3_solution : (ℝ β†’ ℝ) β†’ β„• β†’ ℝ β†’ ℝ β†’ ℝ := sorry -- fun (f : ℝ β†’ ℝ) (n : β„•) (x : ℝ) (t : ℝ) ↦ (x - t) ^ (n - 1) * (f t) / ((n - 1)! * t ^ n) /-- Find an integral formula (i.e., a function $z$ such that $y(x) = \int_{1}^{x} z(t) dt$) for the solution of the differential equation $$\delta (\delta - 1) (\delta - 2) \cdots (\delta - n + 1) y = f(x)$$ with the initial conditions $y(1) = y'(1) = \cdots = y^{(n-1)}(1) = 0$, where $n \in \mathbb{N}$, $f$ is continuous for all $x \ge 1$, and $\delta$ denotes $x\frac{d}{dx}$. -/ theorem putnam_1963_a3 (P : β„• β†’ (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ)) (hP : P 0 = id ∧ βˆ€ i y, P (i + 1) y = P i (fun x ↦ x * deriv y x - i * y x)) (n : β„•) (hn : 0 < n) (f y : ℝ β†’ ℝ) (hf : ContinuousOn f (Ici 1)) (hy : ContDiffOn ℝ n y (Ici 1)) : (βˆ€ i < n, deriv^[i] y 1 = 0) ∧ (Ici 1).EqOn (P n y) f ↔ βˆ€ x β‰₯ 1, y x = ∫ t in (1 : ℝ)..x, putnam_1963_a3_solution f n x t := sorry
Find an integral formula (i.e., a function $z$ such that $y(x) = \int_{1}^{x} z(t) dt$) for the solution of the differential equation $$\delta (\delta - 1) (\delta - 2) \cdots (\delta - n + 1) y = f(x)$$ with the initial conditions $y(1) = y'(1) = \cdots = y^{(n-1)}(1) = 0$, where $n \in \mathbb{N}$, $f$ is continuous for all $x \ge 1$, and $\delta$ denotes $x\frac{d}{dx}$.
Show that the solution is $$y(x) = \int_{1}^{x} \frac{(x - t)^{n - 1} f(t)}{(n - 1)!t^n} dt$$.
[ "analysis" ]
null
null
putnam_1973_a2
8e962ce2-3591-5987-857b-36090ee5c1eb
train
abbrev putnam_1973_a2_solution : Prop := sorry -- True /-- Consider an infinite series whose $n$th term is given by $\pm \frac{1}{n}$, where the actual values of the $\pm$ signs repeat in blocks of $8$ (so the $\frac{1}{9}$ term has the same sign as the $\frac{1}{1}$ term, and so on). Call such a sequence balanced if each block contains four $+$ and four $-$ signs. Prove that being balanced is a sufficient condition for the sequence to converge. Is being balanced also necessary for the sequence to converge? -/ theorem putnam_1973_a2 (L : List ℝ) (hL : L.length = 8 ∧ βˆ€ i : Fin L.length, L[i] = 1 ∨ L[i] = -1) (pluses : β„•) (hpluses : pluses = {i : Fin L.length | L[i] = 1}.ncard) (S : β„• β†’ ℝ) (hS : S = fun n : β„• ↦ βˆ‘ i in Finset.Icc 1 n, L[i % 8]/i) : (pluses = 4 β†’ βˆƒ l : ℝ, Tendsto S atTop (𝓝 l)) ∧ (putnam_1973_a2_solution ↔ ((βˆƒ l : ℝ, Tendsto S atTop (𝓝 l)) β†’ pluses = 4)) := sorry
import Mathlib open Nat Set MeasureTheory Topology Filter -- True /-- Consider an infinite series whose $n$th term is given by $\pm \frac{1}{n}$, where the actual values of the $\pm$ signs repeat in blocks of $8$ (so the $\frac{1}{9}$ term has the same sign as the $\frac{1}{1}$ term, and so on). Call such a sequence balanced if each block contains four $+$ and four $-$ signs. Prove that being balanced is a sufficient condition for the sequence to converge. Is being balanced also necessary for the sequence to converge? -/ theorem putnam_1973_a2 (L : List ℝ) (hL : L.length = 8 ∧ βˆ€ i : Fin L.length, L[i] = 1 ∨ L[i] = -1) (pluses : β„•) (hpluses : pluses = {i : Fin L.length | L[i] = 1}.ncard) (S : β„• β†’ ℝ) (hS : S = fun n : β„• ↦ βˆ‘ i in Finset.Icc 1 n, L[i % 8]/i) : (pluses = 4 β†’ βˆƒ l : ℝ, Tendsto S atTop (𝓝 l)) ∧ (putnam_1973_a2_solution ↔ ((βˆƒ l : ℝ, Tendsto S atTop (𝓝 l)) β†’ pluses = 4)) := by
import Mathlib open Nat Set MeasureTheory Topology Filter abbrev putnam_1973_a2_solution : Prop := sorry -- True /-- Consider an infinite series whose $n$th term is given by $\pm \frac{1}{n}$, where the actual values of the $\pm$ signs repeat in blocks of $8$ (so the $\frac{1}{9}$ term has the same sign as the $\frac{1}{1}$ term, and so on). Call such a sequence balanced if each block contains four $+$ and four $-$ signs. Prove that being balanced is a sufficient condition for the sequence to converge. Is being balanced also necessary for the sequence to converge? -/ theorem putnam_1973_a2 (L : List ℝ) (hL : L.length = 8 ∧ βˆ€ i : Fin L.length, L[i] = 1 ∨ L[i] = -1) (pluses : β„•) (hpluses : pluses = {i : Fin L.length | L[i] = 1}.ncard) (S : β„• β†’ ℝ) (hS : S = fun n : β„• ↦ βˆ‘ i in Finset.Icc 1 n, L[i % 8]/i) : (pluses = 4 β†’ βˆƒ l : ℝ, Tendsto S atTop (𝓝 l)) ∧ (putnam_1973_a2_solution ↔ ((βˆƒ l : ℝ, Tendsto S atTop (𝓝 l)) β†’ pluses = 4)) := sorry
Consider an infinite series whose $n$th term is given by $\pm \frac{1}{n}$, where the actual values of the $\pm$ signs repeat in blocks of $8$ (so the $\frac{1}{9}$ term has the same sign as the $\frac{1}{1}$ term, and so on). Call such a sequence balanced if each block contains four $+$ and four $-$ signs. Prove that being balanced is a sufficient condition for the sequence to converge. Is being balanced also necessary for the sequence to converge?
Show that the condition is necessary.
[ "analysis" ]
null
null
putnam_2018_b2
ee3302b3-48c7-506a-bfa2-e42b7023af87
train
theorem putnam_2018_b2 (n : β„•) (hn : n > 0) (f : β„• β†’ β„‚ β†’ β„‚) (hf : βˆ€ z : β„‚, f n z = βˆ‘ i in Finset.range n, (n - i) * z^i) : βˆ€ z : β„‚, β€–zβ€– ≀ 1 β†’ f n z β‰  0 := sorry
import Mathlib /-- Let $n$ be a positive integer, and let $f_n(z) = n + (n-1)z + (n-2)z^2 + \cdots + z^{n-1}$. Prove that $f_n$ has no roots in the closed unit disk $\{z \in \mathbb{C}: |z| \leq 1\}$. -/ theorem putnam_2018_b2 (n : β„•) (hn : n > 0) (f : β„• β†’ β„‚ β†’ β„‚) (hf : βˆ€ z : β„‚, f n z = βˆ‘ i in Finset.range n, (n - i) * z^i) : βˆ€ z : β„‚, β€–zβ€– ≀ 1 β†’ f n z β‰  0 := by
import Mathlib /-- Let $n$ be a positive integer, and let $f_n(z) = n + (n-1)z + (n-2)z^2 + \cdots + z^{n-1}$. Prove that $f_n$ has no roots in the closed unit disk $\{z \in \mathbb{C}: |z| \leq 1\}$. -/ theorem putnam_2018_b2 (n : β„•) (hn : n > 0) (f : β„• β†’ β„‚ β†’ β„‚) (hf : βˆ€ z : β„‚, f n z = βˆ‘ i in Finset.range n, (n - i) * z^i) : βˆ€ z : β„‚, β€–zβ€– ≀ 1 β†’ f n z β‰  0 := sorry
Let $n$ be a positive integer, and let $f_n(z) = n + (n-1)z + (n-2)z^2 + \cdots + z^{n-1}$. Prove that $f_n$ has no roots in the closed unit disk $\{z \in \mathbb{C}: |z| \leq 1\}$.
