Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'lighting_condition'}) and 1 missing columns ({'glare'}). This happened while the csv dataset builder was generating data using hf://datasets/NUS-UAL/global-streetscapes/manual_labels/train/lighting_condition.csv (at revision f32c31dffab66fec8a032cd2ee17c6610eb301c3) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1869, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 580, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast uuid: string source: string orig_id: int64 lighting_condition: string url: string label_method: string city: string city_id: int64 country: string continent: string lat: double lon: double datetime_local: string sequence_index: int64 sequence_id: string split: string img_path: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2225 to {'uuid': Value(dtype='string', id=None), 'source': Value(dtype='string', id=None), 'orig_id': Value(dtype='int64', id=None), 'glare': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None), 'label_method': Value(dtype='string', id=None), 'city': Value(dtype='string', id=None), 'city_id': Value(dtype='int64', id=None), 'country': Value(dtype='string', id=None), 'continent': Value(dtype='string', id=None), 'lat': Value(dtype='float64', id=None), 'lon': Value(dtype='float64', id=None), 'datetime_local': Value(dtype='string', id=None), 'sequence_index': Value(dtype='int64', id=None), 'sequence_id': Value(dtype='string', id=None), 'split': Value(dtype='string', id=None), 'img_path': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1387, in compute_config_parquet_and_info_response parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet( File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in stream_convert_to_parquet builder._prepare_split( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1740, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'lighting_condition'}) and 1 missing columns ({'glare'}). This happened while the csv dataset builder was generating data using hf://datasets/NUS-UAL/global-streetscapes/manual_labels/train/lighting_condition.csv (at revision f32c31dffab66fec8a032cd2ee17c6610eb301c3) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
uuid
string | source
string | orig_id
int64 | glare
string | url
string | label_method
string | city
string | city_id
int64 | country
string | continent
string | lat
float64 | lon
float64 | datetime_local
string | sequence_index
int64 | sequence_id
string | split
string | img_path
string |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1978a821-d39f-4d98-8d8b-a9975d497385 | Mapillary | 976,482,762,890,327 | no | https://www.mapillary.com/app/?pKey=976482762890327&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790652 | -1.766745 | 2018-08-05 11:33:53.319000+02:00 | 12 | J63JR0B5QM6pfhxWwj9IWA | train | img/3/1978a821-d39f-4d98-8d8b-a9975d497385.jpeg |
12731198-74b8-448e-bec8-faa96b024a2c | Mapillary | 246,917,197,222,492 | no | https://www.mapillary.com/app/?pKey=246917197222492&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.785087 | -1.766823 | 2017-07-02 14:03:01.745000+02:00 | 33 | eo1Pec9DyI5lxwa4KhvwXw | train | img/6/12731198-74b8-448e-bec8-faa96b024a2c.jpeg |
ad798a8c-649a-4ff8-b9a2-f2932dc228ff | Mapillary | 2,970,430,033,242,379 | no | https://www.mapillary.com/app/?pKey=2970430033242379&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790926 | -1.766326 | 2016-11-01 16:57:17.295000+01:00 | 35 | K-ILLX1_HQqfj3Z1pNCB9Q | train | img/3/ad798a8c-649a-4ff8-b9a2-f2932dc228ff.jpeg |
2d1f6cba-f083-4308-ae6d-35402709ac4e | Mapillary | 568,930,494,081,380 | no | https://www.mapillary.com/app/?pKey=568930494081380&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.784608 | -1.762885 | 2017-07-02 14:03:25.934000+02:00 | 57 | eo1Pec9DyI5lxwa4KhvwXw | train | img/5/2d1f6cba-f083-4308-ae6d-35402709ac4e.jpeg |
ba75d911-58e3-4319-ba02-75b8f5af8837 | Mapillary | 457,198,638,702,420 | no | https://www.mapillary.com/app/?pKey=457198638702420&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.784535 | -1.760188 | 2017-07-02 14:03:46.049000+02:00 | 77 | eo1Pec9DyI5lxwa4KhvwXw | train | img/3/ba75d911-58e3-4319-ba02-75b8f5af8837.jpeg |
83bfeed5-c3fd-4972-bd5c-dc8d99f5eff9 | Mapillary | 3,431,244,766,975,759 | no | https://www.mapillary.com/app/?pKey=3431244766975759&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.78455 | -1.760757 | 2017-07-02 14:03:42.029000+02:00 | 73 | eo1Pec9DyI5lxwa4KhvwXw | train | img/2/83bfeed5-c3fd-4972-bd5c-dc8d99f5eff9.jpeg |
