
JunweiZheng/OPS
Image Segmentation
•
Updated
image
imagewidth (px) 1.02k
1.02k
| label
class label 2
classes |
---|---|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
|
0rgb
|
This dataset originates from Matterport3D, propcessed by 360BEV and is used by our ECCV'24 paper OPS.
If you're interested in my research topics, feel free to check my homepage for more findings!
If you're interested in this dataset, please cite the following paper:
@article{Matterport3D,
title={Matterport3D: Learning from RGB-D Data in Indoor Environments},
author={Chang, Angel and Dai, Angela and Funkhouser, Thomas and Halber, Maciej and Niessner, Matthias and Savva, Manolis and Song, Shuran and Zeng, Andy and Zhang, Yinda},
journal={International Conference on 3D Vision (3DV)},
year={2017}
}