Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
parquet
Sub-tasks:
multi-class-image-classification
Languages:
English
Size:
1M - 10M
ArXiv:
License:
for PyTorch
#28
by
Ejafa
- opened
Extract with progress and reorganize into train/<class> and val/<class>.
#!/usr/bin/env bash
set -e
mkdir -p ../train ../val
for f in train_images_*.tar.gz; do
echo "Extracting $f → ../train"
pv "$f" | tar -xz -C ../train
done
echo "Extracting val_images.tar.gz → ../val"
pv val_images.tar.gz | tar -xz -C ../val
echo "Done."
#!/usr/bin/env python3
import os, shutil, argparse
from tqdm import tqdm
from classes import IMAGENET2012_CLASSES
def organize_split(split_dir, class_ids):
for cls in class_ids:
os.makedirs(os.path.join(split_dir, cls), exist_ok=True)
files = [f for f in os.listdir(split_dir) if os.path.isfile(os.path.join(split_dir, f))]
for fname in tqdm(files, desc=f"Organizing {os.path.basename(split_dir)}", unit="file"):
ext = os.path.splitext(fname)[1]
matched = next((cls for cls in class_ids
if fname.startswith(f"{cls}_") or fname.endswith(f"_{cls}{ext}")), None)
if not matched:
tqdm.write(f"[WARN] skipping {fname}")
continue
shutil.move(os.path.join(split_dir, fname),
os.path.join(split_dir, matched, fname))
def main():
p = argparse.ArgumentParser()
p.add_argument("-d", "--data-dir", required=True)
args = p.parse_args()
class_ids = list(IMAGENET2012_CLASSES.keys())
for split in ("train", "val"):
organize_split(os.path.join(args.data_dir, split), class_ids)
if __name__ == "__main__":
main()
Usage:
./extract.sh # from imagenet/data
python organize_imagenet.py --data-dir ../imagenet