32de4a41-4471-4e82-a7d2-52303eba3dab | Mapillary | 292,827,205,713,670 | no | https://www.mapillary.com/app/?pKey=292827205713670&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790525 | -1.75981 | 2016-11-01 12:00:15.479000+01:00 | 396 | 19cpum69akigj5podygolw | train | img/4/32de4a41-4471-4e82-a7d2-52303eba3dab.jpeg |
52a51d9d-1d73-4656-a32c-c0bd08af8e22 | Mapillary | 893,070,377,931,574 | no | https://www.mapillary.com/app/?pKey=893070377931574&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.789633 | -1.767905 | 2016-11-01 12:01:27.281000+01:00 | 431 | 19cpum69akigj5podygolw | train | img/3/52a51d9d-1d73-4656-a32c-c0bd08af8e22.jpeg |
e5933b92-9815-4b62-b66a-e0399cddf780 | Mapillary | 569,454,580,702,017 | no | https://www.mapillary.com/app/?pKey=569454580702017&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790759 | -1.766591 | 2018-08-05 11:33:52.184000+02:00 | 11 | J63JR0B5QM6pfhxWwj9IWA | train | img/6/e5933b92-9815-4b62-b66a-e0399cddf780.jpeg |
df44af56-3592-4b6f-af2b-2c88a37cec74 | Mapillary | 289,703,232,821,034 | no | https://www.mapillary.com/app/?pKey=289703232821034&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.785076 | -1.766477 | 2017-07-02 14:03:03.764000+02:00 | 35 | eo1Pec9DyI5lxwa4KhvwXw | train | img/6/df44af56-3592-4b6f-af2b-2c88a37cec74.jpeg |
fdd50149-4736-4946-8fcd-e066c56f6ac9 | Mapillary | 971,359,846,736,761 | no | https://www.mapillary.com/app/?pKey=971359846736761&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790066 | -1.767521 | 2016-11-01 16:57:08.387000+01:00 | 26 | K-ILLX1_HQqfj3Z1pNCB9Q | train | img/3/fdd50149-4736-4946-8fcd-e066c56f6ac9.jpeg |
141fd713-5bbc-48ce-a95d-8ec503919be5 | Mapillary | 825,568,588,354,414 | no | https://www.mapillary.com/app/?pKey=825568588354414&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.784521 | -1.760031 | 2017-07-02 14:03:47.115000+02:00 | 78 | eo1Pec9DyI5lxwa4KhvwXw | train | img/3/141fd713-5bbc-48ce-a95d-8ec503919be5.jpeg |
5eb9a153-81c2-437c-a7c2-494ab474dad2 | Mapillary | 270,036,261,481,904 | no | https://www.mapillary.com/app/?pKey=270036261481904&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.784555 | -1.76113 | 2017-07-02 14:03:39.031000+02:00 | 70 | eo1Pec9DyI5lxwa4KhvwXw | train | img/1/5eb9a153-81c2-437c-a7c2-494ab474dad2.jpeg |
6707bb77-44cd-41bb-bebc-83fea443d9db | Mapillary | 825,708,831,675,475 | no | https://www.mapillary.com/app/?pKey=825708831675475&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.791134 | -1.766039 | 2016-11-01 16:57:19.262000+01:00 | 37 | K-ILLX1_HQqfj3Z1pNCB9Q | train | img/6/6707bb77-44cd-41bb-bebc-83fea443d9db.jpeg |
0ef75504-f5c2-4c86-811d-39aca429291f | Mapillary | 373,767,707,225,320 | no | https://www.mapillary.com/app/?pKey=373767707225320&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790222 | -1.767087 | 2016-11-01 12:01:18.774000+01:00 | 427 | 19cpum69akigj5podygolw | train | img/4/0ef75504-f5c2-4c86-811d-39aca429291f.jpeg |
42e8c905-c180-4cf7-99ba-f8195aeb3be5 | Mapillary | 146,806,674,059,957 | no | https://www.mapillary.com/app/?pKey=146806674059957&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790896 | -1.761716 | 2016-11-01 12:00:25.840000+01:00 | 401 | 19cpum69akigj5podygolw | train | img/5/42e8c905-c180-4cf7-99ba-f8195aeb3be5.jpeg |
84807902-c117-49cf-857d-d63541ed137b | Mapillary | 798,385,614,447,860 | no | https://www.mapillary.com/app/?pKey=798385614447860&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790222 | -1.767342 | 2018-08-05 11:33:58.213000+02:00 | 16 | J63JR0B5QM6pfhxWwj9IWA | train | img/5/84807902-c117-49cf-857d-d63541ed137b.jpeg |
1dacc914-cd74-4970-9a89-20b440c2ea5c | Mapillary | 304,339,664,403,173 | no | https://www.mapillary.com/app/?pKey=304339664403173&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.784861 | -1.764948 | 2017-07-02 14:03:12.794000+02:00 | 44 | eo1Pec9DyI5lxwa4KhvwXw | train | img/4/1dacc914-cd74-4970-9a89-20b440c2ea5c.jpeg |
b6516ab0-da81-4fe9-8d42-cb77c9937bf2 | Mapillary | 215,515,886,644,180 | no | https://www.mapillary.com/app/?pKey=215515886644180&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.784752 | -1.764151 | 2017-07-02 14:03:17.798000+02:00 | 49 | eo1Pec9DyI5lxwa4KhvwXw | train | img/6/b6516ab0-da81-4fe9-8d42-cb77c9937bf2.jpeg |
e19781ee-c0b7-40a0-8357-8f8abbb4bece | Mapillary | 207,663,590,941,956 | no | https://www.mapillary.com/app/?pKey=207663590941956&focus=photo | random sample and manual label | Tarazona de Aragón | 1,724,796,233 | Spain | Europe | 41.790154 | -1.767386 | 2016-11-01 16:57:09.421000+01:00 | 27 | K-ILLX1_HQqfj3Z1pNCB9Q | train | img/3/e19781ee-c0b7-40a0-8357-8f8abbb4bece.jpeg |
