Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
Timestamp
timestamp[ns, tz=+09:00]
DcDiffAvg
int64
695k
801k
2024-10-31T19:13:46.454000
780,472
2024-10-31T19:13:46.584000
783,309
2024-10-31T19:13:46.693000
785,026
2024-10-31T19:13:46.803000
786,223
2024-10-31T19:13:46.913000
787,620
2024-10-31T19:13:47.022000
789,378
2024-10-31T19:13:47.130000
791,095
2024-10-31T19:13:47.240000
792,853
2024-10-31T19:13:47.350000
794,250
2024-10-31T19:13:47.460000
795,808
2024-10-31T19:13:47.569000
697,485
2024-10-31T19:13:47.678000
699,122
2024-10-31T19:13:47.788000
700,640
2024-10-31T19:13:47.897000
701,797
2024-10-31T19:13:48.005000
703,155
2024-10-31T19:13:48.115000
705,512
2024-10-31T19:13:48.224000
706,709
2024-10-31T19:13:48.332000
708,426
2024-10-31T19:13:48.444000
710,304
2024-10-31T19:13:48.553000
711,941
2024-10-31T19:13:48.662000
713,059
2024-10-31T19:13:48.772000
715,016
2024-10-31T19:13:48.881000
716,534
2024-10-31T19:13:48.990000
717,771
2024-10-31T19:13:49.100000
719,769
2024-10-31T19:13:49.209000
721,325
2024-10-31T19:13:49.318000
722,603
2024-10-31T19:13:49.429000
724,000
2024-10-31T19:13:49.537000
725,918
2024-10-31T19:13:49.646000
727,475
2024-10-31T19:13:49.756000
729,233
2024-10-31T19:13:49.866000
730,950
2024-10-31T19:13:49.975000
732,148
2024-10-31T19:13:50.084000
733,945
2024-10-31T19:13:50.193000
735,263
2024-10-31T19:13:50.303000
737,059
2024-10-31T19:13:50.412000
738,977
2024-10-31T19:13:50.522000
740,214
2024-10-31T19:13:50.632000
741,812
2024-10-31T19:13:50.741000
743,209
2024-10-31T19:13:50.850000
744,967
2024-10-31T19:13:50.960000
746,684
2024-10-31T19:13:51.068000
748,122
2024-10-31T19:13:51.179000
749,919
2024-10-31T19:13:51.288000
751,516
2024-10-31T19:13:51.397000
752,993
2024-10-31T19:13:51.506000
754,671
2024-10-31T19:13:51.615000
756,068
2024-10-31T19:13:51.725000
757,826
2024-10-31T19:13:51.834000
759,503
2024-10-31T19:13:51.944000
760,941
2024-10-31T19:13:52.051000
762,658
2024-10-31T19:13:52.161000
764,176
2024-10-31T19:13:52.271000
765,733
2024-10-31T19:13:52.380000
767,330
2024-10-31T19:13:52.490000
768,567
2024-10-31T19:13:52.600000
770,605
2024-10-31T19:13:52.709000
771,722
2024-10-31T19:13:52.821000
773,120
2024-10-31T19:13:52.932000
775,437
2024-10-31T19:13:53.042000
776,515
2024-10-31T19:13:53.153000
778,512
2024-10-31T19:13:53.261000
779,590
2024-10-31T19:13:53.372000
781,746
2024-10-31T19:13:53.482000
783,384
2024-10-31T19:13:53.606000
785,221
2024-10-31T19:13:53.716000
786,938
2024-10-31T19:13:53.842000
788,256
2024-10-31T19:13:53.968000
790,332
2024-10-31T19:13:54.092000
795,689
2024-10-31T19:13:54.203000
793,407
2024-10-31T19:13:54.313000
795,124
2024-10-31T19:13:54.423000
796,402
2024-10-31T19:13:54.533000
698,079
2024-10-31T19:13:54.644000
699,516
2024-10-31T19:13:54.754000
700,674
2024-10-31T19:13:54.865000
703,031
2024-10-31T19:13:54.975000
704,269
2024-10-31T19:13:55.083000
705,986
2024-10-31T19:13:55.190000
707,664
2024-10-31T19:13:55.302000
709,140
2024-10-31T19:13:55.412000
710,618
2024-10-31T19:13:55.523000
712,296
2024-10-31T19:13:55.633000
713,693
2024-10-31T19:13:55.740000
715,371
2024-10-31T19:13:55.849000
716,448
2024-10-31T19:13:55.960000
718,845
2024-10-31T19:13:56.068000
720,243
2024-10-31T19:13:56.178000
721,679
2024-10-31T19:13:56.289000
723,317
2024-10-31T19:13:56.396000
724,915
2024-10-31T19:13:56.506000
726,712
2024-10-31T19:13:56.615000
728,069
2024-10-31T19:13:56.726000
729,947
2024-10-31T19:13:56.835000
731,624
2024-10-31T19:13:56.947000
733,182
2024-10-31T19:13:57.056000
735,099
2024-10-31T19:13:57.165000
736,256
2024-10-31T19:13:57.276000
739,853
2024-10-31T19:13:57.384000
739,571
End of preview. Expand in Data Studio

Dataset Card for Dataset Name

This dataset card aims to train an LSTM autoencoder model to detect anomalies of DC diff statistics calculated by the WMX Ethercat master.

Dataset Details

The data frame has two columns consisting of "Timestamp" and "DcDiffAvg".

Every cycle is done, the average time interval to the next DC clock for each cycle is cacluated in ns, and this value shows a peculiar sawtooth pattern as follows. Using this dataset the autoencoder model can be trained to detect anomalies in case of unstable communication between the master(Main device) and sub-devices.

For detail information and source code, find the following link. https://github.com/kyoungje/WMXAnomalyDetection/tree/main

Dataset Description

Uses

Add Github notebook link

Downloads last month
7