null
[ "analysis" ]
null
null
putnam_1997_a4
be1f113c-b3e6-5cc2-ac5a-10f3aadb79cd
train
theorem putnam_1997_a4 (G : Type*) [Group G] (Ο† : G β†’ G) (hΟ† : βˆ€ g1 g2 g3 h1 h2 h3 : G, (g1 * g2 * g3 = 1 ∧ h1 * h2 * h3 = 1) β†’ Ο† g1 * Ο† g2 * Ο† g3 = Ο† h1 * Ο† h2 * Ο† h3) : βˆƒ a : G, let ψ := fun g => a * Ο† g; βˆ€ x y : G, ψ (x * y) = ψ x * ψ y := sorry
import Mathlib open Filter Topology /-- Let $G$ be a group with identity $e$ and $\phi:G\rightarrow G$ a function such that \[\phi(g_1)\phi(g_2)\phi(g_3)=\phi(h_1)\phi(h_2)\phi(h_3)\] whenever $g_1g_2g_3=e=h_1h_2h_3$. Prove that there exists an element $a\in G$ such that $\psi(x)=a\phi(x)$ is a homomorphism (i.e. $\psi(xy)=\psi(x)\psi(y)$ for all $x,y\in G$). -/ theorem putnam_1997_a4 (G : Type*) [Group G] (Ο† : G β†’ G) (hΟ† : βˆ€ g1 g2 g3 h1 h2 h3 : G, (g1 * g2 * g3 = 1 ∧ h1 * h2 * h3 = 1) β†’ Ο† g1 * Ο† g2 * Ο† g3 = Ο† h1 * Ο† h2 * Ο† h3) : βˆƒ a : G, let ψ := fun g => a * Ο† g; βˆ€ x y : G, ψ (x * y) = ψ x * ψ y := by
import Mathlib open Filter Topology /-- Let $G$ be a group with identity $e$ and $\phi:G\rightarrow G$ a function such that \[\phi(g_1)\phi(g_2)\phi(g_3)=\phi(h_1)\phi(h_2)\phi(h_3)\] whenever $g_1g_2g_3=e=h_1h_2h_3$. Prove that there exists an element $a\in G$ such that $\psi(x)=a\phi(x)$ is a homomorphism (i.e. $\psi(xy)=\psi(x)\psi(y)$ for all $x,y\in G$). -/ theorem putnam_1997_a4 (G : Type*) [Group G] (Ο† : G β†’ G) (hΟ† : βˆ€ g1 g2 g3 h1 h2 h3 : G, (g1 * g2 * g3 = 1 ∧ h1 * h2 * h3 = 1) β†’ Ο† g1 * Ο† g2 * Ο† g3 = Ο† h1 * Ο† h2 * Ο† h3) : βˆƒ a : G, let ψ := fun g => a * Ο† g; βˆ€ x y : G, ψ (x * y) = ψ x * ψ y := sorry
Let $G$ be a group with identity $e$ and $\phi:G\rightarrow G$ a function such that \[\phi(g_1)\phi(g_2)\phi(g_3)=\phi(h_1)\phi(h_2)\phi(h_3)\] whenever $g_1g_2g_3=e=h_1h_2h_3$. Prove that there exists an element $a\in G$ such that $\psi(x)=a\phi(x)$ is a homomorphism (i.e. $\psi(xy)=\psi(x)\psi(y)$ for all $x,y\in G$).
null
[ "abstract_algebra" ]
null
null
putnam_1964_a6
1bbef2cc-00a3-51e1-b699-d6d765ae91e4
train
theorem putnam_1964_a6 (S : Finset ℝ) (pairs : Set (ℝ Γ— ℝ)) (hpairs : pairs = {(a, b) | (a ∈ S) ∧ (b ∈ S) ∧ (a < b)}) (distance : ℝ Γ— ℝ β†’ ℝ) (hdistance : distance = fun (a, b) ↦ b - a) (hrepdist : βˆ€ p ∈ pairs, (βˆƒ m ∈ pairs, distance m > distance p) β†’ βˆƒ q ∈ pairs, q β‰  p ∧ distance p = distance q) : (βˆ€ p q : pairs, q β‰  p β†’ βˆƒ r : β„š, distance p / distance q = r) := sorry
import Mathlib open Set Function Filter Topology /-- Let $S$ be a finite set of collinear points. Let $k$ be the maximum distance between any two points of $S$. Given a pair of points of $S$ a distance $d < k$ apart, we can find another pair of points of $S$ also a distance $d$ apart. Prove that if two pairs of points of $S$ are distances $a$ and $b$ apart, then $\frac{a}{b}$ is rational. -/ theorem putnam_1964_a6 (S : Finset ℝ) (pairs : Set (ℝ Γ— ℝ)) (hpairs : pairs = {(a, b) | (a ∈ S) ∧ (b ∈ S) ∧ (a < b)}) (distance : ℝ Γ— ℝ β†’ ℝ) (hdistance : distance = fun (a, b) ↦ b - a) (hrepdist : βˆ€ p ∈ pairs, (βˆƒ m ∈ pairs, distance m > distance p) β†’ βˆƒ q ∈ pairs, q β‰  p ∧ distance p = distance q) : (βˆ€ p q : pairs, q β‰  p β†’ βˆƒ r : β„š, distance p / distance q = r) := by
import Mathlib open Set Function Filter Topology /-- Let $S$ be a finite set of collinear points. Let $k$ be the maximum distance between any two points of $S$. Given a pair of points of $S$ a distance $d < k$ apart, we can find another pair of points of $S$ also a distance $d$ apart. Prove that if two pairs of points of $S$ are distances $a$ and $b$ apart, then $\frac{a}{b}$ is rational. -/ theorem putnam_1964_a6 (S : Finset ℝ) (pairs : Set (ℝ Γ— ℝ)) (hpairs : pairs = {(a, b) | (a ∈ S) ∧ (b ∈ S) ∧ (a < b)}) (distance : ℝ Γ— ℝ β†’ ℝ) (hdistance : distance = fun (a, b) ↦ b - a) (hrepdist : βˆ€ p ∈ pairs, (βˆƒ m ∈ pairs, distance m > distance p) β†’ βˆƒ q ∈ pairs, q β‰  p ∧ distance p = distance q) : (βˆ€ p q : pairs, q β‰  p β†’ βˆƒ r : β„š, distance p / distance q = r) := sorry
Let $S$ be a finite set of collinear points. Let $k$ be the maximum distance between any two points of $S$. Given a pair of points of $S$ a distance $d < k$ apart, we can find another pair of points of $S$ also a distance $d$ apart. Prove that if two pairs of points of $S$ are distances $a$ and $b$ apart, then $\frac{a}{b}$ is rational.
