|
--- |
|
dataset_info: |
|
features: |
|
- name: query |
|
dtype: string |
|
- name: positive |
|
dtype: string |
|
- name: negative |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 719317257 |
|
num_examples: 362146 |
|
download_size: 184143892 |
|
dataset_size: 719317257 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
license: apache-2.0 |
|
task_categories: |
|
- sentence-similarity |
|
- feature-extraction |
|
language: |
|
- ar |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# Arabic Mr. TyDi in Triplet Format |
|
|
|
## Dataset Summary |
|
|
|
This dataset is a transformed version of the Arabic subset of the [Mr. TyDi dataset](https://huggingface.co/datasets/castorini/mr-tydi), designed specifically for training retrieval and re-ranking models. Each query is paired with a positive passage and one of the multiple negative passages in a triplet format: `(query, positive, negative)`. This restructuring resulted in a total of 362,000 rows, making it ideal for pairwise ranking tasks and contrastive learning approaches. |
|
|
|
The dataset maintains the original purpose of Mr. TyDi for monolingual retrieval, while offering a simplified and scalable format for learning-to-rank tasks. |
|
|
|
## Dataset Structure |
|
|
|
The dataset includes a train split, presented in the triplet format with the following fields: |
|
|
|
- `query`: The query string. |
|
- `positive`: The relevant passage for the query. |
|
- `negative`: A non-relevant passage for the query. |
|
|
|
### Example Data |
|
|
|
#### Triplet Format |
|
|
|
```json |
|
{ |
|
"query": "متى تم تطوير نظرية الحقل الكمي؟", |
|
"positive": { |
|
"text": "بدأت نظرية الحقل الكمي بشكل طبيعي بدراسة التفاعلات الكهرومغناطيسية ..." |
|
}, |
|
"negative": { |
|
"text": "تم تنفيذ النهج مؤخرًا ليشمل نسخة جبرية من الحقل الكمي ..." |
|
} |
|
} |
|
``` |
|
|
|
### Language Coverage |
|
The dataset focuses exclusively on the **Arabic** subset of Mr. TyDi. |
|
|
|
### Loading the Dataset |
|
|
|
You can load the dataset using the **datasets** library from Hugging Face: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset('NAMAA-Space/Ara-TyDi-Triplet') |
|
dataset |
|
``` |
|
|
|
|
|
### Dataset Usage |
|
|
|
The new format facilitates training retrieval and re-ranking models by providing explicit negative passage fields. This structure simplifies the handling of negative examples during model training and evaluation. |
|
|
|
### Citation Information |
|
|
|
If you use this dataset in your research, please cite the original Mr. TyDi paper and this dataset as follows: |
|
|
|
``` |
|
@article{mrtydi, |
|
title={{Mr. TyDi}: A Multi-lingual Benchmark for Dense Retrieval}, |
|
author={Xinyu Zhang and Xueguang Ma and Peng Shi and Jimmy Lin}, |
|
year={2021}, |
|
journal={arXiv:2108.08787}, |
|
} |
|
|
|
@dataset{Namaa, |
|
title={Ara TyDi Triplet}, |
|
author={Omer Nacar}, |
|
year={2024}, |
|
note={Hugging Face Dataset Repository} |
|
} |
|
``` |
|
|
|
|