7680f8b9-6b9b-48c7-ab73-e18537ec7336 | Mapillary | 1,107,543,566,418,319 | no | https://www.mapillary.com/app/?pKey=1107543566418319&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.326377 | -1.400904 | 2018-05-23 15:26:02.529000+01:00 | 630 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/6/7680f8b9-6b9b-48c7-ab73-e18537ec7336.jpeg |
f4a6495c-9899-4b87-913c-58f044135562 | Mapillary | 157,589,106,369,935 | no | https://www.mapillary.com/app/?pKey=157589106369935&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.326032 | -1.399915 | 2018-05-23 15:25:58.529000+01:00 | 626 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/6/f4a6495c-9899-4b87-913c-58f044135562.jpeg |
65a28401-03df-4ed8-8fa3-825255be0fa2 | Mapillary | 487,109,565,864,184 | no | https://www.mapillary.com/app/?pKey=487109565864184&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.326308 | -1.400644 | 2018-05-23 15:26:01.529000+01:00 | 629 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/4/65a28401-03df-4ed8-8fa3-825255be0fa2.jpeg |
10bf6ad1-a3bc-4281-a2a0-56e51172c365 | Mapillary | 313,601,323,534,233 | no | https://www.mapillary.com/app/?pKey=313601323534233&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.325386 | -1.39644 | 2018-05-23 15:25:44.530000+01:00 | 612 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/2/10bf6ad1-a3bc-4281-a2a0-56e51172c365.jpeg |
3b60ab1b-1e73-48e0-9583-2a15a8d44321 | Mapillary | 246,478,903,924,447 | no | https://www.mapillary.com/app/?pKey=246478903924447&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.325788 | -1.39916 | 2018-05-23 15:25:55.529000+01:00 | 623 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/4/3b60ab1b-1e73-48e0-9583-2a15a8d44321.jpeg |
29200d65-7724-4b15-83b8-54a525f5596f | Mapillary | 862,169,824,334,527 | no | https://www.mapillary.com/app/?pKey=862169824334527&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.326443 | -1.401146 | 2018-05-23 15:26:03.529000+01:00 | 631 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/5/29200d65-7724-4b15-83b8-54a525f5596f.jpeg |
ea70082a-9ec4-4ece-8504-5084f3883471 | Mapillary | 802,672,190,683,499 | no | https://www.mapillary.com/app/?pKey=802672190683499&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.325657 | -1.398363 | 2018-05-23 15:25:52.529000+01:00 | 620 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/3/ea70082a-9ec4-4ece-8504-5084f3883471.jpeg |
ed24d625-9831-472c-bf70-4ee5384d9a05 | Mapillary | 183,449,380,312,477 | no | https://www.mapillary.com/app/?pKey=183449380312477&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.324945 | -1.39567 | 2018-05-23 15:25:40.529000+01:00 | 608 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/2/ed24d625-9831-472c-bf70-4ee5384d9a05.jpeg |
0db6166d-2c15-43f3-b102-c2333d330c1d | Mapillary | 1,410,685,509,292,358 | no | https://www.mapillary.com/app/?pKey=1410685509292358&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.326226 | -1.400373 | 2018-05-23 15:26:00.529000+01:00 | 628 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/5/0db6166d-2c15-43f3-b102-c2333d330c1d.jpeg |
adb29d75-518b-4624-be5c-6d7f0aefceb8 | Mapillary | 490,878,362,031,890 | no | https://www.mapillary.com/app/?pKey=490878362031890&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.32548 | -1.396653 | 2018-05-23 15:25:45.530000+01:00 | 613 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/2/adb29d75-518b-4624-be5c-6d7f0aefceb8.jpeg |
8cfedd0e-2bf6-49d0-97e7-939270bd4d65 | Mapillary | 148,004,727,295,582 | no | https://www.mapillary.com/app/?pKey=148004727295582&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.32568 | -1.398631 | 2018-05-23 15:25:53.529000+01:00 | 621 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/6/8cfedd0e-2bf6-49d0-97e7-939270bd4d65.jpeg |
91e8af0b-52f8-4c4e-9a96-58e0ba496091 | Mapillary | 152,595,283,499,193 | no | https://www.mapillary.com/app/?pKey=152595283499193&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.32517 | -1.396052 | 2018-05-23 15:25:42.530000+01:00 | 610 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/4/91e8af0b-52f8-4c4e-9a96-58e0ba496091.jpeg |
1341eb2b-86a3-4039-8a92-ac643cf4d663 | Mapillary | 589,254,562,463,489 | no | https://www.mapillary.com/app/?pKey=589254562463489&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.325053 | -1.395853 | 2018-05-23 15:25:41.530000+01:00 | 609 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/1/1341eb2b-86a3-4039-8a92-ac643cf4d663.jpeg |
