Dataset Viewer
Auto-converted to Parquet
index
int64
3
1.47M
label
stringclasses
24 values
file
stringclasses
2 values
639,667
BENIGN
finetune_train_A.csv
174,317
BENIGN
finetune_train_A.csv
959,922
BENIGN
finetune_train_A.csv
712,711
BENIGN
finetune_train_A.csv
574,013
BENIGN
finetune_train_A.csv
898,789
BENIGN
finetune_train_A.csv
773,566
BENIGN
finetune_train_A.csv
699,738
BENIGN
finetune_train_A.csv
918,728
BENIGN
finetune_train_A.csv
370,805
BENIGN
finetune_train_A.csv
98,400
BENIGN
finetune_train_A.csv
333,993
BENIGN
finetune_train_A.csv
237,385
BENIGN
finetune_train_A.csv
292,629
BENIGN
finetune_train_A.csv
1,032,933
BENIGN
finetune_train_A.csv
1,321,730
BENIGN
finetune_train_A.csv
160,944
BENIGN
finetune_train_A.csv
626,390
BENIGN
finetune_train_A.csv
478,442
BENIGN
finetune_train_A.csv
1,202,266
BENIGN
finetune_train_A.csv
151,002
BENIGN
finetune_train_A.csv
57,024
BENIGN
finetune_train_A.csv
481,574
BENIGN
finetune_train_A.csv
1,465,226
BENIGN
finetune_train_A.csv
879,442
BENIGN
finetune_train_A.csv
496,825
BENIGN
finetune_train_A.csv
1,344,387
BENIGN
finetune_train_A.csv
831,425
BENIGN
finetune_train_A.csv
172,687
BENIGN
finetune_train_A.csv
1,243,340
BENIGN
finetune_train_A.csv
1,379,831
BENIGN
finetune_train_A.csv
1,299,703
BENIGN
finetune_train_A.csv
1,206,298
BENIGN
finetune_train_A.csv
784,892
BENIGN
finetune_train_A.csv
1,362,122
BENIGN
finetune_train_A.csv
1,083,398
BENIGN
finetune_train_A.csv
490,051
BENIGN
finetune_train_A.csv
704,898
BENIGN
finetune_train_A.csv
582,964
BENIGN
finetune_train_A.csv
825,625
BENIGN
finetune_train_A.csv
614,179
BENIGN
finetune_train_A.csv
315,575
BENIGN
finetune_train_A.csv
1,257,817
BENIGN
finetune_train_A.csv
1,336,075
BENIGN
finetune_train_A.csv
1,318,596
BENIGN
finetune_train_A.csv
843,442
BENIGN
finetune_train_A.csv
476,304
BENIGN
finetune_train_A.csv
644,563
BENIGN
finetune_train_A.csv
863,869
BENIGN
finetune_train_A.csv
731,437
BENIGN
finetune_train_A.csv
549,017
BENIGN
finetune_train_A.csv
624,618
BENIGN
finetune_train_A.csv
1,102,761
BENIGN
finetune_train_A.csv
61,459
BENIGN
finetune_train_A.csv
320,568
BENIGN
finetune_train_A.csv
942,605
BENIGN
finetune_train_A.csv
1,067,154
BENIGN
finetune_train_A.csv
1,374,922
BENIGN
finetune_train_A.csv
427,092
BENIGN
finetune_train_A.csv
237,987
BENIGN
finetune_train_A.csv
236,097
BENIGN
finetune_train_A.csv
217,259
BENIGN
finetune_train_A.csv
1,429,729
BENIGN
finetune_train_A.csv
638,762
BENIGN
finetune_train_A.csv
1,385,927
BENIGN
finetune_train_A.csv
252,902
BENIGN
finetune_train_A.csv
180,297
BENIGN
finetune_train_A.csv
535,960
BENIGN
finetune_train_A.csv
685,602
BENIGN
finetune_train_A.csv
1,253,480
BENIGN
finetune_train_A.csv
1,325,316
BENIGN
finetune_train_A.csv
111,767
BENIGN
finetune_train_A.csv
522,375
BENIGN
finetune_train_A.csv
16,982
BENIGN
finetune_train_A.csv
475,113
BENIGN
finetune_train_A.csv
666,954
BENIGN
finetune_train_A.csv
681,403
BENIGN
finetune_train_A.csv
591,421
BENIGN
finetune_train_A.csv
1,228,429
BENIGN
finetune_train_A.csv
414,373
BENIGN
finetune_train_A.csv
1,377,129
BENIGN
finetune_train_A.csv
794,936
BENIGN
finetune_train_A.csv
1,269,721
BENIGN
finetune_train_A.csv
981,503
BENIGN
finetune_train_A.csv
624,272
BENIGN
finetune_train_A.csv
338,556
BENIGN
finetune_train_A.csv
1,404,144
BENIGN
finetune_train_A.csv
1,253,495
BENIGN
finetune_train_A.csv
258,590
BENIGN
finetune_train_A.csv
119,968
BENIGN
finetune_train_A.csv
646,932
BENIGN
finetune_train_A.csv
1,437,127
BENIGN
finetune_train_A.csv
457,176
BENIGN
finetune_train_A.csv
277,487
BENIGN
finetune_train_A.csv
1,183,952
BENIGN
finetune_train_A.csv
182,925
BENIGN
finetune_train_A.csv
1,088,511
BENIGN
finetune_train_A.csv
1,352,155
BENIGN
finetune_train_A.csv
1,127,122
BENIGN
finetune_train_A.csv
529,720
BENIGN
finetune_train_A.csv
End of preview. Expand in Data Studio

