The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
NanoKnow FineWeb-Edu Lucene Index
A pre-built Lucene BM25 index over karpathy/fineweb-edu-100b-shuffle—the exact pre-training corpus used by the nanochat family of language models. Built with Anserini.
This index is part of the NanoKnow project: github.com/castorini/NanoKnow
Index Details
| Property | Value |
|---|---|
| Corpus | karpathy/fineweb-edu-100b-shuffle |
| Documents | 97,230,848 |
| Index Size | ~326 GB |
| Index Type | Lucene (BM25) |
| Built With | Anserini / Pyserini |
| Files | 1,639 Lucene segment files |
Document ID Format
Each document has a unique ID: shard_XXXXX_YYYYY
XXXXX: zero-padded shard number (0-1822)YYYYY: row offset within the parquet shard
For example, shard_00151_20323 refers to row 20,323 in shard 151 of the FineWeb-Edu parquet files.
Usage
Download
huggingface-cli download LingweiGu/NanoKnow-Fineweb-Edu-Index --repo-type dataset --local-dir ./fineweb-edu-index
Search with Pyserini
from pyserini.search.lucene import LuceneSearcher
searcher = LuceneSearcher("./fineweb-edu-index")
print(f"Index contains {searcher.num_docs:,} documents")
hits = searcher.search("What is the capital of France?", k=10)
for hit in hits:
print(f"{hit.docid}: {hit.score:.4f}")
Retrieve Document Text
import json
doc = searcher.doc("shard_00151_20323")
text = json.loads(doc.raw())["contents"]
print(text[:500])
Part of NanoKnow
This index powers the NanoKnow pipeline, which projects QA benchmarks onto pre-training corpora to study parametric knowledge vs. RAG. See the NanoKnow repository for:
- Pre-built qrels mapping SQuAD and NQ questions to FineWeb-Edu documents
- Scripts to project new benchmarks onto this index
- Scripts to evaluate nanochat checkpoints on in-corpus vs. out-of-corpus questions
Citation
@inproceedings{gu2026nanoknow,
title={Projecting QA Datasets to FineWeb},
author={Gu, Lingwei and Jedidi, Nour and Lin, Jimmy},
booktitle={Proceedings of SIGIR},
year={2026}
}
License
Apache 2.0
- Downloads last month
- 35