51f94ad7-64ae-423b-b0c0-7f6c38707673 | Mapillary | 1,893,685,710,795,509 | no | https://www.mapillary.com/app/?pKey=1893685710795509&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.325874 | -1.399415 | 2018-05-23 15:25:56.529000+01:00 | 624 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/3/51f94ad7-64ae-423b-b0c0-7f6c38707673.jpeg |
34b5765b-d540-40a9-97a9-040fac67fe9b | Mapillary | 144,570,840,982,973 | no | https://www.mapillary.com/app/?pKey=144570840982973&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.325657 | -1.398095 | 2018-05-23 15:25:51.529000+01:00 | 619 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/1/34b5765b-d540-40a9-97a9-040fac67fe9b.jpeg |
344cfc79-e839-4a25-b8bf-a1683c399431 | Mapillary | 589,979,889,071,874 | no | https://www.mapillary.com/app/?pKey=589979889071874&focus=photo | random sample and manual label | Northallerton | 1,826,697,671 | United Kingdom | Europe | 54.326109 | -1.400153 | 2018-05-23 15:25:59.529000+01:00 | 627 | 924f2559-43c3-478e-b52a-bad0a1e78967 | train | img/2/344cfc79-e839-4a25-b8bf-a1683c399431.jpeg |
23671806-354f-4e4a-b562-d45d8599d558 | Mapillary | 1,187,015,858,408,081 | no | https://www.mapillary.com/app/?pKey=1187015858408081&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.94132 | -69.027472 | 2020-03-08 11:34:15.824000-03:00 | 93 | b1a10y0215fx4lcq05cbs9 | train | img/1/23671806-354f-4e4a-b562-d45d8599d558.jpeg |
fc4d27cb-96fe-4216-95a6-2d3788988130 | Mapillary | 776,308,026,609,745 | no | https://www.mapillary.com/app/?pKey=776308026609745&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940172 | -69.026643 | 2020-03-08 11:34:24.848000-03:00 | 101 | b1a10y0215fx4lcq05cbs9 | train | img/2/fc4d27cb-96fe-4216-95a6-2d3788988130.jpeg |
078b3e17-1958-4311-b0cd-9a56e7f2ff38 | Mapillary | 2,834,691,673,447,367 | no | https://www.mapillary.com/app/?pKey=2834691673447367&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940408 | -69.026814 | 2020-03-08 11:34:22.661000-03:00 | 99 | b1a10y0215fx4lcq05cbs9 | train | img/4/078b3e17-1958-4311-b0cd-9a56e7f2ff38.jpeg |
3e6c47c0-0037-4975-9543-e1a0976bf9de | Mapillary | 137,476,115,036,772 | no | https://www.mapillary.com/app/?pKey=137476115036772&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.941014 | -69.027254 | 2020-03-08 11:34:18.031000-03:00 | 95 | b1a10y0215fx4lcq05cbs9 | train | img/4/3e6c47c0-0037-4975-9543-e1a0976bf9de.jpeg |
d860cf05-a360-4944-84f7-74119e951c6a | Mapillary | 372,993,500,804,918 | no | https://www.mapillary.com/app/?pKey=372993500804918&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.939852 | -69.026421 | 2020-03-08 11:34:28.193000-03:00 | 104 | b1a10y0215fx4lcq05cbs9 | train | img/2/d860cf05-a360-4944-84f7-74119e951c6a.jpeg |
525eab8e-a252-4c1d-83ae-718122ca07ba | Mapillary | 314,245,133,403,370 | no | https://www.mapillary.com/app/?pKey=314245133403370&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.941928 | -69.027908 | 2020-03-08 11:34:11.384000-03:00 | 89 | b1a10y0215fx4lcq05cbs9 | train | img/5/525eab8e-a252-4c1d-83ae-718122ca07ba.jpeg |
ec6b0fee-1c3b-4a5e-ab39-f541bace672b | Mapillary | 162,337,479,174,809 | no | https://www.mapillary.com/app/?pKey=162337479174809&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940679 | -69.027012 | 2020-03-08 11:34:20.488000-03:00 | 97 | b1a10y0215fx4lcq05cbs9 | train | img/1/ec6b0fee-1c3b-4a5e-ab39-f541bace672b.jpeg |
e42c10e5-5c50-4fa4-bbeb-87e18c5b3ca9 | Mapillary | 222,493,512,641,912 | no | https://www.mapillary.com/app/?pKey=222493512641912&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940539 | -69.02691 | 2020-03-08 11:34:21.558000-03:00 | 98 | b1a10y0215fx4lcq05cbs9 | train | img/3/e42c10e5-5c50-4fa4-bbeb-87e18c5b3ca9.jpeg |
63cefc7c-6a45-4323-a0bb-4ef592a90959 | Mapillary | 673,607,083,434,957 | no | https://www.mapillary.com/app/?pKey=673607083434957&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.941472 | -69.027581 | 2020-03-08 11:34:14.721000-03:00 | 92 | b1a10y0215fx4lcq05cbs9 | train | img/1/63cefc7c-6a45-4323-a0bb-4ef592a90959.jpeg |
8c71ae95-4477-4c21-a10b-2b3b823499e7 | Mapillary | 226,839,982,132,294 | no | https://www.mapillary.com/app/?pKey=226839982132294&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.942077 | -69.028012 | 2020-03-08 11:34:10.293000-03:00 | 88 | b1a10y0215fx4lcq05cbs9 | train | img/2/8c71ae95-4477-4c21-a10b-2b3b823499e7.jpeg |
