Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

NanoKnow FineWeb-Edu Lucene Index

A pre-built Lucene BM25 index over karpathy/fineweb-edu-100b-shuffle—the exact pre-training corpus used by the nanochat family of language models. Built with Anserini.

This index is part of the NanoKnow project: github.com/castorini/NanoKnow

Index Details

Property Value
Corpus karpathy/fineweb-edu-100b-shuffle
Documents 97,230,848
Index Size ~326 GB
Index Type Lucene (BM25)
Built With Anserini / Pyserini
Files 1,639 Lucene segment files

Document ID Format

Each document has a unique ID: shard_XXXXX_YYYYY

  • XXXXX: zero-padded shard number (0-1822)
  • YYYYY: row offset within the parquet shard

For example, shard_00151_20323 refers to row 20,323 in shard 151 of the FineWeb-Edu parquet files.

Usage

Download

huggingface-cli download LingweiGu/NanoKnow-Fineweb-Edu-Index --repo-type dataset --local-dir ./fineweb-edu-index

Search with Pyserini

from pyserini.search.lucene import LuceneSearcher

searcher = LuceneSearcher("./fineweb-edu-index")
print(f"Index contains {searcher.num_docs:,} documents")

hits = searcher.search("What is the capital of France?", k=10)
for hit in hits:
    print(f"{hit.docid}: {hit.score:.4f}")

Retrieve Document Text

import json

doc = searcher.doc("shard_00151_20323")
text = json.loads(doc.raw())["contents"]
print(text[:500])

Part of NanoKnow

This index powers the NanoKnow pipeline, which projects QA benchmarks onto pre-training corpora to study parametric knowledge vs. RAG. See the NanoKnow repository for:

  • Pre-built qrels mapping SQuAD and NQ questions to FineWeb-Edu documents
  • Scripts to project new benchmarks onto this index
  • Scripts to evaluate nanochat checkpoints on in-corpus vs. out-of-corpus questions

Citation

@inproceedings{gu2026nanoknow,
  title={Projecting QA Datasets to FineWeb},
  author={Gu, Lingwei and Jedidi, Nour and Lin, Jimmy},
  booktitle={Proceedings of SIGIR},
  year={2026}
}

License

Apache 2.0

Downloads last month
35