null
[ "geometry" ]
null
null
putnam_2012_a5
3cefb131-7239-5240-8ac7-f19da68252ec
train
abbrev putnam_2012_a5_solution : Set (β„• Γ— β„•) := sorry -- {q | let ⟨n, _⟩ := q; n = 1} βˆͺ {(2,2)} /-- Let $\FF_p$ denote the field of integers modulo a prime $p$, and let $n$ be a positive integer. Let $v$ be a fixed vector in $\FF_p^n$, let $M$ be an $n \times n$ matrix with entries of $\FF_p$, and define $G: \FF_p^n \to \FF_p^n$ by $G(x) = v + Mx$. Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs $p, n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0)$, $k=1,2,\dots,p^n$ are distinct. -/ theorem putnam_2012_a5 (n p : β„•) (hn : n > 0) (hp : Nat.Prime p) {F : Type*} [Field F] [Fintype F] (hK : Fintype.card F = p) (G : Matrix (Fin n) (Fin n) F β†’ (Fin n β†’ F) β†’ (Fin n β†’ F) β†’ (Fin n β†’ F)) (hG : βˆ€ M v x, G M v x = v + mulVec M x) : (n, p) ∈ putnam_2012_a5_solution ↔ βˆƒα΅‰ (M : Matrix (Fin n) (Fin n) F) (v : (Fin n β†’ F)), Β¬(βˆƒ i j : Finset.range (p^n), i β‰  j ∧ (G M v)^[i + 1] 0 = (G M v)^[j + 1] 0) := sorry
import Mathlib open Matrix Function -- {q | let ⟨n, _⟩ := q; n = 1} βˆͺ {(2,2)} /-- Let $\FF_p$ denote the field of integers modulo a prime $p$, and let $n$ be a positive integer. Let $v$ be a fixed vector in $\FF_p^n$, let $M$ be an $n \times n$ matrix with entries of $\FF_p$, and define $G: \FF_p^n \to \FF_p^n$ by $G(x) = v + Mx$. Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs $p, n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0)$, $k=1,2,\dots,p^n$ are distinct. -/ theorem putnam_2012_a5 (n p : β„•) (hn : n > 0) (hp : Nat.Prime p) {F : Type*} [Field F] [Fintype F] (hK : Fintype.card F = p) (G : Matrix (Fin n) (Fin n) F β†’ (Fin n β†’ F) β†’ (Fin n β†’ F) β†’ (Fin n β†’ F)) (hG : βˆ€ M v x, G M v x = v + mulVec M x) : (n, p) ∈ putnam_2012_a5_solution ↔ βˆƒα΅‰ (M : Matrix (Fin n) (Fin n) F) (v : (Fin n β†’ F)), Β¬(βˆƒ i j : Finset.range (p^n), i β‰  j ∧ (G M v)^[i + 1] 0 = (G M v)^[j + 1] 0) := by
import Mathlib open Matrix Function abbrev putnam_2012_a5_solution : Set (β„• Γ— β„•) := sorry -- {q | let ⟨n, _⟩ := q; n = 1} βˆͺ {(2,2)} /-- Let $\FF_p$ denote the field of integers modulo a prime $p$, and let $n$ be a positive integer. Let $v$ be a fixed vector in $\FF_p^n$, let $M$ be an $n \times n$ matrix with entries of $\FF_p$, and define $G: \FF_p^n \to \FF_p^n$ by $G(x) = v + Mx$. Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs $p, n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0)$, $k=1,2,\dots,p^n$ are distinct. -/ theorem putnam_2012_a5 (n p : β„•) (hn : n > 0) (hp : Nat.Prime p) {F : Type*} [Field F] [Fintype F] (hK : Fintype.card F = p) (G : Matrix (Fin n) (Fin n) F β†’ (Fin n β†’ F) β†’ (Fin n β†’ F) β†’ (Fin n β†’ F)) (hG : βˆ€ M v x, G M v x = v + mulVec M x) : (n, p) ∈ putnam_2012_a5_solution ↔ βˆƒα΅‰ (M : Matrix (Fin n) (Fin n) F) (v : (Fin n β†’ F)), Β¬(βˆƒ i j : Finset.range (p^n), i β‰  j ∧ (G M v)^[i + 1] 0 = (G M v)^[j + 1] 0) := sorry
Let $\FF_p$ denote the field of integers modulo a prime $p$, and let $n$ be a positive integer. Let $v$ be a fixed vector in $\FF_p^n$, let $M$ be an $n \times n$ matrix with entries of $\FF_p$, and define $G: \FF_p^n \to \FF_p^n$ by $G(x) = v + Mx$. Let $G^{(k)}$ denote the $k$-fold composition of $G$ with itself, that is, $G^{(1)}(x) = G(x)$ and $G^{(k+1)}(x) = G(G^{(k)}(x))$. Determine all pairs $p, n$ for which there exist $v$ and $M$ such that the $p^n$ vectors $G^{(k)}(0)$, $k=1,2,\dots,p^n$ are distinct.
Show that the solution is the pairs $(p,n)$ with $n = 1$ as well as the single pair $(2,2)$.
[ "linear_algebra" ]
null
null
putnam_2005_a3
f5dc6208-b40f-56d7-a34d-94bfc18c7894
train
theorem putnam_2005_a3 (p : Polynomial β„‚) (n : β„•) (hn : 0 < n) (g : β„‚ β†’ β„‚) (pdeg : p.degree = n) (pzeros : βˆ€ z : β„‚, p.eval z = 0 β†’ Complex.abs z = 1) (hg : βˆ€ z : β„‚, g z = (p.eval z) / z ^ ((n : β„‚) / 2)) (z : β„‚) (hz : z β‰  0 ∧ deriv g z = 0) : Complex.abs z = 1 := sorry
import Mathlib open Nat Set /-- Let $p(z)$ be a polynomial of degree $n$ all of whose zeros have absolute value $1$ in the complex plane. Put $g(z)=p(z)/z^{n/2}$. Show that all zeros of $g'(z)=0$ have absolute value $1$. -/ theorem putnam_2005_a3 (p : Polynomial β„‚) (n : β„•) (hn : 0 < n) (g : β„‚ β†’ β„‚) (pdeg : p.degree = n) (pzeros : βˆ€ z : β„‚, p.eval z = 0 β†’ Complex.abs z = 1) (hg : βˆ€ z : β„‚, g z = (p.eval z) / z ^ ((n : β„‚) / 2)) (z : β„‚) (hz : z β‰  0 ∧ deriv g z = 0) : Complex.abs z = 1 := by
import Mathlib open Nat Set /-- Let $p(z)$ be a polynomial of degree $n$ all of whose zeros have absolute value $1$ in the complex plane. Put $g(z)=p(z)/z^{n/2}$. Show that all zeros of $g'(z)=0$ have absolute value $1$. -/ theorem putnam_2005_a3 (p : Polynomial β„‚) (n : β„•) (hn : 0 < n) (g : β„‚ β†’ β„‚) (pdeg : p.degree = n) (pzeros : βˆ€ z : β„‚, p.eval z = 0 β†’ Complex.abs z = 1) (hg : βˆ€ z : β„‚, g z = (p.eval z) / z ^ ((n : β„‚) / 2)) (z : β„‚) (hz : z β‰  0 ∧ deriv g z = 0) : Complex.abs z = 1 := sorry
Let $p(z)$ be a polynomial of degree $n$ all of whose zeros have absolute value $1$ in the complex plane. Put $g(z)=p(z)/z^{n/2}$. Show that all zeros of $g'(z)=0$ have absolute value $1$.
