Dataset Viewer
suffix
stringclasses 1
value | tgt_lang
stringclasses 1
value | data_id
stringlengths 11
13
| entry_func
stringlengths 1
30
| task_name
stringclasses 1
value | test_cases
sequencelengths 0
100
| src_lang
null | demos
sequencelengths 0
8
| import_str
sequencelengths 0
1
| doc_string
stringlengths 0
1.07k
| dataset_name
stringclasses 1
value | docstring
stringlengths 20
1.14k
| compare_func
sequencelengths 0
0
| prefix
stringlengths 64
1.18k
| solution
stringlengths 132
1.99k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
python | HumanEval/0 | has_close_elements | code_generation | [
[
"[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3",
"True"
],
[
"[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05",
"False"
],
[
"[1.0, 2.0, 5.9, 4.0, 5.0], 0.95",
"True"
],
[
"[1.0, 2.0, 5.9, 4.0, 5.0], 0.8",
"False"
],
[
"[1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1",
"True"
],
[
"[1.1, 2.2, 3.1, 4.1, 5.1], 1.0",
"True"
],
[
"[1.1, 2.2, 3.1, 4.1, 5.1], 0.5",
"False"
]
] | null | [
[
"[1.0, 2.0, 3.0], 0.5",
"False"
],
[
"[1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3",
"True"
]
] | [
"from typing import List"
] | Check if in given list of numbers, are any two numbers closer to each other than given threshold. | HumanEval | Check if in given list of numbers, are any two numbers closer to each other than
given threshold. | [] | from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
"""
| from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
|
|
python | HumanEval/1 | separate_paren_groups | code_generation | [
[
"'(()()) ((())) () ((())()())'",
"[\n '(()())', '((()))', '()', '((())()())'\n ]"
],
[
"'() (()) ((())) (((())))'",
"[\n '()', '(())', '((()))', '(((())))'\n ]"
],
[
"'(()(())((())))'",
"[\n '(()(())((())))'\n ]"
],
[
"'( ) (( )) (( )( ))'",
"['()', '(())', '(()())']"
]
] | null | [
[
"'( ) (( )) (( )( ))'",
"['()', '(())', '(()())']"
]
] | [
"from typing import List"
] | Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. | HumanEval | Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string. | [] | from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
"""
| from typing import List
def separate_paren_groups(paren_string: str) -> List[str]:
""" Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separate_paren_groups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
"""
result = []
current_string = []
current_depth = 0
for c in paren_string:
if c == '(':
current_depth += 1
current_string.append(c)
elif c == ')':
current_depth -= 1
current_string.append(c)
if current_depth == 0:
result.append(''.join(current_string))
current_string.clear()
return result
|
|
python | HumanEval/2 | truncate_number | code_generation | [
[
"3.5",
"0.5"
]
] | null | [
[
"3.5",
"0.5"
],
[
"1.33",
"0.33"
],
[
"123.456",
"0.456"
]
] | [] | Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. | HumanEval | Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number. | [] |
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
"""
|
def truncate_number(number: float) -> float:
""" Given a positive floating point number, it can be decomposed into
and integer part (largest integer smaller than given number) and decimals
(leftover part always smaller than 1).
Return the decimal part of the number.
>>> truncate_number(3.5)
0.5
"""
return number % 1.0
|
|
python | HumanEval/3 | below_zero | code_generation | [
[
"[]",
"False"
],
[
"[1, 2, -3, 1, 2, -3]",
"False"
],
[
"[1, 2, -4, 5, 6]",
"True"
],
[
"[1, -1, 2, -2, 5, -5, 4, -4]",
"False"
],
[
"[1, -1, 2, -2, 5, -5, 4, -5]",
"True"
],
[
"[1, -2, 2, -2, 5, -5, 4, -4]",
"True"
]
] | null | [
[
"[1, 2, 3]",
"False"
],
[
"[1, 2, -4, 5]",
"True"
]
] | [
"from typing import List"
] | You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. | HumanEval | You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False. | [] | from typing import List
def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
"""
| from typing import List
def below_zero(operations: List[int]) -> bool:
""" You're given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero, and
at that point function should return True. Otherwise it should return False.
>>> below_zero([1, 2, 3])
False
>>> below_zero([1, 2, -4, 5])
True
"""
balance = 0
for op in operations:
balance += op
if balance < 0:
return True
return False
|
|
python | HumanEval/4 | mean_absolute_deviation | code_generation | [
[
"[1.0, 2.0, 3.0]",
"2.0/3.0"
],
[
"[1.0, 2.0, 3.0, 4.0]",
"1.0"
],
[
"[1.0, 2.0, 3.0, 4.0, 5.0]",
"6.0/5.0"
]
] | null | [
[
"[1.0, 2.0, 3.0, 4.0]",
"1.0"
]
] | [
"from typing import List"
] | For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | | HumanEval | For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean | | [] | from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
""" For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
"""
| from typing import List
def mean_absolute_deviation(numbers: List[float]) -> float:
""" For a given list of input numbers, calculate Mean Absolute Deviation
around the mean of this dataset.
Mean Absolute Deviation is the average absolute difference between each
element and a centerpoint (mean in this case):
MAD = average | x - x_mean |
>>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0])
1.0
"""
mean = sum(numbers) / len(numbers)
return sum(abs(x - mean) for x in numbers) / len(numbers)
|
|
python | HumanEval/5 | intersperse | code_generation | [
[
"[], 7",
"[]"
],
[
"[5, 6, 3, 2], 8",
"[5, 8, 6, 8, 3, 8, 2]"
],
[
"[2, 2, 2], 2",
"[2, 2, 2, 2, 2]"
]
] | null | [
[
"[], 4",
"[]"
],
[
"[1, 2, 3], 4",
"[1, 4, 2, 4, 3]"
]
] | [
"from typing import List"
] | Insert a number 'delimeter' between every two consecutive elements of input list `numbers' | HumanEval | Insert a number 'delimeter' between every two consecutive elements of input list `numbers' | [] | from typing import List
def intersperse(numbers: List[int], delimeter: int) -> List[int]:
""" Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
"""
| from typing import List
def intersperse(numbers: List[int], delimeter: int) -> List[int]:
""" Insert a number 'delimeter' between every two consecutive elements of input list `numbers'
>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
"""
if not numbers:
return []
result = []
for n in numbers[:-1]:
result.append(n)
result.append(delimeter)
result.append(numbers[-1])
return result
|
|
python | HumanEval/6 | parse_nested_parens | code_generation | [
[
"'(()()) ((())) () ((())()())'",
"[2, 3, 1, 3]"
],
[
"'() (()) ((())) (((())))'",
"[1, 2, 3, 4]"
],
[
"'(()(())((())))'",
"[4]"
]
] | null | [
[
"'(()()) ((())) () ((())()())'",
"[2, 3, 1, 3]"
]
] | [
"from typing import List"
] | Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. | HumanEval | Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three. | [] | from typing import List
def parse_nested_parens(paren_string: str) -> List[int]:
""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
"""
| from typing import List
def parse_nested_parens(paren_string: str) -> List[int]:
""" Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parse_nested_parens('(()()) ((())) () ((())()())')
[2, 3, 1, 3]
"""
def parse_paren_group(s):
depth = 0
max_depth = 0
for c in s:
if c == '(':
depth += 1
max_depth = max(depth, max_depth)
else:
depth -= 1
return max_depth
return [parse_paren_group(x) for x in paren_string.split(' ') if x]
|
|
python | HumanEval/7 | filter_by_substring | code_generation | [
[
"[], 'john'",
"[]"
],
[
"['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'",
"['xxx', 'xxxAAA', 'xxx']"
],
[
"['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx'",
"['xxx', 'aaaxxy', 'xxxAAA', 'xxx']"
],
[
"['grunt', 'trumpet', 'prune', 'gruesome'], 'run'",
"['grunt', 'prune']"
]
] | null | [
[
"[], 'a'",
"[]"
],
[
"['abc', 'bacd', 'cde', 'array'], 'a'",
"['abc', 'bacd', 'array']"
]
] | [
"from typing import List"
] | Filter an input list of strings only for ones that contain given substring | HumanEval | Filter an input list of strings only for ones that contain given substring | [] | from typing import List
def filter_by_substring(strings: List[str], substring: str) -> List[str]:
""" Filter an input list of strings only for ones that contain given substring
"""
| from typing import List
def filter_by_substring(strings: List[str], substring: str) -> List[str]:
""" Filter an input list of strings only for ones that contain given substring
>>> filter_by_substring([], 'a')
[]
>>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array']
"""
return [x for x in strings if substring in x]
|
|
python | HumanEval/8 | sum_product | code_generation | [
[
"[]",
"(0, 1)"
],
[
"[1, 1, 1]",
"(3, 1)"
],
[
"[100, 0]",
"(100, 0)"
],
[
"[3, 5, 7]",
"(3 + 5 + 7, 3 * 5 * 7)"
],
[
"[10]",
"(10, 10)"
]
] | null | [
[
"[]",
"(0, 1)"
],
[
"[1, 2, 3, 4]",
"(10, 24)"
]
] | [
"from typing import List, Tuple"
] | For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. | HumanEval | For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1) | [] | from typing import List, Tuple
def sum_product(numbers: List[int]) -> Tuple[int, int]:
""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
"""
| from typing import List, Tuple
def sum_product(numbers: List[int]) -> Tuple[int, int]:
""" For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sum_product([])
(0, 1)
>>> sum_product([1, 2, 3, 4])
(10, 24)
"""
sum_value = 0
prod_value = 1
for n in numbers:
sum_value += n
prod_value *= n
return sum_value, prod_value
|
|
python | HumanEval/9 | rolling_max | code_generation | [
[
"[]",
"[]"
],
[
"[1, 2, 3, 4]",
"[1, 2, 3, 4]"
],
[
"[4, 3, 2, 1]",
"[4, 4, 4, 4]"
],
[
"[3, 2, 3, 100, 3]",
"[3, 3, 3, 100, 100]"
]
] | null | [
[
"[1, 2, 3, 2, 3, 4, 2]",
"[1, 2, 3, 3, 3, 4, 4]"
]
] | [
"from typing import List, Tuple"
] | From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. | HumanEval | From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence. | [] | from typing import List, Tuple
def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
"""
| from typing import List, Tuple
def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element found until given moment
in the sequence.
>>> rolling_max([1, 2, 3, 2, 3, 4, 2])
[1, 2, 3, 3, 3, 4, 4]
"""
running_max = None
result = []
for n in numbers:
if running_max is None:
running_max = n
else:
running_max = max(running_max, n)
result.append(running_max)
return result
|
|
python | HumanEval/10 | make_palindrome | code_generation | [
[
"''",
"''"
],
[
"'x'",
"'x'"
],
[
"'xyz'",
"'xyzyx'"
],
[
"'xyx'",
"'xyx'"
],
[
"'jerry'",
"'jerryrrej'"
]
] | null | [
[
"''",
"''"
],
[
"'cat'",
"'catac'"
],
[
"'cata'",
"'catac'"
]
] | [] | Test if given string is a palindrome return string == string[::-1] def make_palindrome(string: str) -> str: Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. | HumanEval | Test if given string is a palindrome | [] |
def is_palindrome(string: str) -> bool:
""" Test if given string is a palindrome """
return string == string[::-1]
def make_palindrome(string: str) -> str:
""" Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
"""
|
def is_palindrome(string: str) -> bool:
""" Test if given string is a palindrome """
return string == string[::-1]
def make_palindrome(string: str) -> str:
""" Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic suffix.
>>> make_palindrome('')
''
>>> make_palindrome('cat')
'catac'
>>> make_palindrome('cata')
'catac'
"""
if not string:
return ''
beginning_of_suffix = 0
while not is_palindrome(string[beginning_of_suffix:]):
beginning_of_suffix += 1
return string + string[:beginning_of_suffix][::-1]
|
|
python | HumanEval/11 | string_xor | code_generation | [
[
"'111000', '101010'",
"'010010'"
],
[
"'1', '1'",
"'0'"
],
[
"'0101', '0000'",
"'0101'"
]
] | null | [
[
"'010', '110'",
"'100'"
]
] | [
"from typing import List"
] | Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. | HumanEval | Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string. | [] | from typing import List
def string_xor(a: str, b: str) -> str:
""" Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
"""
| from typing import List
def string_xor(a: str, b: str) -> str:
""" Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.
>>> string_xor('010', '110')
'100'
"""
def xor(i, j):
if i == j:
return '0'
else:
return '1'
return ''.join(xor(x, y) for x, y in zip(a, b))
|
|
python | HumanEval/12 | longest | code_generation | [
[
"[]",
"None"
],
[
"['x', 'y', 'z']",
"'x'"
],
[
"['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']",
"'zzzz'"
]
] | null | [
[
"[]",
""
],
[
"['a', 'b', 'c']",
"'a'"
],
[
"['a', 'bb', 'ccc']",
"'ccc'"
]
] | [
"from typing import List, Optional"
] | Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. | HumanEval | Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty. | [] | from typing import List, Optional
def longest(strings: List[str]) -> Optional[str]:
""" Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty.
"""
| from typing import List, Optional
def longest(strings: List[str]) -> Optional[str]:
""" Out of list of strings, return the longest one. Return the first one in case of multiple
strings of the same length. Return None in case the input list is empty.
>>> longest([])
>>> longest(['a', 'b', 'c'])
'a'
>>> longest(['a', 'bb', 'ccc'])
'ccc'
"""
if not strings:
return None
maxlen = max(len(x) for x in strings)
for s in strings:
if len(s) == maxlen:
return s
|
|
python | HumanEval/13 | greatest_common_divisor | code_generation | [
[
"3, 7",
"1"
],
[
"10, 15",
"5"
],
[
"49, 14",
"7"
],
[
"144, 60",
"12"
]
] | null | [
[
"3, 5",
"1"
],
[
"25, 15",
"5"
]
] | [] | Return a greatest common divisor of two integers a and b | HumanEval | Return a greatest common divisor of two integers a and b | [] |
def greatest_common_divisor(a: int, b: int) -> int:
""" Return a greatest common divisor of two integers a and b
"""
|
def greatest_common_divisor(a: int, b: int) -> int:
""" Return a greatest common divisor of two integers a and b
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(25, 15)
5
"""
while b:
a, b = b, a % b
return a
|
|
python | HumanEval/14 | all_prefixes | code_generation | [
[
"''",
"[]"
],
[
"'asdfgh'",
"['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']"
],
[
"'WWW'",
"['W', 'WW', 'WWW']"
]
] | null | [
[
"'abc'",
"['a', 'ab', 'abc']"
]
] | [
"from typing import List"
] | Return list of all prefixes from shortest to longest of the input string | HumanEval | Return list of all prefixes from shortest to longest of the input string | [] | from typing import List
def all_prefixes(string: str) -> List[str]:
""" Return list of all prefixes from shortest to longest of the input string
"""
| from typing import List
def all_prefixes(string: str) -> List[str]:
""" Return list of all prefixes from shortest to longest of the input string
>>> all_prefixes('abc')
['a', 'ab', 'abc']
"""
result = []
for i in range(len(string)):
result.append(string[:i+1])
return result
|
|
python | HumanEval/15 | string_sequence | code_generation | [
[
"0",
"'0'"
],
[
"3",
"'0 1 2 3'"
],
[
"10",
"'0 1 2 3 4 5 6 7 8 9 10'"
]
] | null | [
[
"0",
"'0'"
],
[
"5",
"'0 1 2 3 4 5'"
]
] | [] | Return a string containing space-delimited numbers starting from 0 upto n inclusive. | HumanEval | Return a string containing space-delimited numbers starting from 0 upto n inclusive. | [] |
def string_sequence(n: int) -> str:
""" Return a string containing space-delimited numbers starting from 0 upto n inclusive.
"""
|
def string_sequence(n: int) -> str:
""" Return a string containing space-delimited numbers starting from 0 upto n inclusive.