f7ff7c33-0b00-4f3f-9a5d-1623dbc2588c | Mapillary | 328,364,788,704,472 | no | https://www.mapillary.com/app/?pKey=328364788704472&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.939951 | -69.02649 | 2020-03-08 11:34:27.079000-03:00 | 103 | b1a10y0215fx4lcq05cbs9 | train | img/3/f7ff7c33-0b00-4f3f-9a5d-1623dbc2588c.jpeg |
a33226c8-6791-4226-b884-c2d9db0c306f | Mapillary | 1,062,304,020,965,452 | no | https://www.mapillary.com/app/?pKey=1062304020965452&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940862 | -69.027145 | 2020-03-08 11:34:19.118000-03:00 | 96 | b1a10y0215fx4lcq05cbs9 | train | img/6/a33226c8-6791-4226-b884-c2d9db0c306f.jpeg |
b90c5bff-9294-4b02-aeba-24ae97cbbf45 | Mapillary | 386,487,156,034,164 | no | https://www.mapillary.com/app/?pKey=386487156034164&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.939673 | -69.026289 | 2020-03-08 11:34:30.383000-03:00 | 106 | b1a10y0215fx4lcq05cbs9 | train | img/4/b90c5bff-9294-4b02-aeba-24ae97cbbf45.jpeg |
ad74f76a-1733-44d9-ae3c-346f7b0f7530 | Mapillary | 566,971,930,934,876 | no | https://www.mapillary.com/app/?pKey=566971930934876&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940057 | -69.026562 | 2020-03-08 11:34:25.986000-03:00 | 102 | b1a10y0215fx4lcq05cbs9 | train | img/2/ad74f76a-1733-44d9-ae3c-346f7b0f7530.jpeg |
08f90444-f6e7-4e22-a3e2-b7334e59ac0e | Mapillary | 1,179,928,785,792,813 | no | https://www.mapillary.com/app/?pKey=1179928785792813&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.941623 | -69.027689 | 2020-03-08 11:34:13.619000-03:00 | 91 | b1a10y0215fx4lcq05cbs9 | train | img/5/08f90444-f6e7-4e22-a3e2-b7334e59ac0e.jpeg |
e796e615-8e7a-48e4-b24f-57871b0bca80 | Mapillary | 2,230,769,243,726,162 | no | https://www.mapillary.com/app/?pKey=2230769243726162&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.941771 | -69.027796 | 2020-03-08 11:34:12.533000-03:00 | 90 | b1a10y0215fx4lcq05cbs9 | train | img/1/e796e615-8e7a-48e4-b24f-57871b0bca80.jpeg |
ca2d565f-d567-4b96-a5bb-7b481e0faae3 | Mapillary | 299,381,561,741,730 | no | https://www.mapillary.com/app/?pKey=299381561741730&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.939763 | -69.026355 | 2020-03-08 11:34:29.280000-03:00 | 105 | b1a10y0215fx4lcq05cbs9 | train | img/4/ca2d565f-d567-4b96-a5bb-7b481e0faae3.jpeg |
10a3d5c8-7b4d-471b-8252-26620849b96a | Mapillary | 472,341,480,694,575 | no | https://www.mapillary.com/app/?pKey=472341480694575&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.941168 | -69.027364 | 2020-03-08 11:34:16.927000-03:00 | 94 | b1a10y0215fx4lcq05cbs9 | train | img/1/10a3d5c8-7b4d-471b-8252-26620849b96a.jpeg |
9c3c8431-e002-4156-aa01-97578a51a6c8 | Mapillary | 2,989,949,317,912,042 | no | https://www.mapillary.com/app/?pKey=2989949317912042&focus=photo | random sample and manual label | Diego de Almagro | 1,152,585,849 | Chile | South America | -26.940284 | -69.026724 | 2020-03-08 11:34:23.798000-03:00 | 100 | b1a10y0215fx4lcq05cbs9 | train | img/4/9c3c8431-e002-4156-aa01-97578a51a6c8.jpeg |
d91aa51d-698c-4640-b7a9-2d2d9a81dceb | Mapillary | 445,746,653,393,222 | no | https://www.mapillary.com/app/?pKey=445746653393222&focus=photo | random sample and manual label | Zevenaar | 1,528,993,139 | Netherlands | Europe | 51.939453 | 6.056633 | 2017-01-25 14:32:28+01:00 | 362 | r6Yg1awvf9r55_7BzKhbHw | train | img/2/d91aa51d-698c-4640-b7a9-2d2d9a81dceb.jpeg |
66ca0c7e-06e5-4d0d-8f84-d207bddb1de7 | Mapillary | 1,991,049,161,070,737 | no | https://www.mapillary.com/app/?pKey=1991049161070737&focus=photo | random sample and manual label | La Banda | 1,032,317,566 | Argentina | South America | -27.755321 | -64.267196 | 2019-12-07 19:20:56.809000-03:00 | 57 | rrmvd772t0ugqagqe8nkli | train | img/3/66ca0c7e-06e5-4d0d-8f84-d207bddb1de7.jpeg |
6513e96e-964a-47fa-8936-04f6bb78a056 | Mapillary | 140,759,084,706,540 | no | https://www.mapillary.com/app/?pKey=140759084706540&focus=photo | random sample and manual label | Santiago del Estero | 1,032,492,280 | Argentina | South America | -27.755931 | -64.267466 | 2019-12-07 19:20:50.882000-03:00 | 54 | rrmvd772t0ugqagqe8nkli | train | img/5/6513e96e-964a-47fa-8936-04f6bb78a056.jpeg |
eb72852c-7403-4bf4-b997-4eb495457504 | Mapillary | 328,315,691,972,787 | no | https://www.mapillary.com/app/?pKey=328315691972787&focus=photo | random sample and manual label | Santiago del Estero | 1,032,492,280 | Argentina | South America | -27.756539 | -64.267856 | 2019-12-07 19:20:44.887000-03:00 | 51 | rrmvd772t0ugqagqe8nkli | train | img/5/eb72852c-7403-4bf4-b997-4eb495457504.jpeg |