null
[ "analysis", "algebra" ]
null
null
putnam_1987_b3
20fe6b6c-b847-5fa3-b3f7-325e89e44c3d
train
theorem putnam_1987_b3 (F : Type*) [Field F] (hF : (1 : F) + 1 β‰  0) : {(x, y) : F Γ— F | x ^ 2 + y ^ 2 = 1} = {(1, 0)} βˆͺ {((r ^ 2 - 1) / (r ^ 2 + 1), (2 * r) / (r ^ 2 + 1)) | r ∈ {r' : F | r' ^ 2 β‰  -1}} := sorry
import Mathlib open MvPolynomial Real Nat /-- Let $F$ be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^2+y^2=1$ with $x$ and $y$ in $F$ is given by $(x,y)=(1,0)$ and $(x,y)=\left(\frac{r^2-1}{r^2+1},\frac{2r}{r^2+1}\right)$, where $r$ runs through the elements of $F$ such that $r^2 \neq -1$. -/ theorem putnam_1987_b3 (F : Type*) [Field F] (hF : (1 : F) + 1 β‰  0) : {(x, y) : F Γ— F | x ^ 2 + y ^ 2 = 1} = {(1, 0)} βˆͺ {((r ^ 2 - 1) / (r ^ 2 + 1), (2 * r) / (r ^ 2 + 1)) | r ∈ {r' : F | r' ^ 2 β‰  -1}} := by
import Mathlib open MvPolynomial Real Nat /-- Let $F$ be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^2+y^2=1$ with $x$ and $y$ in $F$ is given by $(x,y)=(1,0)$ and $(x,y)=\left(\frac{r^2-1}{r^2+1},\frac{2r}{r^2+1}\right)$, where $r$ runs through the elements of $F$ such that $r^2 \neq -1$. -/ theorem putnam_1987_b3 (F : Type*) [Field F] (hF : (1 : F) + 1 β‰  0) : {(x, y) : F Γ— F | x ^ 2 + y ^ 2 = 1} = {(1, 0)} βˆͺ {((r ^ 2 - 1) / (r ^ 2 + 1), (2 * r) / (r ^ 2 + 1)) | r ∈ {r' : F | r' ^ 2 β‰  -1}} := sorry
Let $F$ be a field in which $1+1 \neq 0$. Show that the set of solutions to the equation $x^2+y^2=1$ with $x$ and $y$ in $F$ is given by $(x,y)=(1,0)$ and $(x,y)=\left(\frac{r^2-1}{r^2+1},\frac{2r}{r^2+1}\right)$, where $r$ runs through the elements of $F$ such that $r^2 \neq -1$.
null
[ "abstract_algebra" ]
null
null
putnam_2017_b1
7cffdc75-5fa5-53b4-8c4b-92df7a5579c5
train
theorem putnam_2017_b1 (lines : Set (Set (Fin 2 β†’ ℝ))) (L1 L2 : Set (Fin 2 β†’ ℝ)) (L1L2lines : L1 ∈ lines ∧ L2 ∈ lines) (L1L2distinct : L1 β‰  L2) (hlines : lines = {L | βˆƒ v w : Fin 2 β†’ ℝ, w β‰  0 ∧ L = {p | βˆƒ t : ℝ, p = v + t β€’ w}}) : L1 ∩ L2 β‰  βˆ… ↔ (βˆ€ lambda : ℝ, lambda β‰  0 β†’ βˆ€ P, (P βˆ‰ L1 ∧ P βˆ‰ L2) β†’ βˆƒ A1 A2, A1 ∈ L1 ∧ A2 ∈ L2 ∧ (A2 - P = lambda β€’ (A1 - P))) := sorry
import Mathlib open Topology Filter /-- Let $L_1$ and $L_2$ be distinct lines in the plane. Prove that $L_1$ and $L_2$ intersect if and only if, for every real number $\lambda \neq 0$ and every point $P$ not on $L_1$ or $L_2$, there exist points $A_1$ on $L_1$ and $A_2$ on $L_2$ such that $\overrightarrow{PA_2}=\lambda \overrightarrow{PA_1}$. -/ theorem putnam_2017_b1 (lines : Set (Set (Fin 2 β†’ ℝ))) (L1 L2 : Set (Fin 2 β†’ ℝ)) (L1L2lines : L1 ∈ lines ∧ L2 ∈ lines) (L1L2distinct : L1 β‰  L2) (hlines : lines = {L | βˆƒ v w : Fin 2 β†’ ℝ, w β‰  0 ∧ L = {p | βˆƒ t : ℝ, p = v + t β€’ w}}) : L1 ∩ L2 β‰  βˆ… ↔ (βˆ€ lambda : ℝ, lambda β‰  0 β†’ βˆ€ P, (P βˆ‰ L1 ∧ P βˆ‰ L2) β†’ βˆƒ A1 A2, A1 ∈ L1 ∧ A2 ∈ L2 ∧ (A2 - P = lambda β€’ (A1 - P))) := by
import Mathlib open Topology Filter /-- Let $L_1$ and $L_2$ be distinct lines in the plane. Prove that $L_1$ and $L_2$ intersect if and only if, for every real number $\lambda \neq 0$ and every point $P$ not on $L_1$ or $L_2$, there exist points $A_1$ on $L_1$ and $A_2$ on $L_2$ such that $\overrightarrow{PA_2}=\lambda \overrightarrow{PA_1}$. -/ theorem putnam_2017_b1 (lines : Set (Set (Fin 2 β†’ ℝ))) (L1 L2 : Set (Fin 2 β†’ ℝ)) (L1L2lines : L1 ∈ lines ∧ L2 ∈ lines) (L1L2distinct : L1 β‰  L2) (hlines : lines = {L | βˆƒ v w : Fin 2 β†’ ℝ, w β‰  0 ∧ L = {p | βˆƒ t : ℝ, p = v + t β€’ w}}) : L1 ∩ L2 β‰  βˆ… ↔ (βˆ€ lambda : ℝ, lambda β‰  0 β†’ βˆ€ P, (P βˆ‰ L1 ∧ P βˆ‰ L2) β†’ βˆƒ A1 A2, A1 ∈ L1 ∧ A2 ∈ L2 ∧ (A2 - P = lambda β€’ (A1 - P))) := sorry
Let $L_1$ and $L_2$ be distinct lines in the plane. Prove that $L_1$ and $L_2$ intersect if and only if, for every real number $\lambda \neq 0$ and every point $P$ not on $L_1$ or $L_2$, there exist points $A_1$ on $L_1$ and $A_2$ on $L_2$ such that $\overrightarrow{PA_2}=\lambda \overrightarrow{PA_1}$.
null
[ "geometry" ]
null
null
putnam_2003_b3
f3f0f6af-3bc2-5343-8ec2-307178319241
train
theorem putnam_2003_b3 (n : β„•) : n ! = ∏ i in Finset.Icc 1 n, ((List.range ⌊n / iβŒ‹β‚Š).map succ).foldl Nat.lcm 1 := sorry
import Mathlib open MvPolynomial Set Nat /-- Show that for each positive integer $n$, $n!=\prod_{i=1}^n \text{lcm}\{1,2,\dots,\lfloor n/i \rfloor\}$. (Here lcm denotes the least common multiple, and $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.) -/ theorem putnam_2003_b3 (n : β„•) : n ! = ∏ i in Finset.Icc 1 n, ((List.range ⌊n / iβŒ‹β‚Š).map succ).foldl Nat.lcm 1 := by
import Mathlib open MvPolynomial Set Nat /-- Show that for each positive integer $n$, $n!=\prod_{i=1}^n \text{lcm}\{1,2,\dots,\lfloor n/i \rfloor\}$. (Here lcm denotes the least common multiple, and $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.) -/ theorem putnam_2003_b3 (n : β„•) : n ! = ∏ i in Finset.Icc 1 n, ((List.range ⌊n / iβŒ‹β‚Š).map succ).foldl Nat.lcm 1 := sorry
Show that for each positive integer $n$, $n!=\prod_{i=1}^n \text{lcm}\{1,2,\dots,\lfloor n/i \rfloor\}$. (Here lcm denotes the least common multiple, and $\lfloor x \rfloor$ denotes the greatest integer $\leq x$.)
