Datasets:

Modalities:
Image
ArXiv:
License:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
label
class label
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
00_real
End of preview.

Is Artificial Intelligence Generated Image Detection a Solved Problem?

Ziqiang Li1, Jiazhen Yan1, Ziwen He1, Kai Zeng2, Weiwei Jiang1, Lizhi Xiong1, Zhangjie Fu1‡

Corresponding author

1Nanjing University of Information Science and Technology 2University of Siena

This repository is the official dataset of the AIGIBench.

AIGIBench dataset contains two types of training and 25 test subsets. This dataset has the following advantages:

  • Comprehensive generate types: including GAN-based Noise-to-Image Generation, Diffusion for Text-to-Image Generation, GANs for Deepfake, Diffusion for Personalized Generation, and Open-source Platforms.
  • State-of-the-art Generators: MidjourneyV6, Stable Diffusion 3, Imagen, DALLE3, InstantID, FaceSwap, StyleGAN-XL and so on.
  • Completely unknown generation method: Crawl pictures from communities and social media to build datasets CommunityAI & SocialRF, making detection more challenging.

image/png

If this project helps you, please fork, watch, and give a star to this repository.

📚Dataset

Each folder contains compressed files. After unzip the file, files under the data root directory can be organized as follows.

Train

AIGIBench introduces two training dataset settings: (i) Setting-I: Training on 144K images generated by ProGAN across four object categories—car, cat, chair, and horse. (ii) Setting-II: Training on 144K images generated by both SD-v1.4 and ProGAN, covering the same four object categories. The data of ProGAN comes from ForenSynths, and the data of sdv1.4 comes from GenImage. In order to maintain the fairness of the training data, we randomly select the sdv1.4 training images of GenImage to keep the same number as ProGAN, and then merge the data. The file directory is as follows:

├── train
│   ├── car
│   │   ├── 0_real
│   │   ├── 1_fake
│   ├── cat
│   │   ├── ...
│   ├── chair
│   │   ├── ...
│   ├── horse
│   │   ├── ...
│   ├── sdv1.4
│   │   ├── 0_real
│   │   ├── 1_fake
├── val
│   ├── ...
│   │   ├── 0_real
│   │   ├── 1_fake
│   │   ...

Test

AIGIBench comprehensively tests the performance of the detector and builds a test dataset from five perspectives: GAN-based Noise-to-Image Generation, Diffusion for Text-to-Image Generation, GANs for Deepfake, Diffusion for Personalized Generation, and Open-source Platforms. The file directory is as follows:

├── test
│   ├── ProGAN
│   │   ├── 0_real
│   │   ├── 1_fake
│   ├── R3GAN
│   │   ├── ...
│   │   ...
│   ├── BlendFace
│   │   ├── 0_real
│   │   ├── 1_fake
│   ├── InSwap
│   │   ├── ...
│   │   ...
│   ├── FLUX1-dev
│   │   ├── 0_real
│   │   ├── 1_fake
│   ├── Midjourney-V6
│   │   ├── ...
│   │   ...
│   ├── BLIP
│   │   ├── 0_real
│   │   ├── 1_fake
│   ├── Infinite-ID
│   │   ├── ...
│   │   ...
│   ├── CommunityAI
│   │   ├── 0_real
│   │   ├── 1_fake
│   ├── SocialRF
│   │   ├── ...

Citation

@article{li2025artificial,
  title={Is Artificial Intelligence Generated Image Detection a Solved Problem?},
  author={Li, Ziqiang and Yan, Jiazhen and He, Ziwen and Zeng, Kai and Jiang, Weiwei and Xiong, Lizhi and Fu, Zhangjie},
  journal={arXiv preprint arXiv:2505.12335},
  year={2025}
}

Contact

If you have any question about this project, please feel free to contact [email protected]

Downloads last month
212

Models trained or fine-tuned on HorizonTEL/AIGIBench