>>> string_sequence(0)
'0'
>>> string_sequence(5)
'0 1 2 3 4 5'
"""
return ' '.join([str(x) for x in range(n + 1)])
|
|
python | HumanEval/16 | count_distinct_characters | code_generation | [
[
"''",
"0"
],
[
"'abcde'",
"5"
],
[
"'abcde' + 'cade' + 'CADE'",
"5"
],
[
"'aaaaAAAAaaaa'",
"1"
],
[
"'Jerry jERRY JeRRRY'",
"5"
]
] | null | [
[
"'xyzXYZ'",
"3"
],
[
"'Jerry'",
"4"
]
] | [] | Given a string, find out how many distinct characters (regardless of case) does it consist of | HumanEval | Given a string, find out how many distinct characters (regardless of case) does it consist of | [] |
def count_distinct_characters(string: str) -> int:
""" Given a string, find out how many distinct characters (regardless of case) does it consist of
"""
|
def count_distinct_characters(string: str) -> int:
""" Given a string, find out how many distinct characters (regardless of case) does it consist of
>>> count_distinct_characters('xyzXYZ')
3
>>> count_distinct_characters('Jerry')
4
"""
return len(set(string.lower()))
|
|
python | HumanEval/17 | parse_music | code_generation | [
[
"''",
"[]"
],
[
"'o o o o'",
"[4, 4, 4, 4]"
],
[
"'.| .| .| .|'",
"[1, 1, 1, 1]"
],
[
"'o| o| .| .| o o o o'",
"[2, 2, 1, 1, 4, 4, 4, 4]"
],
[
"'o| .| o| .| o o| o o|'",
"[2, 1, 2, 1, 4, 2, 4, 2]"
]
] | null | [
[
"'o o| .| o| o| .| .| .| .| o o'",
"[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]"
]
] | [
"from typing import List"
] | Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat | HumanEval | Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat | [] | from typing import List
def parse_music(music_string: str) -> List[int]:
""" Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
"""
| from typing import List
def parse_music(music_string: str) -> List[int]:
""" Input to this function is a string representing musical notes in a special ASCII format.
Your task is to parse this string and return list of integers corresponding to how many beats does each
not last.
Here is a legend:
'o' - whole note, lasts four beats
'o|' - half note, lasts two beats
'.|' - quater note, lasts one beat
>>> parse_music('o o| .| o| o| .| .| .| .| o o')
[4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4]
"""
note_map = {'o': 4, 'o|': 2, '.|': 1}
return [note_map[x] for x in music_string.split(' ') if x]
|
|
python | HumanEval/18 | how_many_times | code_generation | [
[
"'', 'x'",
"0"
],
[
"'xyxyxyx', 'x'",
"4"
],
[
"'cacacacac', 'cac'",
"4"
],
[
"'john doe', 'john'",
"1"
]
] | null | [
[
"'', 'a'",
"0"
],
[
"'aaa', 'a'",
"3"
],
[
"'aaaa', 'aa'",
"3"
]
] | [] | Find how many times a given substring can be found in the original string. Count overlaping cases. | HumanEval | Find how many times a given substring can be found in the original string. Count overlaping cases. | [] |
def how_many_times(string: str, substring: str) -> int:
""" Find how many times a given substring can be found in the original string. Count overlaping cases.
"""
|
def how_many_times(string: str, substring: str) -> int:
""" Find how many times a given substring can be found in the original string. Count overlaping cases.
>>> how_many_times('', 'a')
0
>>> how_many_times('aaa', 'a')
3
>>> how_many_times('aaaa', 'aa')
3
"""
times = 0
for i in range(len(string) - len(substring) + 1):
if string[i:i+len(substring)] == substring:
times += 1
return times
|
|
python | HumanEval/19 | sort_numbers | code_generation | [
[
"''",
"''"
],
[
"'three'",
"'three'"
],
[
"'three five nine'",
"'three five nine'"
],
[
"'five zero four seven nine eight'",
"'zero four five seven eight nine'"
],
[
"'six five four three two one zero'",
"'zero one two three four five six'"
]
] | null | [
[
"'three one five'",
"'one three five'"
]
] | [
"from typing import List"
] | Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest | HumanEval | Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest | [] | from typing import List
def sort_numbers(numbers: str) -> str:
""" Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
"""
| from typing import List
def sort_numbers(numbers: str) -> str:
""" Input is a space-delimited string of numberals from 'zero' to 'nine'.
Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'.
Return the string with numbers sorted from smallest to largest
>>> sort_numbers('three one five')
'one three five'
"""
value_map = {
'zero': 0,
'one': 1,
'two': 2,
'three': 3,
'four': 4,
'five': 5,
'six': 6,
'seven': 7,
'eight': 8,
'nine': 9
}
return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
|
|
python | HumanEval/20 | find_closest_elements | code_generation | [
[
"[1.0, 2.0, 3.9, 4.0, 5.0, 2.2]",
"(3.9, 4.0)"
],
[
"[1.0, 2.0, 5.9, 4.0, 5.0]",
"(5.0, 5.9)"
],
[
"[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]",
"(2.0, 2.2)"
],
[
"[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]",
"(2.0, 2.0)"
],
[
"[1.1, 2.2, 3.1, 4.1, 5.1]",
"(2.2, 3.1)"
]
] | null | [
[
"[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]",
"(2.0, 2.2)"
],
[
"[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]",
"(2.0, 2.0)"
]
] | [
"from typing import List, Tuple"
] | From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). | HumanEval | From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number). | [] | from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
"""
| from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
closest_pair = None
distance = None
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
if distance is None:
distance = abs(elem - elem2)
closest_pair = tuple(sorted([elem, elem2]))
else:
new_distance = abs(elem - elem2)
if new_distance < distance:
distance = new_distance
closest_pair = tuple(sorted([elem, elem2]))
return closest_pair
|
|
python | HumanEval/21 | rescale_to_unit | code_generation | [
[
"[2.0, 49.9]",
"[0.0, 1.0]"
],
[
"[100.0, 49.9]",
"[1.0, 0.0]"
],
[
"[1.0, 2.0, 3.0, 4.0, 5.0]",
"[0.0, 0.25, 0.5, 0.75, 1.0]"
],
[
"[2.0, 1.0, 5.0, 3.0, 4.0]",
"[0.25, 0.0, 1.0, 0.5, 0.75]"
],
[
"[12.0, 11.0, 15.0, 13.0, 14.0]",
"[0.25, 0.0, 1.0, 0.5, 0.75]"
]
] | null | [
[
"[1.0, 2.0, 3.0, 4.0, 5.0]",
"[0.0, 0.25, 0.5, 0.75, 1.0]"
]
] | [
"from typing import List"
] | Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 | HumanEval | Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1 | [] | from typing import List
def rescale_to_unit(numbers: List[float]) -> List[float]:
""" Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
"""
| from typing import List
def rescale_to_unit(numbers: List[float]) -> List[float]:
""" Given list of numbers (of at least two elements), apply a linear transform to that list,
such that the smallest number will become 0 and the largest will become 1
>>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
[0.0, 0.25, 0.5, 0.75, 1.0]
"""
min_number = min(numbers)
max_number = max(numbers)
return [(x - min_number) / (max_number - min_number) for x in numbers]
|
|
python | HumanEval/22 | filter_integers | code_generation | [
[
"[]",
"[]"
],
[
"[4, {}, [], 23.2, 9, 'adasd']",
"[4, 9]"
],
[
"[3, 'c', 3, 3, 'a', 'b']",
"[3, 3, 3]"
]
] | null | [
[
"['a', 3.14, 5]",
"[5]"
],
[
"[1, 2, 3, 'abc', {}, []]",
"[1, 2, 3]"
]
] | [
"from typing import List, Any"
] | Filter given list of any python values only for integers | HumanEval | Filter given list of any python values only for integers | [] | from typing import List, Any
def filter_integers(values: List[Any]) -> List[int]:
""" Filter given list of any python values only for integers
"""
| from typing import List, Any
def filter_integers(values: List[Any]) -> List[int]:
""" Filter given list of any python values only for integers
>>> filter_integers(['a', 3.14, 5])
[5]
>>> filter_integers([1, 2, 3, 'abc', {}, []])
[1, 2, 3]
"""
return [x for x in values if isinstance(x, int)]
|
|
python | HumanEval/23 | strlen | code_generation | [
[
"''",
"0"
],
[
"'x'",
"1"
],
[
"'asdasnakj'",
"9"
]
] | null | [
[
"''",
"0"
],
[
"'abc'",
"3"
]
] | [] | Return length of given string | HumanEval | Return length of given string | [] |
def strlen(string: str) -> int:
""" Return length of given string
"""
|
def strlen(string: str) -> int:
""" Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3
"""
return len(string)
|
|
python | HumanEval/24 | largest_divisor | code_generation | [
[
"3",
"1"
],
[
"7",
"1"
],
[
"10",
"5"
],
[
"100",
"50"
],
[
"49",
"7"
]
] | null | [
[
"15",
"5"
]
] | [] | For a given number n, find the largest number that divides n evenly, smaller than n | HumanEval | For a given number n, find the largest number that divides n evenly, smaller than n | [] |
def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that divides n evenly, smaller than n
"""
|
def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that divides n evenly, smaller than n
>>> largest_divisor(15)
5
"""
for i in reversed(range(n)):
if n % i == 0:
return i
|
|
python | HumanEval/25 | factorize | code_generation | [
[
"2",
"[2]"
],
[
"4",
"[2, 2]"
],
[
"8",
"[2, 2, 2]"
],
[
"3 * 19",
"[3, 19]"
],
[
"3 * 19 * 3 * 19",
"[3, 3, 19, 19]"
],
[
"3 * 19 * 3 * 19 * 3 * 19",
"[3, 3, 3, 19, 19, 19]"
],
[
"3 * 19 * 19 * 19",
"[3, 19, 19, 19]"
],
[
"3 * 2 * 3",
"[2, 3, 3]"
]
] | null | [
[
"8",
"[2, 2, 2]"
],
[
"25",
"[5, 5]"
],
[
"70",
"[2, 5, 7]"
]
] | [
"from typing import List"
] | Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors | HumanEval | Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors | [] | from typing import List
def factorize(n: int) -> List[int]:
""" Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
"""
| from typing import List
def factorize(n: int) -> List[int]:
""" Return list of prime factors of given integer in the order from smallest to largest.
Each of the factors should be listed number of times corresponding to how many times it appeares in factorization.
Input number should be equal to the product of all factors
>>> factorize(8)
[2, 2, 2]
>>> factorize(25)
[5, 5]
>>> factorize(70)
[2, 5, 7]
"""
import math
fact = []
i = 2
while i <= int(math.sqrt(n) + 1):
if n % i == 0:
fact.append(i)
n //= i
else:
i += 1
if n > 1:
fact.append(n)
return fact
|
|
python | HumanEval/26 | remove_duplicates | code_generation | [
[
"[]",
"[]"
],
[
"[1, 2, 3, 4]",
"[1, 2, 3, 4]"
],
[
"[1, 2, 3, 2, 4, 3, 5]",
"[1, 4, 5]"
]
] | null | [
[
"[1, 2, 3, 2, 4]",
"[1, 3, 4]"
]
] | [
"from typing import List"
] | From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. | HumanEval | From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input. | [] | from typing import List
def remove_duplicates(numbers: List[int]) -> List[int]:
""" From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
"""
| from typing import List
def remove_duplicates(numbers: List[int]) -> List[int]:
""" From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> remove_duplicates([1, 2, 3, 2, 4])
[1, 3, 4]
"""
import collections
c = collections.Counter(numbers)
return [n for n in numbers if c[n] <= 1]
|
|
python | HumanEval/27 | flip_case | code_generation | [
[
"''",
"''"
],
[
"'Hello!'",
"'hELLO!'"
],
[
"'These violent delights have violent ends'",
"'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'"
]
] | null | [
[
"'Hello'",
"'hELLO'"
]
] | [] | For a given string, flip lowercase characters to uppercase and uppercase to lowercase. | HumanEval | For a given string, flip lowercase characters to uppercase and uppercase to lowercase. | [] |
def flip_case(string: str) -> str:
""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
"""
|
def flip_case(string: str) -> str:
""" For a given string, flip lowercase characters to uppercase and uppercase to lowercase.
>>> flip_case('Hello')
'hELLO'
"""
return string.swapcase()
|
|
python | HumanEval/28 | concatenate | code_generation | [
[
"[]",
"''"
],
[
"['x', 'y', 'z']",
"'xyz'"
],
[
"['x', 'y', 'z', 'w', 'k']",
"'xyzwk'"
]
] | null | [
[
"[]",
"''"
],
[
"['a', 'b', 'c']",
"'abc'"
]
] | [
"from typing import List"
] | Concatenate list of strings into a single string | HumanEval | Concatenate list of strings into a single string | [] | from typing import List
def concatenate(strings: List[str]) -> str:
""" Concatenate list of strings into a single string
"""
| from typing import List
def concatenate(strings: List[str]) -> str:
""" Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc'
"""
return ''.join(strings)
|
|
python | HumanEval/29 | filter_by_prefix | code_generation | [
[
"[], 'john'",
"[]"
],
[
"['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'",
"['xxx', 'xxxAAA', 'xxx']"
]
] | null | [
[
"[], 'a'",
"[]"
],
[
"['abc', 'bcd', 'cde', 'array'], 'a'",
"['abc', 'array']"
]
] | [
"from typing import List"
] | Filter an input list of strings only for ones that start with a given prefix. | HumanEval | Filter an input list of strings only for ones that start with a given prefix. | [] | from typing import List
def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:
""" Filter an input list of strings only for ones that start with a given prefix.
"""
| from typing import List
def filter_by_prefix(strings: List[str], prefix: str) -> List[str]:
""" Filter an input list of strings only for ones that start with a given prefix.
>>> filter_by_prefix([], 'a')
[]
>>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a')
['abc', 'array']
"""
return [x for x in strings if x.startswith(prefix)]
|
|
python | HumanEval/30 | get_positive | code_generation | [
[
"[-1, -2, 4, 5, 6]",
"[4, 5, 6]"
],
[
"[5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]",
"[5, 3, 2, 3, 3, 9, 123, 1]"
],
[
"[-1, -2]",
"[]"
],
[
"[]",
"[]"
]
] | null | [
[
"[-1, 2, -4, 5, 6]",
"[2, 5, 6]"
],
[
"[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]",
"[5, 3, 2, 3, 9, 123, 1]"
]
] | [] | Return only positive numbers in the list. | HumanEval | Return only positive numbers in the list. | [] |
def get_positive(l: list):
"""Return only positive numbers in the list.
"""
|
def get_positive(l: list):
"""Return only positive numbers in the list.
>>> get_positive([-1, 2, -4, 5, 6])
[2, 5, 6]
>>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
[5, 3, 2, 3, 9, 123, 1]
"""
return [e for e in l if e > 0]
|
|
python | HumanEval/31 | is_prime | code_generation | [
[
"6",
"False"
],
[
"101",
"True"
],
[
"11",
"True"
],
[
"13441",
"True"
],
[
"61",
"True"
],
[
"4",
"False"
],
[
"1",
"False"
],
[
"5",
"True"
],
[
"11",
"True"
],
[
"17",
"True"
],
[
"5 * 17",
"False"
],
[
"11 * 7",
"False"
],
[
"13441 * 19",
"False"
]
] | null | [
[
"6",
"False"
],
[
"101",
"True"
],
[
"11",
"True"
],
[
"13441",
"True"
],
[
"61",
"True"
],
[
"4",
"False"
],
[
"1",
"False"
]
] | [] | Return true if a given number is prime, and false otherwise. | HumanEval | Return true if a given number is prime, and false otherwise. | [] |
def is_prime(n):
"""Return true if a given number is prime, and false otherwise.
"""
|
def is_prime(n):
"""Return true if a given number is prime, and false otherwise.
>>> is_prime(6)
False
>>> is_prime(101)
True
>>> is_prime(11)
True
>>> is_prime(13441)
True
>>> is_prime(61)
True
>>> is_prime(4)
False
>>> is_prime(1)
False
"""
if n < 2:
return False
for k in range(2, n - 1):
if n % k == 0:
return False
return True
|
|
python | HumanEval/32 | find_zero | code_generation | [] | null | [
[
"x",
"0."