Network Traffic Embeddings Dataset

Model Description

This dataset contains embeddings generated from the CICIDS2017 network traffic dataset using a fine-tuned Meta-Llama-3.1-70B-Instruct model. The embeddings represent network traffic flows formatted in a structured way to capture key network traffic characteristics.

Structure of Embeddings Files

combined.npy

The combined.npy file contains a NumPy array of shape (N, D) where:

  • N is the total number of samples across all processed weekday files
  • D is the embedding dimension (determined by the Llama model's hidden size)

This file stores the raw embedding vectors in a dense format for efficient loading and processing. Each row represents the embedding for a single network traffic flow.

combined.csv

The combined.csv file contains metadata for each embedding in the corresponding combined.npy file. The CSV has the following columns:

  • index: The original index of the sample in its source dataset file
  • label: The classification label of the traffic flow (BENIGN or specific attack type)
  • file: The source file name (e.g., 'Monday.csv', 'Tuesday.csv', etc.)

The rows in this CSV file directly correspond to the embeddings in the .npy file, maintaining the same order.

Data Processing

The embeddings were generated by:

  1. Processing network flow data from five weekday files of the CICIDS2017 dataset (Monday through Friday)

  2. Sampling up to 25,000 benign samples and 25,000 malicious samples from each day (with the exception of Monday which contains only benign traffic)

  3. Formatting each network flow as structured text with the following fields:

    • Source IP and Port
    • Destination IP and Port
    • Protocol
    • Traffic Volume (bytes in both directions)
    • Packet counts
    • TCP Flag information
    • Flow Duration
  4. Extracting embeddings using a fine-tuned Meta-Llama-3.1-70B-Instruct model

  5. Using mean pooling over all tokens (excluding padding) to create a fixed-size embedding for each flow

Usage Information

These embeddings can be loaded and used in Python as follows:

import numpy as np
import pandas as pd

# Load the embeddings
embeddings = np.load('combined.npy')

# Load the metadata
metadata = pd.read_csv('combined.csv')

# Example: Get all embeddings for benign traffic
benign_indices = metadata[metadata['label'].str.upper() == 'BENIGN'].index
benign_embeddings = embeddings[benign_indices]

# Example: Get embeddings for a specific attack type
attack_indices = metadata[metadata['label'] == 'DoS Hulk'].index
attack_embeddings = embeddings[attack_indices]

# Example: Get embeddings from a specific day
wednesday_indices = metadata[metadata['file'] == 'Wednesday.csv'].index
wednesday_embeddings = embeddings[wednesday_indices]

Model Information

  • Base Model: Meta-Llama-3.1-70B-Instruct
  • Fine-tuned Model Path: cicids_finetuned/checkpoint-585/
  • Embedding Extraction: Last layer hidden states with mean pooling
  • Embedding Dimension: [Dimension size determined by model]

Limitations

These embeddings were created from a specific dataset (CICIDS2017) and may not generalize to all network environments or to newer attack types that were not present in the original dataset.

Downloads last month
44