Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
8
corpus-id
stringlengths
4
9
score
stringclasses
1 value
test0
doc0
1
test0
doc1
1
test1
doc6
1
test2
doc10
1
test3
doc17
1
test3
doc18
1
test4
doc42
1
test5
doc50
1
test6
doc59
1
test6
doc63
1
test7
doc67
1
test8
doc86
1
test9
doc91
1
test10
doc118
1
test11
doc136
1
test12
doc153
1
test13
doc172
1
test14
doc293
1
test15
doc302
1
test16
doc305
1
test17
doc449
1
test17
doc450
1
test18
doc514
1
test19
doc565
1
test19
doc579
1
test20
doc618
1
test21
doc635
1
test22
doc649
1
test23
doc653
1
test24
doc658
1
test25
doc698
1
test25
doc703
1
test26
doc724
1
test27
doc763
1
test28
doc787
1
test28
doc789
1
test29
doc807
1
test30
doc820
1
test30
doc824
1
test31
doc897
1
test32
doc908
1
test32
doc916
1
test33
doc921
1
test34
doc967
1
test35
doc972
1
test36
doc1010
1
test37
doc1016
1
test38
doc1026
1
test39
doc1042
1
test40
doc1070
1
test40
doc1071
1
test41
doc1100
1
test42
doc1118
1
test43
doc1154
1
test44
doc1164
1
test45
doc1187
1
test46
doc1193
1
test47
doc1215
1
test48
doc1229
1
test48
doc1239
1
test49
doc1260
1
test50
doc1404
1
test50
doc1405
1
test50
doc1407
1
test51
doc1420
1
test52
doc1432
1
test53
doc1448
1
test54
doc1468
1
test54
doc1474
1
test55
doc1486
1
test56
doc1490
1
test56
doc1541
1
test57
doc1580
1
test58
doc1599
1
test59
doc1617
1
test60
doc1631
1
test61
doc1679
1
test61
doc1684
1
test62
doc1729
1
test63
doc1744
1
test64
doc1754
1
test65
doc1771
1
test65
doc1774
1
test65
doc1782
1
test66
doc1824
1
test67
doc1927
1
test68
doc2000
1
test69
doc2030
1
test70
doc2107
1
test71
doc2127
1
test72
doc2134
1
test73
doc2151
1
test74
doc2254
1
test75
doc2262
1
test76
doc2274
1
test77
doc2319
1
test78
doc2339
1
test79
doc2368
1
test80
doc2404
1
test81
doc2479
1
End of preview. Expand in Data Studio

Dataset Summary

NQ-Fa is a Persian (Farsi) dataset created for the Retrieval task, specifically targeting open-domain question answering. It is a translated version of the original English Natural Questions (NQ) dataset and a central component of the FaMTEB (Farsi Massive Text Embedding Benchmark), as part of the BEIR-Fa collection.

  • Language(s): Persian (Farsi)
  • Task(s): Retrieval (Question Answering)
  • Source: Translated from English NQ using Google Translate
  • Part of FaMTEB: Yes — under BEIR-Fa

Supported Tasks and Leaderboards

This dataset evaluates how well text embedding models can retrieve relevant answer passages from Persian Wikipedia in response to natural language questions, originally issued to Google Search. Results are benchmarked on the Persian MTEB Leaderboard on Hugging Face Spaces (language filter: Persian).

Construction

The construction process included:

  • Starting with the Natural Questions (NQ) English dataset, containing real user search queries
  • Using the Google Translate API to translate both questions and annotated Wikipedia passages into Persian
  • Retaining original query-passage mapping structure for retrieval evaluation

As described in the FaMTEB paper, all BEIR-Fa datasets (including NQ-Fa) underwent:

  • BM25 retrieval comparison between English and Persian
  • LLM-based translation quality check using the GEMBA-DA framework

These evaluations confirmed a high level of translation quality.

Data Splits

Defined in the FaMTEB paper (Table 5):

  • Train: 0 samples
  • Dev: 0 samples
  • Test: 2,685,669 samples

Total: ~2.69 million examples (according to metadata)

Downloads last month
17