],
[
"find_zero([1, 2]), 2) # f(x",
"1 + 2x"
],
[
"find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3",
"-6 + 11x - 6x^2 + x^3"
]
] | [
"import math"
] | Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. | HumanEval | Evaluates polynomial with coefficients xs at point x.
return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n | [] | import math
def poly(xs: list, x: float):
"""
Evaluates polynomial with coefficients xs at point x.
return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
"""
return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])
def find_zero(xs: list):
""" xs are coefficients of a polynomial.
find_zero find x such that poly(x) = 0.
find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients
and largest non zero coefficient as it guarantees
a solution.
"""
| import math
def poly(xs: list, x: float):
"""
Evaluates polynomial with coefficients xs at point x.
return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n
"""
return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)])
def find_zero(xs: list):
""" xs are coefficients of a polynomial.
find_zero find x such that poly(x) = 0.
find_zero returns only only zero point, even if there are many.
Moreover, find_zero only takes list xs having even number of coefficients
and largest non zero coefficient as it guarantees
a solution.
>>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x
-0.5
>>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3
1.0
"""
begin, end = -1., 1.
while poly(xs, begin) * poly(xs, end) > 0:
begin *= 2.0
end *= 2.0
while end - begin > 1e-10:
center = (begin + end) / 2.0
if poly(xs, center) * poly(xs, begin) > 0:
begin = center
else:
end = center
return begin
|
|
python | HumanEval/33 | sort_third | code_generation | [] | null | [
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4, 8, 9, 2]",
"[2, 6, 3, 4, 8, 9, 5]"
]
] | [] | This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. | HumanEval | This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted. | [] |
def sort_third(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
"""
|
def sort_third(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal
to the values of the corresponding indicies of l, but sorted.
>>> sort_third([1, 2, 3])
[1, 2, 3]
>>> sort_third([5, 6, 3, 4, 8, 9, 2])
[2, 6, 3, 4, 8, 9, 5]
"""
l = list(l)
l[::3] = sorted(l[::3])
return l
|
|
python | HumanEval/34 | unique | code_generation | [
[
"[5, 3, 5, 2, 3, 3, 9, 0, 123]",
"[0, 2, 3, 5, 9, 123]"
]
] | null | [
[
"[5, 3, 5, 2, 3, 3, 9, 0, 123]",
"[0, 2, 3, 5, 9, 123]"
]
] | [] | Return sorted unique elements in a list | HumanEval | Return sorted unique elements in a list | [] |
def unique(l: list):
"""Return sorted unique elements in a list
"""
|
def unique(l: list):
"""Return sorted unique elements in a list
>>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123])
[0, 2, 3, 5, 9, 123]
"""
return sorted(list(set(l)))
|
|
python | HumanEval/35 | max_element | code_generation | [
[
"[1, 2, 3]",
"3"
],
[
"[5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]",
"124"
]
] | null | [
[
"[1, 2, 3]",
"3"
],
[
"[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]",
"123"
]
] | [] | Return maximum element in the list. | HumanEval | Return maximum element in the list. | [] |
def max_element(l: list):
"""Return maximum element in the list.
"""
|
def max_element(l: list):
"""Return maximum element in the list.
>>> max_element([1, 2, 3])
3
>>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
"""
m = l[0]
for e in l:
if e > m:
m = e
return m
|
|
python | HumanEval/36 | fizz_buzz | code_generation | [
[
"50",
"0"
],
[
"78",
"2"
],
[
"79",
"3"
],
[
"100",
"3"
],
[
"200",
"6"
],
[
"4000",
"192"
],
[
"10000",
"639"
],
[
"100000",
"8026"
]
] | null | [
[
"50",
"0"
],
[
"78",
"2"
],
[
"79",
"3"
]
] | [] | Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. | HumanEval | Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. | [] |
def fizz_buzz(n: int):
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
"""
|
def fizz_buzz(n: int):
"""Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13.
>>> fizz_buzz(50)
0
>>> fizz_buzz(78)
2
>>> fizz_buzz(79)
3
"""
ns = []
for i in range(n):
if i % 11 == 0 or i % 13 == 0:
ns.append(i)
s = ''.join(list(map(str, ns)))
ans = 0
for c in s:
ans += (c == '7')
return ans
|
|
python | HumanEval/37 | sort_even | code_generation | [] | null | [
[
"[1, 2, 3]",
"[1, 2, 3]"
],
[
"[5, 6, 3, 4]",
"[3, 6, 5, 4]"
]
] | [] | This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. | HumanEval | This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted. | [] |
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
"""
|
def sort_even(l: list):
"""This function takes a list l and returns a list l' such that
l' is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
>>> sort_even([1, 2, 3])
[1, 2, 3]
>>> sort_even([5, 6, 3, 4])
[3, 6, 5, 4]
"""
evens = l[::2]
odds = l[1::2]
evens.sort()
ans = []
for e, o in zip(evens, odds):
ans.extend([e, o])
if len(evens) > len(odds):
ans.append(evens[-1])
return ans
|
|
python | HumanEval/38 | decode_cyclic | code_generation | [
[
"'eaztdrcpoojjs'",
"'zeartdocpjojs'"
],
[
"'fcsasgmhiqc'",
"'sfcgasimhqc'"
],
[
"'avmirjdeqbylxuau'",
"'mavjirqdelbyaxuu'"
],
[
"'azhacmsfsnfsg'",
"'hazmacssfsnfg'"
],
[
"'zbvkvwoatdccvw'",
"'vzbwkvtoacdcvw'"
],
[
"'mqzfshjknuz'",
"'zmqhfsnjkuz'"
],
[
"'bgpjjqmghur'",
"'pbgqjjhmgur'"
],
[
"'skuuqfixmobqarshlnfv'",
"'uskfuqmixqobsarnhlfv'"
],
[
"'bwcoqbjzilceuidscgn'",
"'cbwboqijzelcduigscn'"
],
[
"'lpoyfvzavtysssduxn'",
"'olpvyfvzastydssnux'"
],
[
"'rguzukgsizsrmvrnt'",
"'urgkzuigsrzsrmvnt'"
],
[
"'orjrnmyozyhwc'",
"'jormrnzyowyhc'"
],
[
"'egkdzdeufufsupt'",
"'kegddzfeusuftup'"
],
[
"'kuqnvecsetyvdfero'",
"'qkuenvecsvtyedfro'"
],
[
"'rglvlgjtgesicfkcmkm'",
"'lrggvlgjtieskcfkcmm'"
],
[
"'jpdxznnaqylzmmh'",
"'djpnxzqnazylhmm'"
],
[
"'zwmgzcntpbawwlfbex'",
"'mzwcgzpntwbafwlxbe'"
],
[
"'unjdpwbxpxkpqdopaalb'",
"'junwdppbxpxkoqdapalb'"
],
[
"'zeukiguxndy'",
"'uzegkinuxdy'"
],
[
"'sjnaktdnbnokqjg'",
"'nsjtakbdnknogqj'"
],
[
"'vrmtirlygzhf'",
"'mvrrtiglyfzh'"
],
[
"'mhtgmpslldrhjl'",
"'tmhpgmlslhdrjl'"
],
[
"'mpvjpdatrmhtdx'",
"'vmpdjprattmhdx'"
],
[
"'jimzixallctnnsg'",
"'mjixzilalnctgns'"
],
[
"'gahjootuomivad'",
"'hgaojootuvmiad'"
],
[
"'ulilcmoplpsqqoyrppbh'",
"'iulmlclopqpsyqoprpbh'"
],
[
"'oznykgwonynglp'",
"'nozgyknwogynlp'"
],
[
"'fzvyarmdbmeogatu'",
"'vfzryabmdometgau'"
],
[
"'mfnngxdggewb'",
"'nmfxnggdgbew'"
],
[
"'qvacnekscjxe'",
"'aqvecncksejx'"
],
[
"'nmcapqndnkuh'",
"'cnmqapnndhku'"
],
[
"'nnennffezagabnfa'",
"'ennfnnzfeaagfbna'"
],
[
"'ifgknbekvs'",
"'gifbknveks'"
],
[
"'drtekkfffj'",
"'tdrkekfffj'"
],
[
"'tswtymazbcejja'",
"'wtsmtybazjceja'"
],
[
"'vlcyvzwvjbrc'",
"'cvlzyvjwvcbr'"
],
[
"'jvlybcuhdjhoixz'",
"'ljvcybduhojhzix'"
],
[
"'gtpwuynlrwoimpersbri'",
"'pgtywurnliwoempbrsri'"
],
[
"'gxkyyxeiltkdiuq'",
"'kgxxyyleidtkqiu'"
],
[
"'lsxrlnsbrxispzf'",
"'xlsnrlrsbsxifpz'"
],
[
"'hkwqbehapilpgesmj'",
"'whkeqbphapilsgemj'"
],
[
"'qgxkrqvsvsrwesnwot'",
"'xqgqkrvvswsrnestwo'"
],
[
"'tkjskkxoqalpnajqidr'",
"'jtkkskqxopaljnadqir'"
],
[
"'djekkirzcafg'",
"'edjikkcrzgaf'"
],
[
"'srfgcpgexwdbajohros'",
"'fsrpgcxgebwdoajohrs'"
],
[
"'sfckdzevjqezdxmcso'",
"'csfzkdjevzqemdxocs'"
],
[
"'aaikokcghtbyunigyq'",
"'iaakkohcgytbiunqgy'"
],
[
"'jaldcwbuxzqvlsff'",
"'ljawdcxbuvzqflsf'"
],
[
"'hyjfibztlplww'",
"'jhybfilztwplw'"
],
[
"'irsuppaksqoxgkyak'",
"'sirpupsakxqoygkak'"
],
[
"'rvhlirxndd'",
"'hrvrlidxnd'"
],
[
"'fwofairkckdyffng'",
"'ofwifacrkykdnffg'"
],
[
"'idmgovtowjfmf'",
"'midvgowtomjff'"
],
[
"'ovfdtilllkla'",
"'fovidtlllakl'"
],
[
"'kmmlbgisttsjhpgeo'",
"'mkmglbtisjtsghpeo'"
],
[
"'wvnqidnuhafydcdqqbzv'",
"'nwvdqihnuyafddcbqqzv'"
],
[
"'suhgzhdxuwp'",
"'hsuhgzudxwp'"
],
[
"'wovjwmvixtut'",
"'vwomjwxvittu'"
],
[
"'cghripgisjeihgsbkme'",
"'hcgprisgiijeshgmbke'"
],
[
"'vpnnwihekt'",
"'nvpinwkhet'"
],
[
"'oakdzvyxwcubs'",
"'koavdzwyxbcus'"
],
[
"'yiizrtxhhmazu'",
"'iyitzrhxhzmau'"
],
[
"'ykzsucdlyah'",
"'zykcsuydlah'"
],
[
"'wikxqjfoudburqasd'",
"'kwijxqufoudbarqsd'"
],
[
"'cssoeuoaspnhxaeipsc'",
"'scsuoesoahpnexasipc'"
],
[
"'yiztlakgbpfqpnvrwxl'",
"'zyiatlbkgqpfvpnxrwl'"
],
[
"'faljwqdqsyeghhccnrvz'",
"'lfaqjwsdqgyechhrcnvz'"
],
[
"'okdezkfuvnml'",
"'dokkezvfulnm'"
],
[
"'klkbfzkqofdmtcg'",
"'kklzbfokqmfdgtc'"
],
[
"'uqzurwhizdjvr'",
"'zuqwurzhivdjr'"
],
[
"'jrgrscrapvjpfqj'",
"'gjrcrsprapvjjfq'"
],
[
"'nwenxrwcrfaeb'",
"'enwrnxrwcefab'"
],
[
"'pldrrczxefqs'",
"'dplcrrezxsfq'"
],
[
"'ksvouegvkjyfecan'",
"'vkseoukgvfjyaecn'"
],
[
"'ijqaxfmbwjkevttzbxk'",
"'qijfaxwmbejktvtxzbk'"
],
[
"'irewkmbwkh'",
"'eirmwkkbwh'"
],
[
"'mhqhodamvtgiev'",
"'qmhdhovamitgev'"
],
[
"'ryjpgtgwucmyeulwhydh'",
"'jrytpgugwycmleuywhdh'"
],
[
"'ttkwvupppyakk'",
"'kttuwvpppkyak'"
],
[
"'dsgidvchdrln'",
"'gdsviddchnrl'"
],
[
"'nklhmphxejdcwx'",
"'lnkphmehxcjdwx'"
],
[
"'plwenneudaqxtwheh'",
"'wplnendeuxaqhtweh'"
],
[
"'pasolfzaalcs'",
"'spafolazaslc'"
],
[
"'mvohmjdjtvggijdbxbnh'",
"'omvjhmtdjgvgdijbbxnh'"
],
[
"'olbcwcvbnhh'",
"'bolccwnvbhh'"
],
[
"'nttkuqayrlcuxioymcl'",
"'tntqkurayulcoxicyml'"
],
[
"'jxhrreunodmezni'",
"'hjxerrounedmizn'"
],
[
"'wsrxjpqyzkxhbxc'",
"'rwspxjzqyhkxcbx'"
],
[
"'kxkqlaosighdfirrgd'",
"'kkxaqliosdghrfidrg'"
],
[
"'jwlphbvzsosmfdq'",
"'ljwbphsvzmosqfd'"
],
[
"'osdfiyiitm'",
"'dosyfitiim'"
],
[
"'yndqfrdeuthbcwhhvizq'",
"'dynrqfudebthhcwihvzq'"
],
[
"'cmqnxmwxnrv'",
"'qcmmnxnwxrv'"
],
[
"'qvfdfgsgqkwa'",
"'fqvgdfqsgakw'"
],
[
"'zzuimcybadfunvwd'",
"'uzzcimaybudfwnvd'"
],
[
"'bsrzyntvnvsppnz'",
"'rbsnzyntvpvszpn'"
],
[
"'mjrvpbrpqemkws'",
"'rmjbvpqrpkemws'"
],
[
"'ekwvxxlganvrot'",
"'wekxvxalgrnvot'"
],
[
"'onlzsrfkdqfuvl'",
"'lonrzsdfkuqfvl'"
],
[
"'rcwvivhovywyfnqsefv'",
"'wrcvvivhoyywqfnfsev'"
]
] | null | [
[
"group",
"3 else group for group in groups]"
]
] | [] | returns encoded string by cycling groups of three characters. # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): takes as input string encoded with encode_cyclic function. Returns decoded string. | HumanEval | returns encoded string by cycling groups of three characters. | [] |
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
|
def encode_cyclic(s: str):
"""
returns encoded string by cycling groups of three characters.
"""
# split string to groups. Each of length 3.
groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
# cycle elements in each group. Unless group has fewer elements than 3.
groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join(groups)
def decode_cyclic(s: str):
"""
takes as input string encoded with encode_cyclic function. Returns decoded string.
"""
return encode_cyclic(encode_cyclic(s))
|
|
python | HumanEval/39 | prime_fib | code_generation | [
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
],
[
"6",
"233"
],
[
"7",
"1597"
],
[
"8",
"28657"
],
[
"9",
"514229"
],
[
"10",
"433494437"
]
] | null | [
[
"1",
"2"
],
[
"2",
"3"
],
[
"3",
"5"
],
[
"4",
"13"
],
[
"5",
"89"
]
] | [] | prime_fib returns n-th number that is a Fibonacci number and it's also prime. | HumanEval | prime_fib returns n-th number that is a Fibonacci number and it's also prime. | [] |
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
"""
|
def prime_fib(n: int):
"""
prime_fib returns n-th number that is a Fibonacci number and it's also prime.
>>> prime_fib(1)
2
>>> prime_fib(2)
3
>>> prime_fib(3)
5
>>> prime_fib(4)
13
>>> prime_fib(5)
89
"""
import math
def is_prime(p):
if p < 2:
return False
for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)):
if p % k == 0:
return False
return True
f = [0, 1]
while True:
f.append(f[-1] + f[-2])
if is_prime(f[-1]):
n -= 1
if n == 0:
return f[-1]
|
|
python | HumanEval/40 | triples_sum_to_zero | code_generation | [
[
"[1, 3, 5, 0]",
"False"
],
[
"[1, 3, 5, -1]",
"False"
],
[
"[1, 3, -2, 1]",
"True"
],
[
"[1, 2, 3, 7]",
"False"
],
[
"[1, 2, 5, 7]",
"False"
],
[
"[2, 4, -5, 3, 9, 7]",
"True"
],
[
"[1]",
"False"
],
[
"[1, 3, 5, -100]",
"False"
],
[
"[100, 3, 5, -100]",
"False"
]
] | null | [
[
"[1, 3, 5, 0]",
"False"
],
[
"[1, 3, -2, 1]",
"True"
],
[
"[1, 2, 3, 7]",
"False"
],
[
"[2, 4, -5, 3, 9, 7]",
"True"
],
[
"[1]",
"False"
]
] | [] | triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. | HumanEval | triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise. | [] |
def triples_sum_to_zero(l: list):
"""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
"""
|
def triples_sum_to_zero(l: list):
"""
triples_sum_to_zero takes a list of integers as an input.
it returns True if there are three distinct elements in the list that
sum to zero, and False otherwise.