null
[ "number_theory" ]
null
null
putnam_2023_a4
4f23c0ee-5835-5c4f-8638-60cf144e89d9
train
theorem putnam_2023_a4 (v : Fin 12 β†’ EuclideanSpace ℝ (Fin 3)) (hv : letI Ο† : ℝ := (1 + √5) / 2 letI e : (Fin 3 β†’ ℝ) ≃ EuclideanSpace ℝ (Fin 3) := (WithLp.equiv _ _).symm letI s := √(1 + Ο† ^ 2) βˆƒ g : EuclideanSpace ℝ (Fin 3) ≃ₗᡒ[ℝ] EuclideanSpace ℝ (Fin 3), g ∘ v = s⁻¹ β€’ e ∘ ![![1, Ο†, 0], ![-1, Ο†, 0], ![ 1, -Ο†, 0], ![-1, -Ο†, 0], ![Ο†, 0, 1], ![ Ο†, 0, -1], ![-Ο†, 0, 1], ![-Ο†, 0, -1], ![0, 1, Ο†], ![ 0, -1, Ο†], ![ 0, 1, -Ο†], ![ 0, -1, -Ο†]]) (w : EuclideanSpace ℝ (Fin 3)) (Ξ΅ : ℝ) (hΞ΅ : Ξ΅ > 0) : βˆƒ a : Fin 12 β†’ β„€, β€–βˆ‘ i, a i β€’ v i - wβ€– < Ξ΅ := sorry
import Mathlib /-- Let $v_1, \ldots, v_{12}$ be unit vectors in $\mathbb{R}^3$ from the origin to the vertices of a regular icosahedron. Show that for every vector $v \in \mathbb{R}^3$ and every $\epsilon > 0$, there exist integers $a_1, \ldots, a_{12}$ such that $\|a_1v_1 + \cdots + a_{12}v_{12} - v\| < Ξ΅$. -/ theorem putnam_2023_a4 (v : Fin 12 β†’ EuclideanSpace ℝ (Fin 3)) (hv : letI Ο† : ℝ := (1 + √5) / 2 letI e : (Fin 3 β†’ ℝ) ≃ EuclideanSpace ℝ (Fin 3) := (WithLp.equiv _ _).symm letI s := √(1 + Ο† ^ 2) βˆƒ g : EuclideanSpace ℝ (Fin 3) ≃ₗᡒ[ℝ] EuclideanSpace ℝ (Fin 3), g ∘ v = s⁻¹ β€’ e ∘ ![![1, Ο†, 0], ![-1, Ο†, 0], ![ 1, -Ο†, 0], ![-1, -Ο†, 0], ![Ο†, 0, 1], ![ Ο†, 0, -1], ![-Ο†, 0, 1], ![-Ο†, 0, -1], ![0, 1, Ο†], ![ 0, -1, Ο†], ![ 0, 1, -Ο†], ![ 0, -1, -Ο†]]) (w : EuclideanSpace ℝ (Fin 3)) (Ξ΅ : ℝ) (hΞ΅ : Ξ΅ > 0) : βˆƒ a : Fin 12 β†’ β„€, β€–βˆ‘ i, a i β€’ v i - wβ€– < Ξ΅ := by
import Mathlib /-- Let $v_1, \ldots, v_{12}$ be unit vectors in $\mathbb{R}^3$ from the origin to the vertices of a regular icosahedron. Show that for every vector $v \in \mathbb{R}^3$ and every $\epsilon > 0$, there exist integers $a_1, \ldots, a_{12}$ such that $\|a_1v_1 + \cdots + a_{12}v_{12} - v\| < Ξ΅$. -/ theorem putnam_2023_a4 (v : Fin 12 β†’ EuclideanSpace ℝ (Fin 3)) (hv : letI Ο† : ℝ := (1 + √5) / 2 letI e : (Fin 3 β†’ ℝ) ≃ EuclideanSpace ℝ (Fin 3) := (WithLp.equiv _ _).symm letI s := √(1 + Ο† ^ 2) βˆƒ g : EuclideanSpace ℝ (Fin 3) ≃ₗᡒ[ℝ] EuclideanSpace ℝ (Fin 3), g ∘ v = s⁻¹ β€’ e ∘ ![![1, Ο†, 0], ![-1, Ο†, 0], ![ 1, -Ο†, 0], ![-1, -Ο†, 0], ![Ο†, 0, 1], ![ Ο†, 0, -1], ![-Ο†, 0, 1], ![-Ο†, 0, -1], ![0, 1, Ο†], ![ 0, -1, Ο†], ![ 0, 1, -Ο†], ![ 0, -1, -Ο†]]) (w : EuclideanSpace ℝ (Fin 3)) (Ξ΅ : ℝ) (hΞ΅ : Ξ΅ > 0) : βˆƒ a : Fin 12 β†’ β„€, β€–βˆ‘ i, a i β€’ v i - wβ€– < Ξ΅ := sorry
Let $v_1, \ldots, v_{12}$ be unit vectors in $\mathbb{R}^3$ from the origin to the vertices of a regular icosahedron. Show that for every vector $v \in \mathbb{R}^3$ and every $\epsilon > 0$, there exist integers $a_1, \ldots, a_{12}$ such that $\|a_1v_1 + \cdots + a_{12}v_{12} - v\| < Ξ΅$.
null
[ "geometry", "number_theory" ]
null
null
putnam_2010_b2
a5c706cf-fb40-5017-8867-a89191b90482
train
abbrev putnam_2010_b2_solution : β„• := sorry -- 3 /-- Given that $A$, $B$, and $C$ are noncollinear points in the plane with integer coordinates such that the distances $AB$, $AC$, and $BC$ are integers, what is the smallest possible value of $AB$? -/ theorem putnam_2010_b2 (ABCintcoords ABCintdists ABCall: EuclideanSpace ℝ (Fin 2) β†’ EuclideanSpace ℝ (Fin 2) β†’ EuclideanSpace ℝ (Fin 2) β†’ Prop) (hABCintcoords : βˆ€ A B C, ABCintcoords A B C ↔ (βˆ€ i : Fin 2, A i = round (A i) ∧ B i = round (B i) ∧ C i = round (C i))) (hABCintdists : βˆ€ A B C, ABCintdists A B C ↔ (dist A B = round (dist A B) ∧ dist A C = round (dist A C) ∧ dist B C = round (dist B C))) (hABCall : βˆ€ A B C, ABCall A B C ↔ (Β¬Collinear ℝ {A, B, C} ∧ ABCintcoords A B C ∧ ABCintdists A B C)) : IsLeast {y | βˆƒ A B C, ABCall A B C ∧ y = dist A B} putnam_2010_b2_solution := sorry
import Mathlib open Filter Topology Set -- 3 /-- Given that $A$, $B$, and $C$ are noncollinear points in the plane with integer coordinates such that the distances $AB$, $AC$, and $BC$ are integers, what is the smallest possible value of $AB$? -/ theorem putnam_2010_b2 (ABCintcoords ABCintdists ABCall: EuclideanSpace ℝ (Fin 2) β†’ EuclideanSpace ℝ (Fin 2) β†’ EuclideanSpace ℝ (Fin 2) β†’ Prop) (hABCintcoords : βˆ€ A B C, ABCintcoords A B C ↔ (βˆ€ i : Fin 2, A i = round (A i) ∧ B i = round (B i) ∧ C i = round (C i))) (hABCintdists : βˆ€ A B C, ABCintdists A B C ↔ (dist A B = round (dist A B) ∧ dist A C = round (dist A C) ∧ dist B C = round (dist B C))) (hABCall : βˆ€ A B C, ABCall A B C ↔ (Β¬Collinear ℝ {A, B, C} ∧ ABCintcoords A B C ∧ ABCintdists A B C)) : IsLeast {y | βˆƒ A B C, ABCall A B C ∧ y = dist A B} putnam_2010_b2_solution := by
import Mathlib open Filter Topology Set abbrev putnam_2010_b2_solution : β„• := sorry -- 3 /-- Given that $A$, $B$, and $C$ are noncollinear points in the plane with integer coordinates such that the distances $AB$, $AC$, and $BC$ are integers, what is the smallest possible value of $AB$? -/ theorem putnam_2010_b2 (ABCintcoords ABCintdists ABCall: EuclideanSpace ℝ (Fin 2) β†’ EuclideanSpace ℝ (Fin 2) β†’ EuclideanSpace ℝ (Fin 2) β†’ Prop) (hABCintcoords : βˆ€ A B C, ABCintcoords A B C ↔ (βˆ€ i : Fin 2, A i = round (A i) ∧ B i = round (B i) ∧ C i = round (C i))) (hABCintdists : βˆ€ A B C, ABCintdists A B C ↔ (dist A B = round (dist A B) ∧ dist A C = round (dist A C) ∧ dist B C = round (dist B C))) (hABCall : βˆ€ A B C, ABCall A B C ↔ (Β¬Collinear ℝ {A, B, C} ∧ ABCintcoords A B C ∧ ABCintdists A B C)) : IsLeast {y | βˆƒ A B C, ABCall A B C ∧ y = dist A B} putnam_2010_b2_solution := sorry
Given that $A$, $B$, and $C$ are noncollinear points in the plane with integer coordinates such that the distances $AB$, $AC$, and $BC$ are integers, what is the smallest possible value of $AB$?