d4128464-7f65-49ad-8baa-40fbe4416dc5 | Mapillary | 194,211,242,443,515 | no | https://www.mapillary.com/app/?pKey=194211242443515&focus=photo | random sample and manual label | La Banda | 1,032,317,566 | Argentina | South America | -27.755134 | -64.267141 | 2019-12-07 19:20:58.858000-03:00 | 58 | rrmvd772t0ugqagqe8nkli | train | img/3/d4128464-7f65-49ad-8baa-40fbe4416dc5.jpeg |
0c907f6a-eacc-4a7e-8a1f-7e1c8f60dd33 | Mapillary | 794,360,608,140,867 | no | https://www.mapillary.com/app/?pKey=794360608140867&focus=photo | random sample and manual label | Santiago del Estero | 1,032,492,280 | Argentina | South America | -27.756364 | -64.267737 | 2019-12-07 19:20:46.735000-03:00 | 52 | rrmvd772t0ugqagqe8nkli | train | img/1/0c907f6a-eacc-4a7e-8a1f-7e1c8f60dd33.jpeg |
0dcb1428-bfdd-49be-87e3-8e27366d6a6a | Mapillary | 396,201,244,889,620 | no | https://www.mapillary.com/app/?pKey=396201244889620&focus=photo | random sample and manual label | La Banda | 1,032,317,566 | Argentina | South America | -27.755734 | -64.267361 | 2019-12-07 19:20:52.712000-03:00 | 55 | rrmvd772t0ugqagqe8nkli | train | img/4/0dcb1428-bfdd-49be-87e3-8e27366d6a6a.jpeg |
fc096580-70d5-45ad-954f-f1510253e1db | Mapillary | 466,867,207,712,589 | no | https://www.mapillary.com/app/?pKey=466867207712589&focus=photo | random sample and manual label | Santiago del Estero | 1,032,492,280 | Argentina | South America | -27.756153 | -64.267602 | 2019-12-07 19:20:48.809000-03:00 | 53 | rrmvd772t0ugqagqe8nkli | train | img/4/fc096580-70d5-45ad-954f-f1510253e1db.jpeg |
a8a1f331-7991-4999-b7a2-bdae2a67b356 | Mapillary | 4,290,765,970,980,868 | no | https://www.mapillary.com/app/?pKey=4290765970980868&focus=photo | random sample and manual label | La Banda | 1,032,317,566 | Argentina | South America | -27.755524 | -64.267264 | 2019-12-07 19:20:54.743000-03:00 | 56 | rrmvd772t0ugqagqe8nkli | train | img/5/a8a1f331-7991-4999-b7a2-bdae2a67b356.jpeg |
6553f862-a7e1-4ee2-902d-78b3cf4950a6 | Mapillary | 177,212,604,287,368 | no | https://www.mapillary.com/app/?pKey=177212604287368&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.175699 | 51.314296 | 2019-07-03 22:26:58.272000+04:30 | 312 | p8dkgr1jyss78nbi3z9jy6 | train | img/5/6553f862-a7e1-4ee2-902d-78b3cf4950a6.jpeg |
efae1f6b-cc95-4298-88c9-f0bb989b9359 | Mapillary | 490,550,372,186,873 | no | https://www.mapillary.com/app/?pKey=490550372186873&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.175471 | 51.314505 | 2019-07-03 22:26:55.948000+04:30 | 296 | p8dkgr1jyss78nbi3z9jy6 | train | img/3/efae1f6b-cc95-4298-88c9-f0bb989b9359.jpeg |
0cbf16e4-7c28-4630-a210-f074ac4fc57f | Mapillary | 492,847,705,290,269 | no | https://www.mapillary.com/app/?pKey=492847705290269&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.176811 | 51.314602 | 2019-07-03 22:27:06.048000+04:30 | 378 | p8dkgr1jyss78nbi3z9jy6 | train | img/2/0cbf16e4-7c28-4630-a210-f074ac4fc57f.jpeg |
929cd75e-d14b-4d09-a60f-fac1c2d00c69 | Mapillary | 802,422,840,388,852 | no | https://www.mapillary.com/app/?pKey=802422840388852&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.176136 | 51.314257 | 2019-07-03 22:27:01.546000+04:30 | 337 | p8dkgr1jyss78nbi3z9jy6 | train | img/6/929cd75e-d14b-4d09-a60f-fac1c2d00c69.jpeg |
7b122b5e-092e-4c97-a612-59873c760dce | Mapillary | 465,823,671,377,372 | no | https://www.mapillary.com/app/?pKey=465823671377372&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.174634 | 51.315115 | 2019-07-03 22:26:48.605000+04:30 | 241 | p8dkgr1jyss78nbi3z9jy6 | train | img/1/7b122b5e-092e-4c97-a612-59873c760dce.jpeg |
4adffbff-55a5-4d8f-aae2-415b6166fc39 | Mapillary | 287,701,232,792,827 | no | https://www.mapillary.com/app/?pKey=287701232792827&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.176991 | 51.314614 | 2019-07-03 22:27:06.648000+04:30 | 388 | p8dkgr1jyss78nbi3z9jy6 | train | img/3/4adffbff-55a5-4d8f-aae2-415b6166fc39.jpeg |
ac62c362-018d-4f43-bc18-81b3f486b756 | Mapillary | 797,326,607,870,365 | no | https://www.mapillary.com/app/?pKey=797326607870365&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.1761 | 51.314243 | 2018-12-05 09:17:25.422000+03:30 | 39 | ki0cdixivdofra56yj6dvw | train | img/6/ac62c362-018d-4f43-bc18-81b3f486b756.jpeg |
bfaa9b3e-83ca-43a9-9f4d-ded2b3f433f7 | Mapillary | 832,471,700,683,937 | no | https://www.mapillary.com/app/?pKey=832471700683937&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.174745 | 51.315052 | 2019-07-03 22:26:49.415000+04:30 | 248 | p8dkgr1jyss78nbi3z9jy6 | train | img/5/bfaa9b3e-83ca-43a9-9f4d-ded2b3f433f7.jpeg |