>>> triples_sum_to_zero([1, 3, 5, 0])
False
>>> triples_sum_to_zero([1, 3, -2, 1])
True
>>> triples_sum_to_zero([1, 2, 3, 7])
False
>>> triples_sum_to_zero([2, 4, -5, 3, 9, 7])
True
>>> triples_sum_to_zero([1])
False
"""
for i in range(len(l)):
for j in range(i + 1, len(l)):
for k in range(j + 1, len(l)):
if l[i] + l[j] + l[k] == 0:
return True
return False
|
|
python | HumanEval/41 | car_race_collision | code_generation | [
[
"2",
"4"
],
[
"3",
"9"
],
[
"4",
"16"
],
[
"8",
"64"
],
[
"10",
"100"
]
] | null | [] | [] | Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. | HumanEval | Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions. | [] |
def car_race_collision(n: int):
"""
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
"""
|
def car_race_collision(n: int):
"""
Imagine a road that's a perfectly straight infinitely long line.
n cars are driving left to right; simultaneously, a different set of n cars
are driving right to left. The two sets of cars start out being very far from
each other. All cars move in the same speed. Two cars are said to collide
when a car that's moving left to right hits a car that's moving right to left.
However, the cars are infinitely sturdy and strong; as a result, they continue moving
in their trajectory as if they did not collide.
This function outputs the number of such collisions.
"""
return n**2
|
|
python | HumanEval/42 | incr_list | code_generation | [
[
"[]",
"[]"
],
[
"[3, 2, 1]",
"[4, 3, 2]"
],
[
"[5, 2, 5, 2, 3, 3, 9, 0, 123]",
"[6, 3, 6, 3, 4, 4, 10, 1, 124]"
]
] | null | [
[
"[1, 2, 3]",
"[2, 3, 4]"
],
[
"[5, 3, 5, 2, 3, 3, 9, 0, 123]",
"[6, 4, 6, 3, 4, 4, 10, 1, 124]"
]
] | [] | Return list with elements incremented by 1. | HumanEval | Return list with elements incremented by 1. | [] |
def incr_list(l: list):
"""Return list with elements incremented by 1.
"""
|
def incr_list(l: list):
"""Return list with elements incremented by 1.
>>> incr_list([1, 2, 3])
[2, 3, 4]
>>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123])
[6, 4, 6, 3, 4, 4, 10, 1, 124]
"""
return [(e + 1) for e in l]
|
|
python | HumanEval/43 | pairs_sum_to_zero | code_generation | [
[
"[1, 3, 5, 0]",
"False"
],
[
"[1, 3, -2, 1]",
"False"
],
[
"[1, 2, 3, 7]",
"False"
],
[
"[2, 4, -5, 3, 5, 7]",
"True"
],
[
"[1]",
"False"
],
[
"[-3, 9, -1, 3, 2, 30]",
"True"
],
[
"[-3, 9, -1, 3, 2, 31]",
"True"
],
[
"[-3, 9, -1, 4, 2, 30]",
"False"
],
[
"[-3, 9, -1, 4, 2, 31]",
"False"
]
] | null | [
[
"[1, 3, 5, 0]",
"False"
],
[
"[1, 3, -2, 1]",
"False"
],
[
"[1, 2, 3, 7]",
"False"
],
[
"[2, 4, -5, 3, 5, 7]",
"True"
],
[
"[1]",
"False"
]
] | [] | pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. | HumanEval | pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise. | [] |
def pairs_sum_to_zero(l):
"""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
"""
|
def pairs_sum_to_zero(l):
"""
pairs_sum_to_zero takes a list of integers as an input.
it returns True if there are two distinct elements in the list that
sum to zero, and False otherwise.
>>> pairs_sum_to_zero([1, 3, 5, 0])
False
>>> pairs_sum_to_zero([1, 3, -2, 1])
False
>>> pairs_sum_to_zero([1, 2, 3, 7])
False
>>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7])
True
>>> pairs_sum_to_zero([1])
False
"""
for i, l1 in enumerate(l):
for j in range(i + 1, len(l)):
if l1 + l[j] == 0:
return True
return False
|
|
python | HumanEval/44 | change_base | code_generation | [
[
"8, 3",
"\"22\""
],
[
"9, 3",
"\"100\""
],
[
"234, 2",
"\"11101010\""
],
[
"16, 2",
"\"10000\""
],
[
"8, 2",
"\"1000\""
],
[
"7, 2",
"\"111\""
]
] | null | [
[
"8, 3",
"'22'"
],
[
"8, 2",
"'1000'"
],
[
"7, 2",
"'111'"
]
] | [] | Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. | HumanEval | Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10. | [] |
def change_base(x: int, base: int):
"""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
"""
|
def change_base(x: int, base: int):
"""Change numerical base of input number x to base.
return string representation after the conversion.
base numbers are less than 10.
>>> change_base(8, 3)
'22'
>>> change_base(8, 2)
'1000'
>>> change_base(7, 2)
'111'
"""
ret = ""
while x > 0:
ret = str(x % base) + ret
x //= base
return ret
|
|
python | HumanEval/45 | triangle_area | code_generation | [
[
"5, 3",
"7.5"
],
[
"2, 2",
"2.0"
],
[
"10, 8",
"40.0"
]
] | null | [
[
"5, 3",
"7.5"
]
] | [] | Given length of a side and high return area for a triangle. | HumanEval | Given length of a side and high return area for a triangle. | [] |
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
"""
|
def triangle_area(a, h):
"""Given length of a side and high return area for a triangle.
>>> triangle_area(5, 3)
7.5
"""
return a * h / 2.0
|
|
python | HumanEval/46 | fib4 | code_generation | [
[
"5",
"4"
],
[
"8",
"28"
],
[
"10",
"104"
],
[
"12",
"386"
]
] | null | [
[
"5",
"4"
],
[
"6",
"8"
],
[
"7",
"14"
]
] | [] | The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. | HumanEval | The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14 | [] |
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
|
def fib4(n: int):
"""The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fib4(0) -> 0
fib4(1) -> 0
fib4(2) -> 2
fib4(3) -> 0
fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4).
Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion.
>>> fib4(5)
4
>>> fib4(6)
8
>>> fib4(7)
14
"""
results = [0, 0, 2, 0]
if n < 4:
return results[n]
for _ in range(4, n + 1):
results.append(results[-1] + results[-2] + results[-3] + results[-4])
results.pop(0)
return results[-1]
|
|
python | HumanEval/47 | median | code_generation | [
[
"[3, 1, 2, 4, 5]",
"3"
],
[
"[-10, 4, 6, 1000, 10, 20]",
"8.0"
],
[
"[5]",
"5"
],
[
"[6, 5]",
"5.5"
],
[
"[8, 1, 3, 9, 9, 2, 7]",
"7"
]
] | null | [
[
"[3, 1, 2, 4, 5]",
"3"
],
[
"[-10, 4, 6, 1000, 10, 20]",
"15.0"
]
] | [] | Return median of elements in the list l. | HumanEval | Return median of elements in the list l. | [] |
def median(l: list):
"""Return median of elements in the list l.
"""
|
def median(l: list):
"""Return median of elements in the list l.
>>> median([3, 1, 2, 4, 5])
3
>>> median([-10, 4, 6, 1000, 10, 20])
15.0
"""
l = sorted(l)
if len(l) % 2 == 1:
return l[len(l) // 2]
else:
return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
|
|
python | HumanEval/48 | is_palindrome | code_generation | [
[
"''",
"True"
],
[
"'aba'",
"True"
],
[
"'aaaaa'",
"True"
],
[
"'zbcd'",
"False"
],
[
"'xywyx'",
"True"
],
[
"'xywyz'",
"False"
],
[
"'xywzx'",
"False"
]
] | null | [
[
"''",
"True"
],
[
"'aba'",
"True"
],
[
"'aaaaa'",
"True"
],
[
"'zbcd'",
"False"
]
] | [] | Checks if given string is a palindrome | HumanEval | Checks if given string is a palindrome | [] |
def is_palindrome(text: str):
"""
Checks if given string is a palindrome
"""
|
def is_palindrome(text: str):
"""
Checks if given string is a palindrome
>>> is_palindrome('')
True
>>> is_palindrome('aba')
True
>>> is_palindrome('aaaaa')
True
>>> is_palindrome('zbcd')
False
"""
for i in range(len(text)):
if text[i] != text[len(text) - 1 - i]:
return False
return True
|
|
python | HumanEval/49 | modp | code_generation | [
[
"3, 5",
"3"
],
[
"1101, 101",
"2"
],
[
"0, 101",
"1"
],
[
"3, 11",
"8"
],
[
"100, 101",
"1"
],
[
"30, 5",
"4"
],
[
"31, 5",
"3"
]
] | null | [
[
"3, 5",
"3"
],
[
"1101, 101",
"2"
],
[
"0, 101",
"1"
],
[
"3, 11",
"8"
],
[
"100, 101",
"1"
]
] | [] | Return 2^n modulo p (be aware of numerics). | HumanEval | Return 2^n modulo p (be aware of numerics). | [] |
def modp(n: int, p: int):
"""Return 2^n modulo p (be aware of numerics).
"""
|
def modp(n: int, p: int):
"""Return 2^n modulo p (be aware of numerics).
>>> modp(3, 5)
3
>>> modp(1101, 101)
2
>>> modp(0, 101)
1
>>> modp(3, 11)
8
>>> modp(100, 101)
1
"""
ret = 1
for i in range(n):
ret = (2 * ret) % p
return ret
|
|
python | HumanEval/50 | decode_shift | code_generation | [
[
"\"nppetuavkhytds\"",
"\"ikkzopvqfctoyn\""
],
[
"\"jkwevzwwetoiui\"",
"\"efrzqurrzojdpd\""
],
[
"\"deqhgbmrgyvolvllvgu\"",
"\"yzlcbwhmbtqjgqggqbp\""
],
[
"\"adwtpwmzzsba\"",
"\"vyrokrhuunwv\""
],
[
"\"kviyfxcqqk\"",
"\"fqdtasxllf\""
],
[
"\"owuxsmtkqyi\"",
"\"jrpsnhofltd\""
],
[
"\"nnmfgsupnnlfnyke\"",
"\"iihabnpkiigaitfz\""
],
[
"\"neklmdclmzoro\"",
"\"izfghyxghujmj\""
],
[
"\"lesnecsgpsgcya\"",
"\"gznizxnbknbxtv\""
],
[
"\"oxbtwcbwsxinxvdwir\"",
"\"jsworxwrnsdisqyrdm\""
],
[
"\"sdghpnyvoqrwpzgvdu\"",
"\"nybckitqjlmrkubqyp\""
],
[
"\"jyzljgmjrbquen\"",
"\"etugebhemwlpzi\""
],
[
"\"zgyrlfbwabpjhperjslh\"",
"\"ubtmgawrvwkeckzmengc\""
],
[
"\"qleffvhomvtyngciggde\"",
"\"lgzaaqcjhqotibxdbbyz\""
],
[
"\"qqpicuvmrtkj\"",
"\"llkdxpqhmofe\""
],
[
"\"jyyevmecuetxqrirfd\"",
"\"ettzqhzxpzoslmdmay\""
],
[
"\"lmbsrqvjevdtb\"",
"\"ghwnmlqezqyow\""
],
[
"\"whxcodekelxlmln\"",
"\"rcsxjyzfzgsghgi\""
],
[
"\"delrtygeoyvml\"",
"\"yzgmotbzjtqhg\""
],
[
"\"apdqbcrttlq\"",
"\"vkylwxmoogl\""
],
[
"\"xttskzvkfh\"",
"\"soonfuqfac\""
],
[
"\"olbwqqdnru\"",
"\"jgwrllyimp\""
],
[
"\"ehdpgbpcwbqsqr\"",
"\"zcykbwkxrwlnlm\""
],
[
"\"oxbdypniamafgtsz\"",
"\"jswytkidvhvabonu\""
],
[
"\"sdnuydcckyvllunfbxi\"",
"\"nyiptyxxftqggpiawsd\""
],
[
"\"antvcacedbucqjmhl\"",
"\"vioqxvxzywpxlehcg\""
],
[
"\"zogbormycllavatve\"",
"\"ujbwjmhtxggvqvoqz\""
],
[
"\"fuueutygaxwywovpnigy\"",
"\"appzpotbvsrtrjqkidbt\""
],
[
"\"jknughmjbqvtcrulb\"",
"\"efipbchewlqoxmpgw\""
],
[
"\"xbvxtynbqwz\"",
"\"swqsotiwlru\""
],
[
"\"mgctjkezbtnklcsw\"",
"\"hbxoefzuwoifgxnr\""
],
[
"\"fmelllajoemkowluz\"",
"\"ahzgggvejzhfjrgpu\""
],
[
"\"ptozvzdtyvnhzime\"",
"\"kojuquyotqicudhz\""
],
[
"\"xxhgplwbzs\"",
"\"sscbkgrwun\""
],
[
"\"rfzoarauxuka\"",
"\"maujvmvpspfv\""
],
[
"\"twqnkxildqtbrbjwyqrh\"",
"\"orlifsdgylowmwertlmc\""
],
[
"\"eildvqeupsl\"",
"\"zdgyqlzpkng\""
],
[
"\"pnzptdzfhzxpn\"",
"\"kiukoyuacuski\""
],
[
"\"hbmzwirdoar\"",
"\"cwhurdmyjvm\""
],
[
"\"gaqxkjkpnwkca\"",
"\"bvlsfefkirfxv\""
],
[
"\"xddhfaftiziqebsa\"",
"\"syycavaodudlzwnv\""
],
[
"\"ydyqdhblfckp\"",
"\"tytlycwgaxfk\""
],
[
"\"ymypgwmwogoudeq\"",
"\"thtkbrhrjbjpyzl\""
],
[
"\"unvmuxgbdyhchso\"",
"\"piqhpsbwytcxcnj\""
],
[
"\"dhghjsovcb\"",
"\"ycbcenjqxw\""
],
[
"\"piinwbmppf\"",
"\"kddirwhkka\""
],
[
"\"zvyoceomaxjcgwprqm\"",
"\"uqtjxzjhvsexbrkmlh\""
],
[
"\"eijmnrfqtqudyv\"",
"\"zdehimalolpytq\""
],
[
"\"qpeqklfmwnry\"",
"\"lkzlfgahrimt\""
],
[
"\"fwnkdnyqbo\"",
"\"arifyitlwj\""
],
[
"\"smcxegzdxbfd\"",
"\"nhxszbuysway\""
],
[
"\"jvtkgaecmqnpszjvf\"",
"\"eqofbvzxhliknueqa\""
],
[
"\"aurjwvkebktdv\"",
"\"vpmerqfzwfoyq\""
],
[
"\"nfmmmhjeliakugh\"",
"\"iahhhcezgdvfpbc\""
],
[
"\"eyfxptmpshohi\"",
"\"ztaskohkncjcd\""
],
[
"\"glaoltrkxsmxspdvow\"",
"\"bgvjgomfsnhsnkyqjr\""
],
[
"\"zwyupdxanebym\"",
"\"urtpkysvizwth\""
],
[
"\"xkoigfpvcvqcxcgeoq\"",
"\"sfjdbakqxqlxsxbzjl\""
],
[
"\"fgizxalyjcpkvkt\"",
"\"abdusvgtexkfqfo\""
],
[
"\"zirsuhlzwi\"",
"\"udmnpcgurd\""
],
[
"\"zhwqbyhkbqeomarlldcb\"",
"\"ucrlwtcfwlzjhvmggyxw\""
],
[
"\"rvshqbrvsxnjfjakul\"",
"\"mqnclwmqnsieaevfpg\""
],
[
"\"nktgcnuxplhfsm\"",
"\"ifobxipskgcanh\""
],
[
"\"baoiqymypxkvlrn\"",
"\"wvjdlthtksfqgmi\""
],
[
"\"nwagelwecafiphlj\"",
"\"irvbzgrzxvadkcge\""
],
[
"\"kbqtmzbujxumptcvyl\"",
"\"fwlohuwpesphkoxqtg\""
],
[
"\"dujvyrdslwf\"",
"\"ypeqtmyngra\""
],
[
"\"vujolzbqoqekvv\"",
"\"qpejguwljlzfqq\""
],
[
"\"hbbdoumleckjwhws\"",
"\"cwwyjphgzxfercrn\""
],
[
"\"aykhykkfnxckhmzndki\"",
"\"vtfctffaisxfchuiyfd\""
],
[
"\"wpidhybggvempzrfa\"",
"\"rkdyctwbbqzhkumav\""
],
[
"\"dwgrdroeuiduby\"",
"\"yrbmymjzpdypwt\""
],
[
"\"yptrachqjtgrgqxy\"",
"\"tkomvxcleobmblst\""
],
[
"\"gjragaaocfbadfbeebky\"",
"\"bemvbvvjxawvyawzzwft\""
],
[
"\"rnisigwzqqshj\"",
"\"midndbrullnce\""
],
[
"\"gzivhmjtyysqsuqubbur\"",
"\"budqcheottnlnplpwwpm\""
],
[
"\"gfmeiuvbyuuiiflplahw\"",
"\"bahzdpqwtppddagkgvcr\""
],
[
"\"iczpwzppirpxfm\"",
"\"dxukrukkdmksah\""
],
[
"\"hwtxjblmlsikphbivd\"",
"\"crosewghgndfkcwdqy\""
],
[
"\"fwzjefnnnjwhv\"",
"\"aruezaiiiercq\""
],
[
"\"sysvhbbqkh\"",
"\"ntnqcwwlfc\""
],
[
"\"lbwiwpvlcdtvh\"",
"\"gwrdrkqgxyoqc\""
],
[
"\"rlehhmhevv\"",
"\"mgzcchczqq\""
],
[
"\"qtrfjsocbsldii\"",
"\"lomaenjxwngydd\""
],
[
"\"eszhonrsle\"",
"\"znucjimngz\""
],
[
"\"jvzxprqiyfqfj\"",
"\"equskmldtalae\""
],
[
"\"wdzasevrfyobkbro\"",
"\"ryuvnzqmatjwfwmj\""
],
[
"\"hzvhjetyyntxiplf\"",
"\"cuqcezottiosdkga\""
],
[
"\"yfskmymfdjqooty\"",
"\"tanfhthayeljjot\""
],
[
"\"rrtepprngbbv\"",
"\"mmozkkmibwwq\""
],
[
"\"zsqaqzsbxtwpqa\"",
"\"unlvlunwsorklv\""
],
[
"\"kneyiarobkgl\"",
"\"fiztdvmjwfbg\""
],
[
"\"xxbudxuwlhi\"",
"\"sswpysprgcd\""
],
[
"\"fetivyuynb\"",
"\"azodqtptiw\""
],
[
"\"syswumgxpgxmcwzgedq\"",
"\"ntnrphbskbshxrubzyl\""
],
[
"\"xychwdsfyfoly\"",
"\"stxcrynatajgt\""
],
[
"\"nfwrujwavgavutrxuzsg\"",
"\"iarmpervqbvqpomspunb\""
],
[
"\"vuhhhndgmzkwplolb\"",
"\"qpccciybhufrkgjgw\""
],
[
"\"fwqxfhbqjbgryci\"",
"\"arlsacwlewbmtxd\""
],
[
"\"amzcptlnzkor\"",
"\"vhuxkogiufjm\""
]
] | null | [] | [] | returns encoded string by shifting every character by 5 in the alphabet. return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): takes as input string encoded with encode_shift function. Returns decoded string. | HumanEval | returns encoded string by shifting every character by 5 in the alphabet. | [] |
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
|
def encode_shift(s: str):
"""
returns encoded string by shifting every character by 5 in the alphabet.