Show that the smallest distance is $3$.
[ "geometry" ]
null
null
putnam_1980_a3
b64554da-c53c-53c8-b28d-06f34d1b9ffe
train
abbrev putnam_1980_a3_solution : ℝ := sorry -- Real.pi / 4 /-- Evaluate $\int_0^{\pi/2}\frac{dx}{1+(\tan x)^{\sqrt{2}}}$. -/ theorem putnam_1980_a3 : ∫ x in Set.Ioo 0 (Real.pi / 2), 1 / (1 + (Real.tan x) ^ (Real.sqrt 2)) = putnam_1980_a3_solution := sorry
import Mathlib -- Real.pi / 4 /-- Evaluate $\int_0^{\pi/2}\frac{dx}{1+(\tan x)^{\sqrt{2}}}$. -/ theorem putnam_1980_a3 : ∫ x in Set.Ioo 0 (Real.pi / 2), 1 / (1 + (Real.tan x) ^ (Real.sqrt 2)) = putnam_1980_a3_solution := by
import Mathlib noncomputable abbrev putnam_1980_a3_solution : ℝ := sorry -- Real.pi / 4 /-- Evaluate $\int_0^{\pi/2}\frac{dx}{1+(\tan x)^{\sqrt{2}}}$. -/ theorem putnam_1980_a3 : ∫ x in Set.Ioo 0 (Real.pi / 2), 1 / (1 + (Real.tan x) ^ (Real.sqrt 2)) = putnam_1980_a3_solution := sorry
Evaluate $\int_0^{\pi/2}\frac{dx}{1+(\tan x)^{\sqrt{2}}}$.
Show that the integral is $\pi/4$.
[ "analysis" ]
null
null
putnam_1993_b5:
b330b48b-becb-5787-810d-f27c374e1398
train
theorem putnam_1993_b5: Β¬βˆƒ p : Fin 4 β†’ (EuclideanSpace ℝ (Fin 2)), βˆ€ i j, i β‰  j β†’ (βˆƒ n : β„€, dist (p i) (p j) = n ∧ Odd n) := sorry
import Mathlib /-- Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers. -/ theorem putnam_1993_b5: Β¬βˆƒ p : Fin 4 β†’ (EuclideanSpace ℝ (Fin 2)), βˆ€ i j, i β‰  j β†’ (βˆƒ n : β„€, dist (p i) (p j) = n ∧ Odd n) := by
import Mathlib /-- Show there do not exist four points in the Euclidean plane such that the pairwise distances between the points are all odd integers. -/ theorem putnam_1993_b5: Β¬βˆƒ p : Fin 4 β†’ (EuclideanSpace ℝ (Fin 2)), βˆ€ i j, i β‰  j β†’ (βˆƒ n : β„€, dist (p i) (p j) = n ∧ Odd n) := sorry
null
null
[]
null
null
putnam_2015_a4
2479b41e-543b-537e-b3c2-adf085f47650
train
abbrev putnam_2015_a4_solution : ℝ := sorry -- 4 / 7 /-- For each real number $x$, let \[ f(x) = \sum_{n\in S_x} \frac{1}{2^n}, \] where $S_x$ is the set of positive integers $n$ for which $\lfloor nx \rfloor$ is even. What is the largest real number $L$ such that $f(x) \geq L$ for all $x \in [0,1)$? (As usual, $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$.) -/ theorem putnam_2015_a4 (S : ℝ β†’ Set β„€) (f : ℝ β†’ ℝ) (p : ℝ β†’ Prop) (hS : S = fun (x : ℝ) ↦ {n : β„€ | n > 0 ∧ Even ⌊n * xβŒ‹}) (hf : f = fun (x : ℝ) ↦ βˆ‘' n : S x, 1 / 2 ^ (n : β„€)) (hp : βˆ€ l, p l ↔ βˆ€ x ∈ Set.Ico 0 1, f x β‰₯ l) : IsGreatest p putnam_2015_a4_solution := sorry
import Mathlib -- 4 / 7 /-- For each real number $x$, let \[ f(x) = \sum_{n\in S_x} \frac{1}{2^n}, \] where $S_x$ is the set of positive integers $n$ for which $\lfloor nx \rfloor$ is even. What is the largest real number $L$ such that $f(x) \geq L$ for all $x \in [0,1)$? (As usual, $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$.) -/ theorem putnam_2015_a4 (S : ℝ β†’ Set β„€) (f : ℝ β†’ ℝ) (p : ℝ β†’ Prop) (hS : S = fun (x : ℝ) ↦ {n : β„€ | n > 0 ∧ Even ⌊n * xβŒ‹}) (hf : f = fun (x : ℝ) ↦ βˆ‘' n : S x, 1 / 2 ^ (n : β„€)) (hp : βˆ€ l, p l ↔ βˆ€ x ∈ Set.Ico 0 1, f x β‰₯ l) : IsGreatest p putnam_2015_a4_solution := by
import Mathlib noncomputable abbrev putnam_2015_a4_solution : ℝ := sorry -- 4 / 7 /-- For each real number $x$, let \[ f(x) = \sum_{n\in S_x} \frac{1}{2^n}, \] where $S_x$ is the set of positive integers $n$ for which $\lfloor nx \rfloor$ is even. What is the largest real number $L$ such that $f(x) \geq L$ for all $x \in [0,1)$? (As usual, $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$.) -/ theorem putnam_2015_a4 (S : ℝ β†’ Set β„€) (f : ℝ β†’ ℝ) (p : ℝ β†’ Prop) (hS : S = fun (x : ℝ) ↦ {n : β„€ | n > 0 ∧ Even ⌊n * xβŒ‹}) (hf : f = fun (x : ℝ) ↦ βˆ‘' n : S x, 1 / 2 ^ (n : β„€)) (hp : βˆ€ l, p l ↔ βˆ€ x ∈ Set.Ico 0 1, f x β‰₯ l) : IsGreatest p putnam_2015_a4_solution := sorry
For each real number $x$, let \[ f(x) = \sum_{n\in S_x} \frac{1}{2^n}, \] where $S_x$ is the set of positive integers $n$ for which $\lfloor nx \rfloor$ is even. What is the largest real number $L$ such that $f(x) \geq L$ for all $x \in [0,1)$? (As usual, $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$.)
