Dataset Viewer
Auto-converted to Parquet
task_id
stringclasses
10 values
prompt
stringclasses
10 values
canonical_solution
stringclasses
10 values
test
stringclasses
10 values
entry_point
stringclasses
10 values
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False
has_close_elements
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [ '(()())', '((()))', '()', '((())()())' ] assert candidate('() (()) ((())) (((())))') == [ '()', '(())', '((()))', '(((())))' ] assert candidate('(()(())((())))') == [ '(()(())((())))' ] assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']
separate_paren_groups
HumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
return number % 1.0
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3.5) == 0.5 assert abs(candidate(1.33) - 0.33) < 1e-6 assert abs(candidate(123.456) - 0.456) < 1e-6
truncate_number
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
balance = 0 for op in operations: balance += op if balance < 0: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == False assert candidate([1, 2, -3, 1, 2, -3]) == False assert candidate([1, 2, -4, 5, 6]) == True assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True
below_zero
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6
mean_absolute_deviation
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 7) == [] assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2] assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]
intersperse
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3] assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4] assert candidate('(()(())((())))') == [4]
parse_nested_parens
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
return [x for x in strings if substring in x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 'john') == [] assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'] assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'] assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']
filter_by_substring
HumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == (0, 1) assert candidate([1, 1, 1]) == (3, 1) assert candidate([100, 0]) == (100, 0) assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7) assert candidate([10]) == (10, 10)
sum_product
HumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4] assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]
rolling_max
README.md exists but content is empty.
Downloads last month
10