"""
return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s])
def decode_shift(s: str):
"""
takes as input string encoded with encode_shift function. Returns decoded string.
"""
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
|
|
python | HumanEval/51 | remove_vowels | code_generation | [
[
"''",
"''"
],
[
"\"abcdef\\nghijklm\"",
"'bcdf\\nghjklm'"
],
[
"'fedcba'",
"'fdcb'"
],
[
"'eeeee'",
"''"
],
[
"'acBAA'",
"'cB'"
],
[
"'EcBOO'",
"'cB'"
],
[
"'ybcd'",
"'ybcd'"
]
] | null | [
[
"''",
"''"
],
[
"\"abcdef\\nghijklm\"",
"'bcdf\\nghjklm'"
],
[
"'abcdef'",
"'bcdf'"
],
[
"'aaaaa'",
"''"
],
[
"'aaBAA'",
"'B'"
],
[
"'zbcd'",
"'zbcd'"
]
] | [] | remove_vowels is a function that takes string and returns string without vowels. | HumanEval | remove_vowels is a function that takes string and returns string without vowels. | [] |
def remove_vowels(text):
"""
remove_vowels is a function that takes string and returns string without vowels.
"""
|
def remove_vowels(text):
"""
remove_vowels is a function that takes string and returns string without vowels.
>>> remove_vowels('')
''
>>> remove_vowels("abcdef\nghijklm")
'bcdf\nghjklm'
>>> remove_vowels('abcdef')
'bcdf'
>>> remove_vowels('aaaaa')
''
>>> remove_vowels('aaBAA')
'B'
>>> remove_vowels('zbcd')
'zbcd'
"""
return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
|
|
python | HumanEval/52 | below_threshold | code_generation | [] | null | [
[
"[1, 2, 4, 10], 100",
"True"
],
[
"[1, 20, 4, 10], 5",
"False"
]
] | [] | Return True if all numbers in the list l are below threshold t. | HumanEval | Return True if all numbers in the list l are below threshold t. | [] |
def below_threshold(l: list, t: int):
"""Return True if all numbers in the list l are below threshold t.
"""
|
def below_threshold(l: list, t: int):
"""Return True if all numbers in the list l are below threshold t.
>>> below_threshold([1, 2, 4, 10], 100)
True
>>> below_threshold([1, 20, 4, 10], 5)
False
"""
for e in l:
if e >= t:
return False
return True
|
|
python | HumanEval/53 | add | code_generation | [
[
"0, 1",
"1"
],
[
"1, 0",
"1"
],
[
"2, 3",
"5"
],
[
"5, 7",
"12"
],
[
"7, 5",
"12"
]
] | null | [
[
"2, 3",
"5"
],
[
"5, 7",
"12"
]
] | [] | Add two numbers x and y | HumanEval | Add two numbers x and y | [] |
def add(x: int, y: int):
"""Add two numbers x and y
"""
|
def add(x: int, y: int):
"""Add two numbers x and y
>>> add(2, 3)
5
>>> add(5, 7)
12
"""
return x + y
|
|
python | HumanEval/54 | same_chars | code_generation | [
[
"'eabcdzzzz', 'dddzzzzzzzddeddabc'",
"True"
],
[
"'abcd', 'dddddddabc'",
"True"
],
[
"'dddddddabc', 'abcd'",
"True"
],
[
"'eabcd', 'dddddddabc'",
"False"
],
[
"'abcd', 'dddddddabcf'",
"False"
],
[
"'eabcdzzzz', 'dddzzzzzzzddddabc'",
"False"
],
[
"'aabb', 'aaccc'",
"False"
]
] | null | [
[
"'eabcdzzzz', 'dddzzzzzzzddeddabc'",
"True"
],
[
"'abcd', 'dddddddabc'",
"True"
],
[
"'dddddddabc', 'abcd'",
"True"
],
[
"'eabcd', 'dddddddabc'",
"False"
],
[
"'abcd', 'dddddddabce'",
"False"
],
[
"'eabcdzzzz', 'dddzzzzzzzddddabc'",
"False"
]
] | [] | Check if two words have the same characters. | HumanEval | Check if two words have the same characters. | [] |
def same_chars(s0: str, s1: str):
"""
Check if two words have the same characters.
"""
|
def same_chars(s0: str, s1: str):
"""
Check if two words have the same characters.
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')
True
>>> same_chars('abcd', 'dddddddabc')
True
>>> same_chars('dddddddabc', 'abcd')
True
>>> same_chars('eabcd', 'dddddddabc')
False
>>> same_chars('abcd', 'dddddddabce')
False
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')
False
"""
return set(s0) == set(s1)
|
|
python | HumanEval/55 | fib | code_generation | [
[
"10",
"55"
],
[
"1",
"1"
],
[
"8",
"21"
],
[
"11",
"89"
],
[
"12",
"144"
]
] | null | [
[
"10",
"55"
],
[
"1",
"1"
],
[
"8",
"21"
]
] | [] | Return n-th Fibonacci number. | HumanEval | Return n-th Fibonacci number. | [] |
def fib(n: int):
"""Return n-th Fibonacci number.
"""
|
def fib(n: int):
"""Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
"""
if n == 0:
return 0
if n == 1:
return 1
return fib(n - 1) + fib(n - 2)
|
|
python | HumanEval/56 | correct_bracketing | code_generation | [] | null | [
[
"\"<\"",
"False"
],
[
"\"<>\"",
"True"
],
[
"\"<<><>>\"",
"True"
],
[
"\"><<>\"",
"False"
]
] | [] | brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. | HumanEval | brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket. | [] |
def correct_bracketing(brackets: str):
""" brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
"""
|
def correct_bracketing(brackets: str):
""" brackets is a string of "<" and ">".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("<")
False
>>> correct_bracketing("<>")
True
>>> correct_bracketing("<<><>>")
True
>>> correct_bracketing("><<>")
False
"""
depth = 0
for b in brackets:
if b == "<":
depth += 1
else:
depth -= 1
if depth < 0:
return False
return depth == 0
|
|
python | HumanEval/57 | monotonic | code_generation | [
[
"[1, 2, 4, 10]",
"True"
],
[
"[1, 2, 4, 20]",
"True"
],
[
"[1, 20, 4, 10]",
"False"
],
[
"[4, 1, 0, -10]",
"True"
],
[
"[4, 1, 1, 0]",
"True"
],
[
"[1, 2, 3, 2, 5, 60]",
"False"
],
[
"[1, 2, 3, 4, 5, 60]",
"True"
],
[
"[9, 9, 9, 9]",
"True"
]
] | null | [
[
"[1, 2, 4, 20]",
"True"
],
[
"[1, 20, 4, 10]",
"False"
],
[
"[4, 1, 0, -10]",
"True"
]
] | [] | Return True is list elements are monotonically increasing or decreasing. | HumanEval | Return True is list elements are monotonically increasing or decreasing. | [] |
def monotonic(l: list):
"""Return True is list elements are monotonically increasing or decreasing.
"""
|
def monotonic(l: list):
"""Return True is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
True
>>> monotonic([1, 20, 4, 10])
False
>>> monotonic([4, 1, 0, -10])
True
"""
if l == sorted(l) or l == sorted(l, reverse=True):
return True
return False
|
|
python | HumanEval/58 | common | code_generation | [
[
"[1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]",
"[1, 5, 653]"
],
[
"[5, 3, 2, 8], [3, 2]",
"[2, 3]"
],
[
"[4, 3, 2, 8], [3, 2, 4]",
"[2, 3, 4]"
],
[
"[4, 3, 2, 8], []",
"[]"
]
] | null | [
[
"[1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]",
"[1, 5, 653]"
],
[
"[5, 3, 2, 8], [3, 2]",
"[2, 3]"
]
] | [] | Return sorted unique common elements for two lists. | HumanEval | Return sorted unique common elements for two lists. | [] |
def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
"""
|
def common(l1: list, l2: list):
"""Return sorted unique common elements for two lists.
>>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121])
[1, 5, 653]
>>> common([5, 3, 2, 8], [3, 2])
[2, 3]
"""
ret = set()
for e1 in l1:
for e2 in l2:
if e1 == e2:
ret.add(e1)
return sorted(list(ret))
|
|
python | HumanEval/59 | largest_prime_factor | code_generation | [
[
"15",
"5"
],
[
"27",
"3"
],
[
"63",
"7"
],
[
"330",
"11"
],
[
"13195",
"29"
]
] | null | [
[
"13195",
"29"
],
[
"2048",
"2"
]
] | [] | Return the largest prime factor of n. Assume n > 1 and is not a prime. | HumanEval | Return the largest prime factor of n. Assume n > 1 and is not a prime. | [] |
def largest_prime_factor(n: int):
"""Return the largest prime factor of n. Assume n > 1 and is not a prime.
"""
|
def largest_prime_factor(n: int):
"""Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largest_prime_factor(13195)
29
>>> largest_prime_factor(2048)
2
"""
def is_prime(k):
if k < 2:
return False
for i in range(2, k - 1):
if k % i == 0:
return False
return True
largest = 1
for j in range(2, n + 1):
if n % j == 0 and is_prime(j):
largest = max(largest, j)
return largest
|
|
python | HumanEval/60 | sum_to_n | code_generation | [
[
"1",
"1"
],
[
"6",
"21"
],
[
"11",
"66"
],
[
"30",
"465"
],
[
"100",
"5050"
]
] | null | [
[
"30",
"465"
],
[
"100",
"5050"
],
[
"5",
"15"
],
[
"10",
"55"
],
[
"1",
"1"
]
] | [] | sum_to_n is a function that sums numbers from 1 to n. | HumanEval | sum_to_n is a function that sums numbers from 1 to n. | [] |
def sum_to_n(n: int):
"""sum_to_n is a function that sums numbers from 1 to n.
"""
|
def sum_to_n(n: int):
"""sum_to_n is a function that sums numbers from 1 to n.
>>> sum_to_n(30)
465
>>> sum_to_n(100)
5050
>>> sum_to_n(5)
15
>>> sum_to_n(10)
55
>>> sum_to_n(1)
1
"""
return sum(range(n + 1))
|
|
python | HumanEval/61 | correct_bracketing | code_generation | [] | null | [
[
"\"(\"",
"False"
],
[
"\"()\"",
"True"
],
[
"\"(()())\"",
"True"
],
[
"\")(()\"",
"False"
]
] | [] | brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. | HumanEval | brackets is a string of "(" and ")".
return True if every opening bracket has a corresponding closing bracket. | [] |
def correct_bracketing(brackets: str):
""" brackets is a string of "(" and ")".
return True if every opening bracket has a corresponding closing bracket.
"""
|
def correct_bracketing(brackets: str):
""" brackets is a string of "(" and ")".
return True if every opening bracket has a corresponding closing bracket.
>>> correct_bracketing("(")
False
>>> correct_bracketing("()")
True
>>> correct_bracketing("(()())")
True
>>> correct_bracketing(")(()")
False
"""
depth = 0
for b in brackets:
if b == "(":
depth += 1
else:
depth -= 1
if depth < 0:
return False
return depth == 0
|
|
python | HumanEval/62 | derivative | code_generation | [
[
"[3, 1, 2, 4, 5]",
"[1, 4, 12, 20]"
],
[
"[1, 2, 3]",
"[2, 6]"
],
[
"[3, 2, 1]",
"[2, 2]"
],
[
"[3, 2, 1, 0, 4]",
"[2, 2, 0, 16]"
],
[
"[1]",
"[]"
]
] | null | [
[
"[3, 1, 2, 4, 5]",
"[1, 4, 12, 20]"
],
[
"[1, 2, 3]",
"[2, 6]"
]
] | [] | xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. | HumanEval | xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form. | [] |
def derivative(xs: list):
""" xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
"""
|
def derivative(xs: list):
""" xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]
"""
return [(i * x) for i, x in enumerate(xs)][1:]
|
|
python | HumanEval/63 | fibfib | code_generation | [
[
"2",
"1"
],
[
"1",
"0"
],
[
"5",
"4"
],
[
"8",
"24"
],
[
"10",
"81"
],
[
"12",
"274"
],
[
"14",
"927"
]
] | null | [
[
"1",
"0"
],
[
"5",
"4"
],
[
"8",
"24"
]
] | [] | The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. | HumanEval | The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence. | [] |
def fibfib(n: int):
"""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
"""
|
def fibfib(n: int):
"""The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows:
fibfib(0) == 0
fibfib(1) == 0
fibfib(2) == 1
fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3).