fdf17967-046e-4fb8-9bfc-bf696ab37278 | Mapillary | 1,837,012,539,793,453 | no | https://www.mapillary.com/app/?pKey=1837012539793453&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.177316 | 51.314895 | 2019-07-03 22:27:09.160000+04:30 | 414 | p8dkgr1jyss78nbi3z9jy6 | train | img/1/fdf17967-046e-4fb8-9bfc-bf696ab37278.jpeg |
4da54df9-2c83-4598-aa43-288401221c0e | Mapillary | 225,768,142,245,135 | no | https://www.mapillary.com/app/?pKey=225768142245135&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.175652 | 51.31433 | 2019-07-03 22:26:57.829000+04:30 | 309 | p8dkgr1jyss78nbi3z9jy6 | train | img/5/4da54df9-2c83-4598-aa43-288401221c0e.jpeg |
53657d0e-9568-40f3-890f-0dce48dce0e4 | Mapillary | 938,627,560,272,189 | no | https://www.mapillary.com/app/?pKey=938627560272189&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.176398 | 51.314338 | 2019-07-03 22:27:03.282000+04:30 | 352 | p8dkgr1jyss78nbi3z9jy6 | train | img/4/53657d0e-9568-40f3-890f-0dce48dce0e4.jpeg |
9e788c80-353f-41c6-8d69-649e34f87b69 | Mapillary | 157,854,502,950,885 | no | https://www.mapillary.com/app/?pKey=157854502950885&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.175699 | 51.314318 | 2018-12-07 11:55:10.007000+03:30 | 234 | 8DL_SUCXSFS6V28z86I05g | train | img/4/9e788c80-353f-41c6-8d69-649e34f87b69.jpeg |
a8e609ac-c05d-46e5-b054-a6118753c110 | Mapillary | 371,005,134,311,065 | no | https://www.mapillary.com/app/?pKey=371005134311065&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.174738 | 51.315098 | 2018-12-07 11:55:01.707000+03:30 | 230 | 8DL_SUCXSFS6V28z86I05g | train | img/6/a8e609ac-c05d-46e5-b054-a6118753c110.jpeg |
ec75d0cd-5cb7-4456-8673-db6d9c9a5059 | Mapillary | 506,001,950,758,557 | no | https://www.mapillary.com/app/?pKey=506001950758557&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.175288 | 51.314623 | 2019-07-03 22:26:54.372000+04:30 | 284 | p8dkgr1jyss78nbi3z9jy6 | train | img/5/ec75d0cd-5cb7-4456-8673-db6d9c9a5059.jpeg |
f6d28c50-583f-48ec-b5cc-b433feeb6255 | Mapillary | 1,241,267,469,624,826 | no | https://www.mapillary.com/app/?pKey=1241267469624826&focus=photo | random sample and manual label | Lavāsān | 1,364,266,184 | Iran | Asia | 36.177414 | 51.315082 | 2019-07-03 22:27:10.539000+04:30 | 425 | p8dkgr1jyss78nbi3z9jy6 | train | img/1/f6d28c50-583f-48ec-b5cc-b433feeb6255.jpeg |
a7182672-b3aa-4095-b284-fd028601dbee | Mapillary | 334,357,738,032,528 | no | https://www.mapillary.com/app/?pKey=334357738032528&focus=photo | random sample and manual label | Debrecen | 1,348,460,698 | Hungary | Europe | 47.529854 | 21.639075 | 2017-12-02 13:36:08.161000+01:00 | 592 | 6zpr8o7931caqflwdwvqyh | train | img/6/a7182672-b3aa-4095-b284-fd028601dbee.jpeg |
639f1218-842f-40fb-8e92-7c6e951ec665 | Mapillary | 956,566,868,345,917 | no | https://www.mapillary.com/app/?pKey=956566868345917&focus=photo | random sample and manual label | West Haven | 1,840,004,852 | United States | North America | 41.275093 | -72.969314 | 2021-07-11 06:03:56.697000-04:00 | 379 | T9fD17IVwsiJFXevk2zOQC | train | img/5/639f1218-842f-40fb-8e92-7c6e951ec665.jpeg |
35d17b46-ac0a-4dea-a680-3ac2429b79fd | Mapillary | 2,971,229,786,468,848 | no | https://www.mapillary.com/app/?pKey=2971229786468848&focus=photo | random sample and manual label | Marmagao | 1,356,764,529 | India | Asia | 15.409954 | 73.794828 | 2019-03-20 10:31:29.489000+05:30 | 334 | hRHJfe-vSpW09EHd-mZdfw | train | img/5/35d17b46-ac0a-4dea-a680-3ac2429b79fd.jpeg |
d9928106-88a5-4aef-b941-2ae883b94c11 | Mapillary | 1,904,562,149,694,398 | no | https://www.mapillary.com/app/?pKey=1904562149694398&focus=photo | random sample and manual label | Brandon | 1,840,014,151 | United States | North America | 27.937607 | -82.307736 | 2014-08-22 10:57:19.266000-04:00 | 35 | W2d4fILDRvmCNFGYAdZRMA | train | img/1/d9928106-88a5-4aef-b941-2ae883b94c11.jpeg |
39b5fc03-d89d-46e2-9570-267c8adf6722 | Mapillary | 295,566,248,851,356 | no | https://www.mapillary.com/app/?pKey=295566248851356&focus=photo | random sample and manual label | Hanau | 1,276,550,409 | Germany | Europe | 50.129585 | 8.913147 | 2014-05-10 12:10:08+02:00 | 7 | T4fa3llpBHUx4tssFSKY8g | train | img/4/39b5fc03-d89d-46e2-9570-267c8adf6722.jpeg |
7f439743-bb56-4432-bb69-41526862a9f0 | Mapillary | 1,060,462,924,871,678 | no | https://www.mapillary.com/app/?pKey=1060462924871678&focus=photo | random sample and manual label | Gravatá | 1,076,214,495 | Brazil | South America | -8.196656 | -35.556843 | 2022-05-09 12:55:41.750000-03:00 | 196 | NAFJRE5ibGt3SxhkcPu7zp | train | img/6/7f439743-bb56-4432-bb69-41526862a9f0.jpeg |