Prove that $L = \frac{4}{7}$.
[ "analysis" ]
null
null
putnam_1975_b2
514faec7-30c2-5434-875f-be27db5b3db0
train
theorem putnam_1975_b2 (slab : (Fin 3 β†’ ℝ) β†’ ℝ β†’ ℝ β†’ Set (Fin 3 β†’ ℝ)) (hslab : slab = fun normal offset thickness => {x : Fin 3 β†’ ℝ | offset < normal ⬝α΅₯ x ∧ normal ⬝α΅₯ x < offset + thickness}) (normals : β„• β†’ (Fin 3 β†’ ℝ)) (offsets : β„• β†’ ℝ) (thicknesses : β„• β†’ ℝ) (hnormalsunit : βˆ€ i : β„•, β€–normals iβ€– = 1) (hthicknessespos : βˆ€ i : β„•, thicknesses i > 0) (hthicknessesconv : βˆƒ C : ℝ, Tendsto (fun i : β„• => βˆ‘ j in Finset.range i, thicknesses j) atTop (𝓝 C)) : Set.univ β‰  ⋃ i : β„•, slab (normals i) (offsets i) (thicknesses i) := sorry
import Mathlib open Polynomial Real Complex Matrix Filter Topology /-- In three-dimensional Euclidean space, define a \emph{slab} to be the open set of points lying between two parallel planes. The distance between the planes is called the \emph{thickness} of the slab. Given an infinite sequence $S_1, S_2, \dots$ of slabs of thicknesses $d_1, d_2, \dots,$ respectively, such that $\Sigma_{i=1}^{\infty} d_i$ converges, prove that there is some point in the space which is not contained in any of the slabs. -/ theorem putnam_1975_b2 (slab : (Fin 3 β†’ ℝ) β†’ ℝ β†’ ℝ β†’ Set (Fin 3 β†’ ℝ)) (hslab : slab = fun normal offset thickness => {x : Fin 3 β†’ ℝ | offset < normal ⬝α΅₯ x ∧ normal ⬝α΅₯ x < offset + thickness}) (normals : β„• β†’ (Fin 3 β†’ ℝ)) (offsets : β„• β†’ ℝ) (thicknesses : β„• β†’ ℝ) (hnormalsunit : βˆ€ i : β„•, β€–normals iβ€– = 1) (hthicknessespos : βˆ€ i : β„•, thicknesses i > 0) (hthicknessesconv : βˆƒ C : ℝ, Tendsto (fun i : β„• => βˆ‘ j in Finset.range i, thicknesses j) atTop (𝓝 C)) : Set.univ β‰  ⋃ i : β„•, slab (normals i) (offsets i) (thicknesses i) := by
import Mathlib open Polynomial Real Complex Matrix Filter Topology /-- In three-dimensional Euclidean space, define a \emph{slab} to be the open set of points lying between two parallel planes. The distance between the planes is called the \emph{thickness} of the slab. Given an infinite sequence $S_1, S_2, \dots$ of slabs of thicknesses $d_1, d_2, \dots,$ respectively, such that $\Sigma_{i=1}^{\infty} d_i$ converges, prove that there is some point in the space which is not contained in any of the slabs. -/ theorem putnam_1975_b2 (slab : (Fin 3 β†’ ℝ) β†’ ℝ β†’ ℝ β†’ Set (Fin 3 β†’ ℝ)) (hslab : slab = fun normal offset thickness => {x : Fin 3 β†’ ℝ | offset < normal ⬝α΅₯ x ∧ normal ⬝α΅₯ x < offset + thickness}) (normals : β„• β†’ (Fin 3 β†’ ℝ)) (offsets : β„• β†’ ℝ) (thicknesses : β„• β†’ ℝ) (hnormalsunit : βˆ€ i : β„•, β€–normals iβ€– = 1) (hthicknessespos : βˆ€ i : β„•, thicknesses i > 0) (hthicknessesconv : βˆƒ C : ℝ, Tendsto (fun i : β„• => βˆ‘ j in Finset.range i, thicknesses j) atTop (𝓝 C)) : Set.univ β‰  ⋃ i : β„•, slab (normals i) (offsets i) (thicknesses i) := sorry
In three-dimensional Euclidean space, define a \emph{slab} to be the open set of points lying between two parallel planes. The distance between the planes is called the \emph{thickness} of the slab. Given an infinite sequence $S_1, S_2, \dots$ of slabs of thicknesses $d_1, d_2, \dots,$ respectively, such that $\Sigma_{i=1}^{\infty} d_i$ converges, prove that there is some point in the space which is not contained in any of the slabs.
null
[ "analysis", "geometry" ]
null
null
putnam_2021_a2
a98b9c7c-d02f-5a66-b9b3-82e295fb9669
train
abbrev putnam_2021_a2_solution : ℝ := sorry -- Real.exp 1 /-- For every positive real number $x$, let $g(x)=\lim_{r \to 0}((x+1)^{r+1}-x^{r+1})^\frac{1}{r}$. Find $\lim_{x \to \infty}\frac{g(x)}{x}$. -/ theorem putnam_2021_a2 (g : ℝ β†’ ℝ) (hg : βˆ€ x > 0, Tendsto (fun r : ℝ => ((x + 1) ^ (r + 1) - x ^ (r + 1)) ^ (1 / r)) (𝓝[>] 0) (𝓝 (g x))) : Tendsto (fun x : ℝ => g x / x) atTop (𝓝 putnam_2021_a2_solution) := sorry
import Mathlib open Filter Topology -- Real.exp 1 /-- For every positive real number $x$, let $g(x)=\lim_{r \to 0}((x+1)^{r+1}-x^{r+1})^\frac{1}{r}$. Find $\lim_{x \to \infty}\frac{g(x)}{x}$. -/ theorem putnam_2021_a2 (g : ℝ β†’ ℝ) (hg : βˆ€ x > 0, Tendsto (fun r : ℝ => ((x + 1) ^ (r + 1) - x ^ (r + 1)) ^ (1 / r)) (𝓝[>] 0) (𝓝 (g x))) : Tendsto (fun x : ℝ => g x / x) atTop (𝓝 putnam_2021_a2_solution) := by
import Mathlib open Filter Topology abbrev putnam_2021_a2_solution : ℝ := sorry -- Real.exp 1 /-- For every positive real number $x$, let $g(x)=\lim_{r \to 0}((x+1)^{r+1}-x^{r+1})^\frac{1}{r}$. Find $\lim_{x \to \infty}\frac{g(x)}{x}$. -/ theorem putnam_2021_a2 (g : ℝ β†’ ℝ) (hg : βˆ€ x > 0, Tendsto (fun r : ℝ => ((x + 1) ^ (r + 1) - x ^ (r + 1)) ^ (1 / r)) (𝓝[>] 0) (𝓝 (g x))) : Tendsto (fun x : ℝ => g x / x) atTop (𝓝 putnam_2021_a2_solution) := sorry
For every positive real number $x$, let $g(x)=\lim_{r \to 0}((x+1)^{r+1}-x^{r+1})^\frac{1}{r}$. Find $\lim_{x \to \infty}\frac{g(x)}{x}$.
Show that the limit is $e$.