Please write a function to efficiently compute the n-th element of the fibfib number sequence.
>>> fibfib(1)
0
>>> fibfib(5)
4
>>> fibfib(8)
24
"""
if n == 0:
return 0
if n == 1:
return 0
if n == 2:
return 1
return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
|
|
python | HumanEval/64 | vowels_count | code_generation | [
[
"\"abcde\"",
"2"
],
[
"\"Alone\"",
"3"
],
[
"\"key\"",
"2"
],
[
"\"bye\"",
"1"
],
[
"\"keY\"",
"2"
],
[
"\"bYe\"",
"1"
],
[
"\"ACEDY\"",
"3"
]
] | null | [
[
"\"abcde\"",
"2"
],
[
"\"ACEDY\"",
"3"
]
] | [] | FIX = Add more test cases. def vowels_count(s): Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. | HumanEval | Add more test cases. | [] |
FIX = """
Add more test cases.
"""
def vowels_count(s):
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
"""
|
FIX = """
Add more test cases.
"""
def vowels_count(s):
"""Write a function vowels_count which takes a string representing
a word as input and returns the number of vowels in the string.
Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a
vowel, but only when it is at the end of the given word.
Example:
>>> vowels_count("abcde")
2
>>> vowels_count("ACEDY")
3
"""
vowels = "aeiouAEIOU"
n_vowels = sum(c in vowels for c in s)
if s[-1] == 'y' or s[-1] == 'Y':
n_vowels += 1
return n_vowels
|
|
python | HumanEval/65 | circular_shift | code_generation | [
[
"100, 2",
"\"001\""
],
[
"12, 2",
"\"12\""
],
[
"97, 8",
"\"79\""
],
[
"12, 1",
"\"21\""
],
[
"11, 101",
"\"11\""
]
] | null | [
[
"12, 1",
"\"21\""
],
[
"12, 2",
"\"12\""
]
] | [] | Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. | HumanEval | Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed. | [] |
def circular_shift(x, shift):
"""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
"""
|
def circular_shift(x, shift):
"""Circular shift the digits of the integer x, shift the digits right by shift
and return the result as a string.
If shift > number of digits, return digits reversed.
>>> circular_shift(12, 1)
"21"
>>> circular_shift(12, 2)
"12"
"""
s = str(x)
if shift > len(s):
return s[::-1]
else:
return s[len(s) - shift:] + s[:len(s) - shift]
|
|
python | HumanEval/66 | digitSum | code_generation | [
[
"\"\"",
"0"
],
[
"\"abAB\"",
"131"
],
[
"\"abcCd\"",
"67"
],
[
"\"helloE\"",
"69"
],
[
"\"woArBld\"",
"131"
],
[
"\"aAaaaXa\"",
"153"
],
[
"\" How are yOu?\"",
"151"
],
[
"\"You arE Very Smart\"",
"327"
]
] | null | [
[
"\"\"",
"0"
],
[
"\"abAB\"",
"131"
],
[
"\"abcCd\"",
"67"
],
[
"\"helloE\"",
"69"
],
[
"\"woArBld\"",
"131"
],
[
"\"aAaaaXa\"",
"153"
]
] | [] | Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. | HumanEval | Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes. | [] |
def digitSum(s):
"""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
"""
|
def digitSum(s):
"""Task
Write a function that takes a string as input and returns the sum of the upper characters only'
ASCII codes.
Examples:
digitSum("") => 0
digitSum("abAB") => 131
digitSum("abcCd") => 67
digitSum("helloE") => 69
digitSum("woArBld") => 131
digitSum("aAaaaXa") => 153
"""
if s == "": return 0
return sum(ord(char) if char.isupper() else 0 for char in s)
|
|
python | HumanEval/67 | fruit_distribution | code_generation | [
[
"\"5 apples and 6 oranges\", 19",
"8"
],
[
"\"5 apples and 6 oranges\", 21",
"10"
],
[
"\"0 apples and 1 oranges\", 3",
"2"
],
[
"\"1 apples and 0 oranges\", 3",
"2"
],
[
"\"2 apples and 3 oranges\", 100",
"95"
],
[
"\"2 apples and 3 oranges\", 5",
"0"
],
[
"\"1 apples and 100 oranges\", 120",
"19"
]
] | null | [
[
"\"5 apples and 6 oranges\", 19",
"19 - 5 - 6 = 8"
],
[
"\"0 apples and 1 oranges\",3",
"3 - 0 - 1 = 2"
],
[
"\"2 apples and 3 oranges\", 100",
"100 - 2 - 3 = 95"
],
[
"\"100 apples and 1 oranges\",120",
"120 - 100 - 1 = 19"
]
] | [] | In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 | HumanEval | In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket. | [] |
def fruit_distribution(s,n):
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
"""
|
def fruit_distribution(s,n):
"""
In this task, you will be given a string that represents a number of apples and oranges
that are distributed in a basket of fruit this basket contains
apples, oranges, and mango fruits. Given the string that represents the total number of
the oranges and apples and an integer that represent the total number of the fruits
in the basket return the number of the mango fruits in the basket.
for examble:
fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8
fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2
fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95
fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19
"""
lis = list()
for i in s.split(' '):
if i.isdigit():
lis.append(int(i))
return n - sum(lis)
|
|
python | HumanEval/68 | pluck | code_generation | [
[
"[4,2,3]",
"[2, 1]"
],
[
"[1,2,3]",
"[2, 1]"
],
[
"[]",
"[]"
],
[
"[5, 0, 3, 0, 4, 2]",
"[0, 1]"
],
[
"[1, 2, 3, 0, 5, 3]",
"[0, 3]"
],
[
"[5, 4, 8, 4 ,8]",
"[4, 1]"
],
[
"[7, 6, 7, 1]",
"[6, 1]"
],
[
"[7, 9, 7, 1]",
"[]"
]
] | null | [
[
"[4,2,3]",
"[2, 1]"
],
[
"[1,2,3]",
"[2, 1]"
],
[
"[]",
"[]"
],
[
"[5, 0, 3, 0, 4, 2]",
"[0, 1]"
]
] | [] | "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. | HumanEval | "Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return []. | [] |
def pluck(arr):
"""
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
"""
|
def pluck(arr):
"""
"Given an array representing a branch of a tree that has non-negative integer nodes
your task is to pluck one of the nodes and return it.
The plucked node should be the node with the smallest even value.
If multiple nodes with the same smallest even value are found return the node that has smallest index.
The plucked node should be returned in a list, [ smalest_value, its index ],
If there are no even values or the given array is empty, return [].
Example 1:
Input: [4,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 2:
Input: [1,2,3]
Output: [2, 1]
Explanation: 2 has the smallest even value, and 2 has the smallest index.
Example 3:
Input: []
Output: []
Example 4:
Input: [5, 0, 3, 0, 4, 2]
Output: [0, 1]
Explanation: 0 is the smallest value, but there are two zeros,
so we will choose the first zero, which has the smallest index.
Constraints:
* 1 <= nodes.length <= 10000
* 0 <= node.value
"""
if(len(arr) == 0): return []
evens = list(filter(lambda x: x%2 == 0, arr))
if(evens == []): return []
return [min(evens), arr.index(min(evens))]
|
|
python | HumanEval/69 | search | code_generation | [
[
"[5, 5, 5, 5, 1]",
"1"
],
[
"[4, 1, 4, 1, 4, 4]",
"4"
],
[
"[3, 3]",
"-1"
],
[
"[8, 8, 8, 8, 8, 8, 8, 8]",
"8"
],
[
"[2, 3, 3, 2, 2]",
"2"
],
[
"[2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]",
"1"
],
[
"[3, 2, 8, 2]",
"2"
],
[
"[6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]",
"1"
],
[
"[8, 8, 3, 6, 5, 6, 4]",
"-1"
],
[
"[6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]",
"1"
],
[
"[1, 9, 10, 1, 3]",
"1"
],
[
"[6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]",
"5"
],
[
"[1]",
"1"
],
[
"[8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]",
"4"
],
[
"[2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]",
"2"
],
[
"[1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]",
"1"
],
[
"[9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]",
"4"
],
[
"[2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]",
"4"
],
[
"[9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]",
"2"
],
[
"[5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]",
"-1"
],
[
"[10]",
"-1"
],
[
"[9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]",
"2"
],
[
"[5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]",
"1"
],
[
"[7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]",
"1"
],
[
"[3, 10, 10, 9, 2]",
"-1"
]
] | null | [
[
"[4, 1, 2, 2, 3, 1]",
"2"
],
[
"[1, 2, 2, 3, 3, 3, 4, 4, 4]",
"3"
],
[
"[5, 5, 4, 4, 4]",
"-1"
]
] | [] | HumanEval | You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
search([4, 1, 2, 2, 3, 1]) == 2
search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search([5, 5, 4, 4, 4]) == -1 | [] |
def search(lst):
'''
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
search([4, 1, 2, 2, 3, 1]) == 2
search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search([5, 5, 4, 4, 4]) == -1
'''
|
def search(lst):
'''
You are given a non-empty list of positive integers. Return the greatest integer that is greater than
zero, and has a frequency greater than or equal to the value of the integer itself.
The frequency of an integer is the number of times it appears in the list.
If no such a value exist, return -1.
Examples:
search([4, 1, 2, 2, 3, 1]) == 2
search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3
search([5, 5, 4, 4, 4]) == -1
'''
frq = [0] * (max(lst) + 1)
for i in lst:
frq[i] += 1;
ans = -1
for i in range(1, len(frq)):
if frq[i] >= i:
ans = i
return ans
|
||
python | HumanEval/70 | strange_sort_list | code_generation | [
[
"[1, 2, 3, 4]",
"[1, 4, 2, 3]"
],
[
"[5, 6, 7, 8, 9]",
"[5, 9, 6, 8, 7]"
],
[
"[1, 2, 3, 4, 5]",
"[1, 5, 2, 4, 3]"
],
[
"[5, 6, 7, 8, 9, 1]",
"[1, 9, 5, 8, 6, 7]"
],
[
"[5, 5, 5, 5]",
"[5, 5, 5, 5]"
],
[
"[]",
"[]"
],
[
"[1,2,3,4,5,6,7,8]",
"[1, 8, 2, 7, 3, 6, 4, 5]"
],
[
"[0,2,2,2,5,5,-5,-5]",
"[-5, 5, -5, 5, 0, 2, 2, 2]"
],
[
"[111111]",
"[111111]"
]
] | null | [
[
"[1, 2, 3, 4]",
"[1, 4, 2, 3]"
],
[
"[5, 5, 5, 5]",
"[5, 5, 5, 5]"
],
[
"[]",
"[]"
]
] | [] | HumanEval | Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on. | [] |
def strange_sort_list(lst):
'''
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
'''
|
def strange_sort_list(lst):
'''
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3]
strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5]
strange_sort_list([]) == []
'''
res, switch = [], True
while lst:
res.append(min(lst) if switch else max(lst))
lst.remove(res[-1])
switch = not switch
return res
|
||
python | HumanEval/71 | triangle_area | code_generation | [
[
"3, 4, 5",
"6.00"
],
[
"1, 2, 10",
"-1"
],
[
"4, 8, 5",
"8.18"
],
[
"2, 2, 2",
"1.73"
],
[
"1, 2, 3",
"-1"
],
[
"10, 5, 7",
"16.25"
],
[
"2, 6, 3",
"-1"
],
[
"1, 1, 1",
"0.43"
],
[
"2, 2, 10",
"-1"
]
] | null | [
[
"3, 4, 5",
"6.00"
],
[
"1, 2, 10",
"-1"
]
] | [] | HumanEval | Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side. | [] |
def triangle_area(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
'''
|
def triangle_area(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangle_area(3, 4, 5) == 6.00
triangle_area(1, 2, 10) == -1
'''
if a + b <= c or a + c <= b or b + c <= a:
return -1
s = (a + b + c)/2
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5
area = round(area, 2)
return area
|
||
python | HumanEval/72 | will_it_fly | code_generation | [
[
"[3, 2, 3], 9",
"True"
],
[
"[1, 2], 5",
"False"
],
[
"[3], 5",
"True"
],
[
"[3, 2, 3], 1",
"False"
],
[
"[1, 2, 3], 6",
"False"
],
[
"[5], 5",
"True"
]
] | null | [
[
"[1, 2], 5",
"False"
],
[
"[3, 2, 3], 1",
"False"
],
[
"[3, 2, 3], 9",
"True"
],
[
"[3], 5",
"True"
]
] | [] | HumanEval | Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. | [] |
def will_it_fly(q,w):
'''
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
'''
|
def will_it_fly(q,w):
'''
Write a function that returns True if the object q will fly, and False otherwise.
The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w.
Example:
will_it_fly([1, 2], 5) โ False
# 1+2 is less than the maximum possible weight, but it's unbalanced.
will_it_fly([3, 2, 3], 1) โ False
# it's balanced, but 3+2+3 is more than the maximum possible weight.
will_it_fly([3, 2, 3], 9) โ True
# 3+2+3 is less than the maximum possible weight, and it's balanced.
will_it_fly([3], 5) โ True
# 3 is less than the maximum possible weight, and it's balanced.
'''
if sum(q) > w:
return False
i, j = 0, len(q)-1
while i<j:
if q[i] != q[j]:
return False
i+=1
j-=1
return True
|
||
python | HumanEval/73 | smallest_change | code_generation | [
[
"[1,2,3,5,4,7,9,6]",
"4"
],
[
"[1, 2, 3, 4, 3, 2, 2]",
"1"
],
[
"[1, 4, 2]",
"1"
],
[
"[1, 4, 4, 2]",
"1"
],
[
"[1, 2, 3, 2, 1]",
"0"
],
[
"[3, 1, 1, 3]",
"0"
],
[
"[1]",
"0"
],
[
"[0, 1]",
"1"
]
] | null | [
[
"[1,2,3,5,4,7,9,6]",
"4"
],
[
"[1, 2, 3, 4, 3, 2, 2]",
"1"
],
[
"[1, 2, 3, 2, 1]",
"0"
]
] | [] | Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. | HumanEval | Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element. | [] |
def smallest_change(arr):
"""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
"""
|
def smallest_change(arr):
"""
Given an array arr of integers, find the minimum number of elements that
need to be changed to make the array palindromic. A palindromic array is an array that
is read the same backwards and forwards. In one change, you can change one element to any other element.
For example:
smallest_change([1,2,3,5,4,7,9,6]) == 4
smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1
smallest_change([1, 2, 3, 2, 1]) == 0
"""
ans = 0
for i in range(len(arr) // 2):
if arr[i] != arr[len(arr) - i - 1]:
ans += 1
return ans
|
|
python | HumanEval/74 | total_match | code_generation | [
[
"[], []",
"[]"
],
[
"['hi', 'admin'], ['hi', 'hi']",
"['hi', 'hi']"
],
[
"['hi', 'admin'], ['hi', 'hi', 'admin', 'project']",
"['hi', 'admin']"
],
[
"['4'], ['1', '2', '3', '4', '5']",
"['4']"
],
[
"['hi', 'admin'], ['hI', 'Hi']",
"['hI', 'Hi']"
],
[
"['hi', 'admin'], ['hI', 'hi', 'hi']",
"['hI', 'hi', 'hi']"
],
[
"['hi', 'admin'], ['hI', 'hi', 'hii']",
"['hi', 'admin']"
],
[
"[], ['this']",
"[]"
],
[
"['this'], []",
"[]"
]
] | null | [
[
"[], []",
"[]"
],
[
"['hi', 'admin'], ['hI', 'Hi']",
"['hI', 'Hi']"
],
[
"['hi', 'admin'], ['hi', 'hi', 'admin', 'project']",
"['hi', 'admin']"
],
[
"['hi', 'admin'], ['hI', 'hi', 'hi']",
"['hI', 'hi', 'hi']"
],
[
"['4'], ['1', '2', '3', '4', '5']",
"['4']"
]
] | [] | HumanEval | Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list. | [] |
def total_match(lst1, lst2):
'''
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
'''
|
def total_match(lst1, lst2):
'''
Write a function that accepts two lists of strings and returns the list that has
total number of chars in the all strings of the list less than the other list.
if the two lists have the same number of chars, return the first list.
Examples
total_match([], []) โ []
total_match(['hi', 'admin'], ['hI', 'Hi']) โ ['hI', 'Hi']
total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) โ ['hi', 'admin']
total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) โ ['hI', 'hi', 'hi']
total_match(['4'], ['1', '2', '3', '4', '5']) โ ['4']
'''
l1 = 0
for st in lst1:
l1 += len(st)
l2 = 0
for st in lst2:
l2 += len(st)
if l1 <= l2:
return lst1
else:
return lst2
|
||
python | HumanEval/75 | is_multiply_prime | code_generation | [
[
"5",
"False"
],
[
"30",
"True"
],
[
"8",
"True"
],
[
"10",
"False"
],
[
"125",
"True"
],
[
"3 * 5 * 7",
"True"
],
[
"3 * 6 * 7",
"False"
],
[
"9 * 9 * 9",
"False"
],
[
"11 * 9 * 9",
"False"
],
[
"11 * 13 * 7",
"True"
]
] | null | [
[
"30",
"True"
]
] | [] | Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. | HumanEval | Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100. | [] |
def is_multiply_prime(a):
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
"""
|
def is_multiply_prime(a):
"""Write a function that returns true if the given number is the multiplication of 3 prime numbers
and false otherwise.
Knowing that (a) is less then 100.
Example:
is_multiply_prime(30) == True
30 = 2 * 3 * 5
"""
def is_prime(n):
for j in range(2,n):
if n%j == 0:
return False
return True
for i in range(2,101):
if not is_prime(i): continue
for j in range(2,101):
if not is_prime(j): continue
for k in range(2,101):
if not is_prime(k): continue
if i*j*k == a: return True
return False
|
|
python | HumanEval/76 | is_simple_power | code_generation | [
[
"16, 2",
"True"
],
[
"143214, 16",
"False"
],
[
"4, 2",
"True"
],
[
"9, 3",
"True"
],
[
"16, 4",
"True"
],
[
"24, 2",
"False"
],
[
"128, 4",
"False"
],
[
"12, 6",
"False"
],
[
"1, 1",
"True"
],
[
"1, 12",
"True"
]
] | null | [
[
"1, 4",
"true"
],
[
"2, 2",
"true"
],
[
"8, 2",
"true"
],
[
"3, 2",
"false"
],
[
"3, 1",
"false"
],
[
"5, 3",
"false"
]
] | [] | Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x | HumanEval | Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x | [] |
def is_simple_power(x, n):
"""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
"""
|
def is_simple_power(x, n):
"""Your task is to write a function that returns true if a number x is a simple
power of n and false in other cases.
x is a simple power of n if n**int=x
For example:
is_simple_power(1, 4) => true
is_simple_power(2, 2) => true
is_simple_power(8, 2) => true
is_simple_power(3, 2) => false
is_simple_power(3, 1) => false
is_simple_power(5, 3) => false
"""
if (n == 1):
return (x == 1)
power = 1
while (power < x):
power = power * n
return (power == x)
|
|
python | HumanEval/77 | iscube | code_generation | [
[
"1",
"True"
],
[
"2",
"False"
],
[
"-1",
"True"
],
[
"64",
"True"
],
[
"180",
"False"
],
[
"1000",
"True"
],
[
"0",
"True"
],
[
"1729",
"False"
]
] | null | [
[
"1",
"> True"
],
[
"2",
"> False"
],
[
"-1",
"> True"
],
[
"64",
"> True"
],
[
"0",
"> True"
],
[
"180",
"> False"
]
] | [] | HumanEval | Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid. | [] |
def iscube(a):
'''
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
'''
|
def iscube(a):
'''
Write a function that takes an integer a and returns True
if this ingeger is a cube of some integer number.
Note: you may assume the input is always valid.
Examples:
iscube(1) ==> True
iscube(2) ==> False
iscube(-1) ==> True
iscube(64) ==> True
iscube(0) ==> True
iscube(180) ==> False
'''
a = abs(a)
return int(round(a ** (1. / 3))) ** 3 == a
|
||
python | HumanEval/78 | hex_key | code_generation | [
[
"\"AB\"",
"1"
],
[
"\"1077E\"",
"2"
],
[
"\"ABED1A33\"",
"4"
],
[
"\"2020\"",
"2"
],
[
"\"123456789ABCDEF0\"",
"6"
],
[
"\"112233445566778899AABBCCDDEEFF00\"",
"12"
],
[
"[]",
"0"
]
] | null | [
[
"\"AB\"",
"1"
],
[
"\"1077E\"",
"2"
],
[
"\"ABED1A33\"",
"4"
],
[
"\"123456789ABCDEF0\"",
"6"
],
[
"\"2020\"",
"2"
]
] | [] | You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. | HumanEval | You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase. | [] |
def hex_key(num):
"""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
"""
|
def hex_key(num):
"""You have been tasked to write a function that receives
a hexadecimal number as a string and counts the number of hexadecimal
digits that are primes (prime number, or a prime, is a natural number
greater than 1 that is not a product of two smaller natural numbers).
Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
Prime numbers are 2, 3, 5, 7, 11, 13, 17,...
So you have to determine a number of the following digits: 2, 3, 5, 7,
B (=decimal 11), D (=decimal 13).
Note: you may assume the input is always correct or empty string,
and symbols A,B,C,D,E,F are always uppercase.
Examples:
For num = "AB" the output should be 1.
For num = "1077E" the output should be 2.
For num = "ABED1A33" the output should be 4.
For num = "123456789ABCDEF0" the output should be 6.
For num = "2020" the output should be 2.
"""
primes = ('2', '3', '5', '7', 'B', 'D')
total = 0
for i in range(0, len(num)):
if num[i] in primes:
total += 1
return total
|
|
python | HumanEval/79 | decimal_to_binary | code_generation | [
[
"0",
"\"db0db\""
],
[
"32",
"\"db100000db\""
],
[
"103",
"\"db1100111db\""
],
[
"15",
"\"db1111db\""
]
] | null | [
[
"15",
"\"db1111db\""
],
[
"32",
"\"db100000db\""
]
] | [] | You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. | HumanEval | You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format. | [] |
def decimal_to_binary(decimal):
"""You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
"""
|
def decimal_to_binary(decimal):
"""You will be given a number in decimal form and your task is to convert it to
binary format. The function should return a string, with each character representing a binary
number. Each character in the string will be '0' or '1'.
There will be an extra couple of characters 'db' at the beginning and at the end of the string.
The extra characters are there to help with the format.
Examples:
decimal_to_binary(15) # returns "db1111db"
decimal_to_binary(32) # returns "db100000db"
"""
return "db" + bin(decimal)[2:] + "db"
|
|
python | HumanEval/80 | is_happy | code_generation | [
[
"\"a\"",
"False"
],
[
"\"aa\"",
"False"
],
[
"\"abcd\"",
"True"
],
[
"\"aabb\"",
"False"
],
[
"\"adb\"",
"True"
],
[
"\"xyy\"",
"False"
],
[
"\"iopaxpoi\"",
"True"
],
[
"\"iopaxioi\"",
"False"
]
] | null | [
[
"a",
"False"
],
[
"aa",
"False"
],
[
"abcd",
"True"
],
[
"aabb",
"False"
],
[
"adb",
"True"
],
[
"xyy",
"False"
]
] | [] | You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct | HumanEval | You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct | [] |
def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
"""
|
def is_happy(s):
"""You are given a string s.
Your task is to check if the string is happy or not.
A string is happy if its length is at least 3 and every 3 consecutive letters are distinct
For example:
is_happy(a) => False
is_happy(aa) => False
is_happy(abcd) => True
is_happy(aabb) => False
is_happy(adb) => True
is_happy(xyy) => False
"""
if len(s) < 3:
return False
for i in range(len(s) - 2):
if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]:
return False
return True
|
|
python | HumanEval/81 | numerical_letter_grade | code_generation | [
[
"[4.0, 3, 1.7, 2, 3.5]",
"['A+', 'B', 'C-', 'C', 'A-']"
],
[
"[1.2]",
"['D+']"
],
[
"[0.5]",
"['D-']"
],
[
"[0.0]",
"['E']"
],
[
"[1, 0.3, 1.5, 2.8, 3.3]",
"['D', 'D-', 'C-', 'B', 'B+']"
],
[
"[0, 0.7]",
"['E', 'D-']"
]
] | null | [
[
"[4.0, 3, 1.7, 2, 3.5]",
"> ['A+', 'B', 'C-', 'C', 'A-']"
]
] | [] | It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E | HumanEval | It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E | [] |
def numerical_letter_grade(grades):
"""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
"""
|
def numerical_letter_grade(grades):
"""It is the last week of the semester and the teacher has to give the grades
to students. The teacher has been making her own algorithm for grading.
The only problem is, she has lost the code she used for grading.
She has given you a list of GPAs for some students and you have to write
a function that can output a list of letter grades using the following table:
GPA | Letter grade
4.0 A+
> 3.7 A
> 3.3 A-
> 3.0 B+
> 2.7 B
> 2.3 B-
> 2.0 C+
> 1.7 C
> 1.3 C-
> 1.0 D+
> 0.7 D
> 0.0 D-
0.0 E
Example:
grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-']
"""
letter_grade = []
for gpa in grades:
if gpa == 4.0:
letter_grade.append("A+")
elif gpa > 3.7:
letter_grade.append("A")
elif gpa > 3.3:
letter_grade.append("A-")
elif gpa > 3.0:
letter_grade.append("B+")
elif gpa > 2.7:
letter_grade.append("B")
elif gpa > 2.3:
letter_grade.append("B-")
elif gpa > 2.0:
letter_grade.append("C+")
elif gpa > 1.7:
letter_grade.append("C")
elif gpa > 1.3:
letter_grade.append("C-")
elif gpa > 1.0:
letter_grade.append("D+")
elif gpa > 0.7:
letter_grade.append("D")
elif gpa > 0.0:
letter_grade.append("D-")
else:
letter_grade.append("E")
return letter_grade
|
|
python | HumanEval/82 | prime_length | code_generation | [
[
"'Hello'",
"True"
],
[
"'abcdcba'",
"True"
],
[
"'kittens'",
"True"
],
[
"'orange'",
"False"
],
[
"'wow'",
"True"
],
[
"'world'",
"True"
],
[
"'MadaM'",
"True"
],
[
"'Wow'",
"True"
],
[
"''",
"False"
],
[
"'HI'",
"True"
],
[
"'go'",
"True"
],
[
"'gogo'",
"False"
],
[
"'aaaaaaaaaaaaaaa'",
"False"
],
[
"'Madam'",
"True"
],
[
"'M'",
"False"
],
[
"'0'",
"False"
]
] | null | [
[
"'Hello'",
"True"
],
[
"'abcdcba'",
"True"
],
[
"'kittens'",
"True"
],
[
"'orange'",
"False"
]
] | [] | Write a function that takes a string and returns True if the string length is a prime number or False otherwise | HumanEval | Write a function that takes a string and returns True if the string
length is a prime number or False otherwise | [] |
def prime_length(string):
"""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
"""
|
def prime_length(string):
"""Write a function that takes a string and returns True if the string
length is a prime number or False otherwise
Examples
prime_length('Hello') == True
prime_length('abcdcba') == True
prime_length('kittens') == True
prime_length('orange') == False
"""
l = len(string)
if l == 0 or l == 1:
return False
for i in range(2, l):
if l % i == 0:
return False
return True
|
|
python | HumanEval/83 | starts_one_ends | code_generation | [
[
"1",
"1"
],
[
"2",
"18"
],
[
"3",
"180"
],
[
"4",
"1800"
],
[
"5",
"18000"
]
] | null | [] | [] | Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. | HumanEval | Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1. | [] |
def starts_one_ends(n):
"""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
"""
|
def starts_one_ends(n):
"""
Given a positive integer n, return the count of the numbers of n-digit
positive integers that start or end with 1.
"""
if n == 1: return 1
return 18 * (10 ** (n - 2))
|
|
python | HumanEval/84 | solve | code_generation | [
[
"1000",
"\"1\""
],
[
"150",
"\"110\""
],
[
"147",
"\"1100\""
],
[
"333",
"\"1001\""
],
[
"963",
"\"10010\""
]
] | null | [
[
"1000",
"\"1\""
],
[
"150",
"\"110\""
],
[
"147",
"\"1100\""
]
] | [] | Given a positive integer N, return the total sum of its digits in binary. | HumanEval | Given a positive integer N, return the total sum of its digits in binary. | [] |
def solve(N):
"""Given a positive integer N, return the total sum of its digits in binary.
"""
|
def solve(N):
"""Given a positive integer N, return the total sum of its digits in binary.
Example
For N = 1000, the sum of digits will be 1 the output should be "1".
For N = 150, the sum of digits will be 6 the output should be "110".
For N = 147, the sum of digits will be 12 the output should be "1100".
Variables:
@N integer
Constraints: 0 โค N โค 10000.
Output:
a string of binary number
"""
return bin(sum(int(i) for i in str(N)))[2:]
|
|
python | HumanEval/85 | add | code_generation | [
[
"[4, 88]",
"88"
],
[
"[4, 5, 6, 7, 2, 122]",
"122"
],
[
"[4, 0, 6, 7]",
"0"
],
[
"[4, 4, 6, 8]",
"12"
]
] | null | [
[
"[4, 2, 6, 7]",
"> 2"
]
] | [] | Given a non-empty list of integers lst. add the even elements that are at odd indices.. | HumanEval | Given a non-empty list of integers lst. add the even elements that are at odd indices.. | [] |
def add(lst):
"""Given a non-empty list of integers lst. add the even elements that are at odd indices..
"""
|
def add(lst):
"""Given a non-empty list of integers lst. add the even elements that are at odd indices..
Examples:
add([4, 2, 6, 7]) ==> 2
"""
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
|
|
python | HumanEval/86 | anti_shuffle | code_generation | [
[
"'Hi'",
"'Hi'"
],
[
"'hello'",
"'ehllo'"
],
[
"'number'",
"'bemnru'"
],
[
"'abcd'",
"'abcd'"
],
[
"'Hello World!!!'",
"'Hello !!!Wdlor'"
],
[
"''",
"''"
],
[
"'Hi. My name is Mister Robot. How are you?'",
"'.Hi My aemn is Meirst .Rboot How aer ?ouy'"
]
] | null | [
[
"'Hi'",
"'Hi'"
],
[
"'hello'",
"'ehllo'"
],
[
"'Hello World!!!'",
"'Hello !!!Wdlor'"
]
] | [] | Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. | HumanEval | Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence. | [] |
def anti_shuffle(s):
"""
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
"""
|
def anti_shuffle(s):
"""
Write a function that takes a string and returns an ordered version of it.
Ordered version of string, is a string where all words (separated by space)
are replaced by a new word where all the characters arranged in
ascending order based on ascii value.
Note: You should keep the order of words and blank spaces in the sentence.