[ "analysis" ]
null
null
putnam_2007_b3
b84c58c1-8982-55f0-93fd-d66429a20d70
train
abbrev putnam_2007_b3_solution : ℝ := sorry -- (2 ^ 2006 / Real.sqrt 5) * (((1 + Real.sqrt 5) / 2) ^ 3997 - ((1 + Real.sqrt 5) / 2) ^ (-3997 : β„€)) /-- Let $x_0 = 1$ and for $n \geq 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for $x_{2007}$. ($\lfloor a \rfloor$ means the largest integer $\leq a$.) -/ theorem putnam_2007_b3 (x : β„• β†’ ℝ) (hx0 : x 0 = 1) (hx : βˆ€ n : β„•, x (n + 1) = 3 * (x n) + ⌊(x n) * Real.sqrt 5βŒ‹) : (x 2007 = putnam_2007_b3_solution) := sorry
import Mathlib open Set Nat Function -- (2 ^ 2006 / Real.sqrt 5) * (((1 + Real.sqrt 5) / 2) ^ 3997 - ((1 + Real.sqrt 5) / 2) ^ (-3997 : β„€)) /-- Let $x_0 = 1$ and for $n \geq 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for $x_{2007}$. ($\lfloor a \rfloor$ means the largest integer $\leq a$.) -/ theorem putnam_2007_b3 (x : β„• β†’ ℝ) (hx0 : x 0 = 1) (hx : βˆ€ n : β„•, x (n + 1) = 3 * (x n) + ⌊(x n) * Real.sqrt 5βŒ‹) : (x 2007 = putnam_2007_b3_solution) := by
import Mathlib open Set Nat Function noncomputable abbrev putnam_2007_b3_solution : ℝ := sorry -- (2 ^ 2006 / Real.sqrt 5) * (((1 + Real.sqrt 5) / 2) ^ 3997 - ((1 + Real.sqrt 5) / 2) ^ (-3997 : β„€)) /-- Let $x_0 = 1$ and for $n \geq 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for $x_{2007}$. ($\lfloor a \rfloor$ means the largest integer $\leq a$.) -/ theorem putnam_2007_b3 (x : β„• β†’ ℝ) (hx0 : x 0 = 1) (hx : βˆ€ n : β„•, x (n + 1) = 3 * (x n) + ⌊(x n) * Real.sqrt 5βŒ‹) : (x 2007 = putnam_2007_b3_solution) := sorry
Let $x_0 = 1$ and for $n \geq 0$, let $x_{n+1} = 3x_n + \lfloor x_n \sqrt{5} \rfloor$. In particular, $x_1 = 5$, $x_2 = 26$, $x_3 = 136$, $x_4 = 712$. Find a closed-form expression for $x_{2007}$. ($\lfloor a \rfloor$ means the largest integer $\leq a$.)
Prove that $x_{2007} = \frac{2^{2006}}{\sqrt{5}}(\alpha^{3997}-\alpha^{-3997})$, where $\alpha = \frac{1+\sqrt{5}}{2}$.
[ "analysis" ]
null
null
putnam_2015_a2
456f40dc-4d77-59d9-a484-5ddce1c391c3
train
abbrev putnam_2015_a2_solution : β„• := sorry -- 181 /-- Let $a_0=1$, $a_1=2$, and $a_n=4a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of $a_{2015}$. -/ theorem putnam_2015_a2 (a : β„• β†’ β„€) (abase : a 0 = 1 ∧ a 1 = 2) (arec : βˆ€ n β‰₯ 2, a n = 4 * a (n - 1) - a (n - 2)) : Odd putnam_2015_a2_solution ∧ putnam_2015_a2_solution.Prime ∧ ((putnam_2015_a2_solution : β„€) ∣ a 2015) := sorry
import Mathlib -- Note: this problem admits several possible correct solutions; this is the one shown on the solutions document -- 181 /-- Let $a_0=1$, $a_1=2$, and $a_n=4a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of $a_{2015}$. -/ theorem putnam_2015_a2 (a : β„• β†’ β„€) (abase : a 0 = 1 ∧ a 1 = 2) (arec : βˆ€ n β‰₯ 2, a n = 4 * a (n - 1) - a (n - 2)) : Odd putnam_2015_a2_solution ∧ putnam_2015_a2_solution.Prime ∧ ((putnam_2015_a2_solution : β„€) ∣ a 2015) := by
import Mathlib -- Note: this problem admits several possible correct solutions; this is the one shown on the solutions document abbrev putnam_2015_a2_solution : β„• := sorry -- 181 /-- Let $a_0=1$, $a_1=2$, and $a_n=4a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of $a_{2015}$. -/ theorem putnam_2015_a2 (a : β„• β†’ β„€) (abase : a 0 = 1 ∧ a 1 = 2) (arec : βˆ€ n β‰₯ 2, a n = 4 * a (n - 1) - a (n - 2)) : Odd putnam_2015_a2_solution ∧ putnam_2015_a2_solution.Prime ∧ ((putnam_2015_a2_solution : β„€) ∣ a 2015) := sorry
Let $a_0=1$, $a_1=2$, and $a_n=4a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of $a_{2015}$.
Show that one possible answer is $181$.
[ "number_theory" ]
null
null
putnam_2020_a5
242c410b-bcb9-5f8c-9489-a901a613893e
train
abbrev putnam_2020_a5_solution : β„€ := sorry -- (Nat.fib 4040) - 1 /-- Let $a_n$ be the number of sets $S$ of positive integers for which \[ \sum_{k \in S} F_k = n, \] where the Fibonacci sequence $(F_k)_{k \geq 1}$ satisfies $F_{k+2} = F_{k+1} + F_k$ and begins $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3$. Find the largest integer $n$ such that $a_n = 2020$. -/ theorem putnam_2020_a5 (a : β„€ β†’ β„•) (ha : a = fun n : β„€ => {S : Finset β„• | (βˆ€ k ∈ S, k > 0) ∧ βˆ‘ k : S, Nat.fib k = n}.ncard) : IsGreatest {n | a n = 2020} putnam_2020_a5_solution := sorry
import Mathlib open Filter Topology Set -- (Nat.fib 4040) - 1 /-- Let $a_n$ be the number of sets $S$ of positive integers for which \[ \sum_{k \in S} F_k = n, \] where the Fibonacci sequence $(F_k)_{k \geq 1}$ satisfies $F_{k+2} = F_{k+1} + F_k$ and begins $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3$. Find the largest integer $n$ such that $a_n = 2020$. -/ theorem putnam_2020_a5 (a : β„€ β†’ β„•) (ha : a = fun n : β„€ => {S : Finset β„• | (βˆ€ k ∈ S, k > 0) ∧ βˆ‘ k : S, Nat.fib k = n}.ncard) : IsGreatest {n | a n = 2020} putnam_2020_a5_solution := by
import Mathlib open Filter Topology Set abbrev putnam_2020_a5_solution : β„€ := sorry -- (Nat.fib 4040) - 1 /-- Let $a_n$ be the number of sets $S$ of positive integers for which \[ \sum_{k \in S} F_k = n, \] where the Fibonacci sequence $(F_k)_{k \geq 1}$ satisfies $F_{k+2} = F_{k+1} + F_k$ and begins $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3$. Find the largest integer $n$ such that $a_n = 2020$. -/ theorem putnam_2020_a5 (a : β„€ β†’ β„•) (ha : a = fun n : β„€ => {S : Finset β„• | (βˆ€ k ∈ S, k > 0) ∧ βˆ‘ k : S, Nat.fib k = n}.ncard) : IsGreatest {n | a n = 2020} putnam_2020_a5_solution := sorry
Let $a_n$ be the number of sets $S$ of positive integers for which \[ \sum_{k \in S} F_k = n, \] where the Fibonacci sequence $(F_k)_{k \geq 1}$ satisfies $F_{k+2} = F_{k+1} + F_k$ and begins $F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3$. Find the largest integer $n$ such that $a_n = 2020$.
The answer is $n=F_{4040}-1$.
[ "number_theory", "combinatorics" ]
null
null