For example:
anti_shuffle('Hi') returns 'Hi'
anti_shuffle('hello') returns 'ehllo'
anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor'
"""
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
|
|
python | HumanEval/87 | get_row | code_generation | [
[
"[\n [1,2,3,4,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1",
"[(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]"
],
[
"[\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,2,3,4,5,6]\n ], 2",
"[(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)]"
],
[
"[\n [1,2,3,4,5,6],\n [1,2,3,4,5,6],\n [1,1,3,4,5,6],\n [1,2,1,4,5,6],\n [1,2,3,1,5,6],\n [1,2,3,4,1,6],\n [1,2,3,4,5,1]\n ], 1",
"[(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)]"
],
[
"[], 1",
"[]"
],
[
"[[1]], 2",
"[]"
],
[
"[[], [1], [1, 2, 3]], 3",
"[(2, 2)]"
]
] | null | [
[
"[], 1",
"[]"
],
[
"[[], [1], [1, 2, 3]], 3",
"[(2, 2)]"
]
] | [] | You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. | HumanEval | You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order. | [] |
def get_row(lst, x):
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
"""
|
def get_row(lst, x):
"""
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
get_row([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
get_row([], 1) == []
get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)]
"""
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
|
|
python | HumanEval/88 | sort_array | code_generation | [
[
"[]",
"[]"
],
[
"[5]",
"[5]"
],
[
"[2, 4, 3, 0, 1, 5]",
"[0, 1, 2, 3, 4, 5]"
],
[
"[2, 4, 3, 0, 1, 5, 6]",
"[6, 5, 4, 3, 2, 1, 0]"
],
[
"[2, 1]",
"[1, 2]"
],
[
"[15, 42, 87, 32 ,11, 0]",
"[0, 11, 15, 32, 42, 87]"
],
[
"[21, 14, 23, 11]",
"[23, 21, 14, 11]"
]
] | null | [
[
"[]",
"[]"
],
[
"[5]",
"[5]"
],
[
"[2, 4, 3, 0, 1, 5]",
"[0, 1, 2, 3, 4, 5]"
],
[
"[2, 4, 3, 0, 1, 5, 6]",
"[6, 5, 4, 3, 2, 1, 0]"
]
] | [] | Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. | HumanEval | Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array. | [] |
def sort_array(array):
"""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
"""
|
def sort_array(array):
"""
Given an array of non-negative integers, return a copy of the given array after sorting,
you will sort the given array in ascending order if the sum( first index value, last index value) is odd,
or sort it in descending order if the sum( first index value, last index value) is even.
Note:
* don't change the given array.
Examples:
* sort_array([]) => []
* sort_array([5]) => [5]
* sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5]
* sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]
"""
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
|
|
python | HumanEval/89 | encrypt | code_generation | [
[
"'hi'",
"'lm'"
],
[
"'asdfghjkl'",
"'ewhjklnop'"
],
[
"'gf'",
"'kj'"
],
[
"'et'",
"'ix'"
],
[
"'faewfawefaewg'",
"'jeiajeaijeiak'"
],
[
"'hellomyfriend'",
"'lippsqcjvmirh'"
],
[
"'dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh'",
"'hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl'"
],
[
"'a'",
"'e'"
]
] | null | [
[
"'hi'",
"'lm'"
],
[
"'asdfghjkl'",
"'ewhjklnop'"
],
[
"'gf'",
"'kj'"
],
[
"'et'",
"'ix'"
]
] | [] | Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. | HumanEval | Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places. | [] |
def encrypt(s):
"""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
"""
|
def encrypt(s):
"""Create a function encrypt that takes a string as an argument and
returns a string encrypted with the alphabet being rotated.
The alphabet should be rotated in a manner such that the letters
shift down by two multiplied to two places.
For example:
encrypt('hi') returns 'lm'
encrypt('asdfghjkl') returns 'ewhjklnop'
encrypt('gf') returns 'kj'
encrypt('et') returns 'ix'
"""
d = 'abcdefghijklmnopqrstuvwxyz'
out = ''
for c in s:
if c in d:
out += d[(d.index(c)+2*2) % 26]
else:
out += c
return out
|
|
python | HumanEval/90 | next_smallest | code_generation | [
[
"[1, 2, 3, 4, 5]",
"2"
],
[
"[5, 1, 4, 3, 2]",
"2"
],
[
"[]",
"None"
],
[
"[1, 1]",
"None"
],
[
"[1,1,1,1,0]",
"1"
],
[
"[1, 0**0]",
"None"
],
[
"[-35, 34, 12, -45]",
"-35"
]
] | null | [
[
"[1, 2, 3, 4, 5]",
"2"
],
[
"[5, 1, 4, 3, 2]",
"2"
],
[
"[]",
"None"
],
[
"[1, 1]",
"None"
]
] | [] | You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None | HumanEval | You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element. | [] |
def next_smallest(lst):
"""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
"""
|
def next_smallest(lst):
"""
You are given a list of integers.
Write a function next_smallest() that returns the 2nd smallest element of the list.
Return None if there is no such element.
next_smallest([1, 2, 3, 4, 5]) == 2
next_smallest([5, 1, 4, 3, 2]) == 2
next_smallest([]) == None
next_smallest([1, 1]) == None
"""
lst = sorted(set(lst))
return None if len(lst) < 2 else lst[1]
|
|
python | HumanEval/91 | is_bored | code_generation | [
[
"\"Hello world\"",
"0"
],
[
"\"Is the sky blue?\"",
"0"
],
[
"\"I love It !\"",
"1"
],
[
"\"bIt\"",
"0"
],
[
"\"I feel good today. I will be productive. will kill It\"",
"2"
],
[
"\"You and I are going for a walk\"",
"0"
]
] | null | [
[
"\"Hello world\"",
"0"
],
[
"\"The sky is blue. The sun is shining. I love this weather\"",
"1"
]
] | [] | You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. | HumanEval | You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'. | [] |
def is_bored(S):
"""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
"""
|
def is_bored(S):
"""
You'll be given a string of words, and your task is to count the number
of boredoms. A boredom is a sentence that starts with the word "I".
Sentences are delimited by '.', '?' or '!'.
For example:
>>> is_bored("Hello world")
0
>>> is_bored("The sky is blue. The sun is shining. I love this weather")
1
"""
import re
sentences = re.split(r'[.?!]\s*', S)
return sum(sentence[0:2] == 'I ' for sentence in sentences)
|
|
python | HumanEval/92 | any_int | code_generation | [
[
"2, 3, 1",
"True"
],
[
"2.5, 2, 3",
"False"
],
[
"1.5, 5, 3.5",
"False"
],
[
"2, 6, 2",
"False"
],
[
"4, 2, 2",
"True"
],
[
"2.2, 2.2, 2.2",
"False"
],
[
"-4, 6, 2",
"True"
],
[
"2, 1, 1",
"True"
],
[
"3, 4, 7",
"True"
],
[
"3.0, 4, 7",
"False"
]
] | null | [
[
"5, 2, 7",
"True"
],
[
"3, 2, 2",
"False"
],
[
"3, -2, 1",
"True"
],
[
"3.6, -2.2, 2",
"False"
]
] | [] | HumanEval | Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases. | [] |
def any_int(x, y, z):
'''
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
'''
|
def any_int(x, y, z):
'''
Create a function that takes 3 numbers.
Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers.
Returns false in any other cases.
Examples
any_int(5, 2, 7) โ True
any_int(3, 2, 2) โ False
any_int(3, -2, 1) โ True
any_int(3.6, -2.2, 2) โ False
'''
if isinstance(x,int) and isinstance(y,int) and isinstance(z,int):
if (x+y==z) or (x+z==y) or (y+z==x):
return True
return False
return False
|
||
python | HumanEval/93 | encode | code_generation | [
[
"'TEST'",
"'tgst'"
],
[
"'Mudasir'",
"'mWDCSKR'"
],
[
"'YES'",
"'ygs'"
],
[
"'This is a message'",
"'tHKS KS C MGSSCGG'"
],
[
"\"I DoNt KnOw WhAt tO WrItE\"",
"'k dQnT kNqW wHcT Tq wRkTg'"
]
] | null | [
[
"'test'",
"'TGST'"
],
[
"'This is a message'",
"'tHKS KS C MGSSCGG'"
]
] | [] | Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. | HumanEval | Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters. | [] |
def encode(message):
"""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
"""
|
def encode(message):
"""
Write a function that takes a message, and encodes in such a
way that it swaps case of all letters, replaces all vowels in
the message with the letter that appears 2 places ahead of that
vowel in the english alphabet.
Assume only letters.
Examples:
>>> encode('test')
'TGST'
>>> encode('This is a message')
'tHKS KS C MGSSCGG'
"""
vowels = "aeiouAEIOU"
vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
message = message.swapcase()
return ''.join([vowels_replace[i] if i in vowels else i for i in message])
|
|
python | HumanEval/94 | skjkasdkd | code_generation | [
[
"[0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]",
"10"
],
[
"[1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]",
"25"
],
[
"[1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]",
"13"
],
[
"[0,724,32,71,99,32,6,0,5,91,83,0,5,6]",
"11"
],
[
"[0,81,12,3,1,21]",
"3"
],
[
"[0,8,1,2,1,7]",
"7"
],
[
"[8191]",
"19"
],
[
"[8191, 123456, 127, 7]",
"19"
],
[
"[127, 97, 8192]",
"10"
]
] | null | [
[
"[0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]",
"10"
],
[
"[1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]",
"25"
],
[
"[1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]",
"13"
],
[
"[0,724,32,71,99,32,6,0,5,91,83,0,5,6]",
"11"
],
[
"[0,81,12,3,1,21]",
"3"
],
[
"[0,8,1,2,1,7]",
"7"
]
] | [] | You are given a list of integers. You need to find the largest prime value and return the sum of its digits. | HumanEval | You are given a list of integers.
You need to find the largest prime value and return the sum of its digits. | [] |
def skjkasdkd(lst):
"""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
"""
|
def skjkasdkd(lst):
"""You are given a list of integers.
You need to find the largest prime value and return the sum of its digits.
Examples:
For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10
For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25
For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13
For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11
For lst = [0,81,12,3,1,21] the output should be 3
For lst = [0,8,1,2,1,7] the output should be 7
"""
def isPrime(n):
for i in range(2,int(n**0.5)+1):
if n%i==0:
return False
return True
maxx = 0
i = 0
while i < len(lst):
if(lst[i] > maxx and isPrime(lst[i])):
maxx = lst[i]
i+=1
result = sum(int(digit) for digit in str(maxx))
return result
|
|
python | HumanEval/95 | check_dict_case | code_generation | [
[
"{\"p\":\"pineapple\", \"b\":\"banana\"}",
"True"
],
[
"{\"p\":\"pineapple\", \"A\":\"banana\", \"B\":\"banana\"}",
"False"
],
[
"{\"p\":\"pineapple\", 5:\"banana\", \"a\":\"apple\"}",
"False"
],
[
"{\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}",
"False"
],
[
"{\"STATE\":\"NC\", \"ZIP\":\"12345\" }",
"True"
],
[
"{\"fruit\":\"Orange\", \"taste\":\"Sweet\" }",
"True"
],
[
"{}",
"False"
]
] | null | [
[
"{\"a\":\"apple\", \"b\":\"banana\"}",
"True"
],
[
"{\"a\":\"apple\", \"A\":\"banana\", \"B\":\"banana\"}",
"True"
],
[
"{\"a\":\"apple\", 8:\"banana\", \"a\":\"apple\"}",
"False"
],
[
"{\"Name\":\"John\", \"Age\":\"36\", \"City\":\"Houston\"}",
"False"
],
[
"{\"STATE\":\"NC\", \"ZIP\":\"12345\" }",
"True"
]
] | [] | Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. | HumanEval | Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty. | [] |
def check_dict_case(dict):
"""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
"""
|
def check_dict_case(dict):
"""
Given a dictionary, return True if all keys are strings in lower
case or all keys are strings in upper case, else return False.
The function should return False is the given dictionary is empty.
Examples:
check_dict_case({"a":"apple", "b":"banana"}) should return True.
check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False.
check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False.
check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False.
check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True.
"""
if len(dict.keys()) == 0:
return False
else:
state = "start"
for key in dict.keys():
if isinstance(key, str) == False:
state = "mixed"
break
if state == "start":
if key.isupper():
state = "upper"
elif key.islower():
state = "lower"
else:
break
elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()):
state = "mixed"
break
else:
break
return state == "upper" or state == "lower"
|
|
python | HumanEval/96 | count_up_to | code_generation | [
[
"5",
"[2,3]"
],
[
"6",
"[2,3,5]"
],
[
"7",
"[2,3,5]"
],
[
"10",
"[2,3,5,7]"
],
[
"0",
"[]"
],
[
"22",
"[2,3,5,7,11,13,17,19]"
],
[
"1",
"[]"
],
[
"18",
"[2,3,5,7,11,13,17]"
],
[
"47",
"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]"
],
[
"101",
"[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]"
]
] | null | [
[
"5",
"[2,3]"
],
[
"11",
"[2,3,5,7]"
],
[
"0",
"[]"
],
[
"20",
"[2,3,5,7,11,13,17,19]"
],
[
"1",
"[]"
],
[
"18",
"[2,3,5,7,11,13,17]"
]
] | [] | Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. | HumanEval | Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n. | [] |
def count_up_to(n):
"""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
"""
|
def count_up_to(n):
"""Implement a function that takes an non-negative integer and returns an array of the first n
integers that are prime numbers and less than n.
for example:
count_up_to(5) => [2,3]
count_up_to(11) => [2,3,5,7]
count_up_to(0) => []
count_up_to(20) => [2,3,5,7,11,13,17,19]
count_up_to(1) => []
count_up_to(18) => [2,3,5,7,11,13,17]
"""
primes = []
for i in range(2, n):
is_prime = True
for j in range(2, i):
if i % j == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
|
|
python | HumanEval/97 | multiply | code_generation | [
[
"148, 412",
"16"
],
[
"19, 28",
"72"
],
[
"2020, 1851",
"0"
],
[
"14, -15",
"20"
],
[
"76, 67",
"42"
],
[
"17, 27",
"49"
],
[
"0, 1",
"0"
],
[
"0, 0",
"0"
]
] | null | [
[
"148, 412",
"16"
],
[
"19, 28",
"72"
],
[
"2020, 1851",
"0"
],
[
"14, -15",
"20"
]
] | [] | Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. | HumanEval | Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid. | [] |
def multiply(a, b):
"""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
"""
|
def multiply(a, b):
"""Complete the function that takes two integers and returns
the product of their unit digits.
Assume the input is always valid.
Examples:
multiply(148, 412) should return 16.
multiply(19, 28) should return 72.
multiply(2020, 1851) should return 0.
multiply(14,-15) should return 20.
"""
return abs(a % 10) * abs(b % 10)
|
|
python | HumanEval/98 | count_upper | code_generation | [
[
"'aBCdEf'",
"1"
],
[
"'abcdefg'",
"0"
],
[
"'dBBE'",
"0"
],
[
"'B'",
"0"
],
[
"'U'",
"1"
],
[
"''",
"0"
],
[
"'EEEE'",
"2"
]
] | null | [
[
"'aBCdEf'",
"1"
],
[
"'abcdefg'",
"0"
],
[
"'dBBE'",
"0"
]
] | [] | Given a string s, count the number of uppercase vowels in even indices. | HumanEval | Given a string s, count the number of uppercase vowels in even indices. | [] |
def count_upper(s):
"""
Given a string s, count the number of uppercase vowels in even indices.
"""
|
def count_upper(s):
"""
Given a string s, count the number of uppercase vowels in even indices.
For example:
count_upper('aBCdEf') returns 1
count_upper('abcdefg') returns 0
count_upper('dBBE') returns 0
"""
count = 0
for i in range(0,len(s),2):
if s[i] in "AEIOU":
count += 1
return count
|
|
python | HumanEval/99 | closest_integer | code_generation | [
[
"\"10\"",
"10"
],
[
"\"14.5\"",
"15"
],
[
"\"-15.5\"",
"-16"
],
[
"\"15.3\"",
"15"
],
[
"\"0\"",
"0"
]
] | null | [
[
"\"10\"",
"10"
],
[
"\"15.3\"",
"15"
]
] | [] | HumanEval | Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero. | [] |
def closest_integer(value):
'''
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
'''
|
def closest_integer(value):
'''
Create a function that takes a value (string) representing a number
and returns the closest integer to it. If the number is equidistant
from two integers, round it away from zero.
Examples
>>> closest_integer("10")
10
>>> closest_integer("15.3")
15
Note:
Rounding away from zero means that if the given number is equidistant
from two integers, the one you should return is the one that is the
farthest from zero. For example closest_integer("14.5") should
return 15 and closest_integer("-14.5") should return -15.
'''
from math import floor, ceil
if value.count('.') == 1:
# remove trailing zeros
while (value[-1] == '0'):
value = value[:-1]
num = float(value)
if value[-2:] == '.5':
if num > 0:
res = ceil(num)
else:
res = floor(num)
elif len(value) > 0:
res = int(round(num))
else:
res = 0
return res
|
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 189