0fc9c547-6889-4d9f-a824-63fac7c5c487 | Mapillary | 532,858,918,093,055 | no | https://www.mapillary.com/app/?pKey=532858918093055&focus=photo | random sample and manual label | Kansas City | 1,840,008,535 | United States | North America | 39.120784 | -94.564594 | 2018-10-06 15:59:41.631000-05:00 | 354 | pwvgr0x6j7t98r5mgz10iu | train | img/2/0fc9c547-6889-4d9f-a824-63fac7c5c487.jpeg |
ed93f81e-49f7-4c45-a0a7-37e9c2b1c55d | Mapillary | 278,652,547,253,159 | no | https://www.mapillary.com/app/?pKey=278652547253159&focus=photo | random sample and manual label | Hanau | 1,276,550,409 | Germany | Europe | 50.127292 | 8.909284 | 2014-06-03 13:02:29+02:00 | 105 | 0IX5Le4znvAsThyCpr-lEA | train | img/4/ed93f81e-49f7-4c45-a0a7-37e9c2b1c55d.jpeg |
8f9ea558-cfad-468b-a3bf-5ec694a20c8f | Mapillary | 494,139,672,000,209 | no | https://www.mapillary.com/app/?pKey=494139672000209&focus=photo | random sample and manual label | Dearborn | 1,840,003,969 | United States | North America | 42.310621 | -83.226446 | 2017-11-07 14:10:02.085000-05:00 | 137 | ji1xns2yADqHzy0QSbo5qA | train | img/6/8f9ea558-cfad-468b-a3bf-5ec694a20c8f.jpeg |
8449bd63-b4d9-4bc1-ab45-96100e1aca13 | Mapillary | 303,878,937,877,062 | no | https://www.mapillary.com/app/?pKey=303878937877062&focus=photo | random sample and manual label | Cancún | 1,484,010,310 | Mexico | North America | 21.154357 | -86.84377 | 2020-09-22 08:04:17-05:00 | 168 | brm2czcd21tfc961qqzijc | train | img/5/8449bd63-b4d9-4bc1-ab45-96100e1aca13.jpeg |
c022c452-038a-4996-8528-7124b5850487 | Mapillary | 985,639,815,306,934 | no | https://www.mapillary.com/app/?pKey=985639815306934&focus=photo | random sample and manual label | Helsinki | 1,246,177,997 | Finland | Europe | 60.184795 | 24.933316 | 2018-07-16 17:38:29+03:00 | 781 | bGfHXwPiEbBpwhBGdy5AJQ | train | img/6/c022c452-038a-4996-8528-7124b5850487.jpeg |
161f0b09-9d27-40e8-bafb-a81c649b8395 | Mapillary | 525,030,598,525,906 | no | https://www.mapillary.com/app/?pKey=525030598525906&focus=photo | random sample and manual label | Monterrey | 1,484,559,591 | Mexico | North America | 25.66423 | -100.302681 | 2020-03-02 11:38:57.590000-06:00 | 1 | 4h7wwyp75397fq9fhb3wd5 | train | img/1/161f0b09-9d27-40e8-bafb-a81c649b8395.jpeg |
5765de71-a626-4fb7-a958-1b2f8f520db9 | Mapillary | 222,088,019,335,040 | no | https://www.mapillary.com/app/?pKey=222088019335040&focus=photo | random sample and manual label | Monterrey | 1,484,559,591 | Mexico | North America | 25.670965 | -100.30215 | 2020-02-27 11:09:03.590000-06:00 | 50 | dsr0e3fpbmebuqdok7gkzn | train | img/5/5765de71-a626-4fb7-a958-1b2f8f520db9.jpeg |
d92e7d05-743b-4aa5-902f-6b912298aa3f | Mapillary | 255,923,762,987,787 | no | https://www.mapillary.com/app/?pKey=255923762987787&focus=photo | random sample and manual label | Moscow | 1,643,318,494 | Russia | Europe | 55.762155 | 37.624172 | 2020-08-04 09:00:31.320000+03:00 | 64 | 8nltapnyqijt9gy0c1godw | train | img/2/d92e7d05-743b-4aa5-902f-6b912298aa3f.jpeg |
5069bc14-817d-4903-be63-1838451fc02a | Mapillary | 3,831,013,896,997,692 | no | https://www.mapillary.com/app/?pKey=3831013896997692&focus=photo | random sample and manual label | Orléans | 1,250,441,405 | France | Europe | 47.906371 | 1.910022 | 2020-09-18 17:45:32.734000+02:00 | 498 | emszjijqrfe4q6j92z272e | train | img/3/5069bc14-817d-4903-be63-1838451fc02a.jpeg |
5358d5b0-e8fc-47db-b358-6653357aa028 | Mapillary | 513,854,883,289,741 | no | https://www.mapillary.com/app/?pKey=513854883289741&focus=photo | random sample and manual label | Philadelphia | 1,840,000,673 | United States | North America | 40.000272 | -75.142429 | 2018-08-28 15:11:24.296000-04:00 | 238 | 6pwhicb6bibv8pgtug1hwa | train | img/5/5358d5b0-e8fc-47db-b358-6653357aa028.jpeg |
688e8214-a78f-4a64-9367-75b058d1ac10 | Mapillary | 781,757,492,512,428 | no | https://www.mapillary.com/app/?pKey=781757492512428&focus=photo | random sample and manual label | Redmond | 1,840,019,835 | United States | North America | 47.670803 | -122.106836 | 2018-07-31 08:10:42.582000-07:00 | 117 | 1px35d4t4rxujmfm37mcw5 | train | img/2/688e8214-a78f-4a64-9367-75b058d1ac10.jpeg |
c1a438cb-f031-44e6-a880-994a1b0a066e | Mapillary | 794,251,901,520,558 | no | https://www.mapillary.com/app/?pKey=794251901520558&focus=photo | random sample and manual label | Amsterdam | 1,528,355,309 | Netherlands | Europe | 52.373592 | 4.881508 | 2017-03-04 16:55:00.575000+01:00 | 458 | I92ZRcEgYjCcSPgPuVZyUA | train | img/6/c1a438cb-f031-44e6-a880-994a1b0a066e.jpeg |
00de81fc-d5d7-463b-82f2-0ab1b9f2f6d3 | Mapillary | 155,626,406,521,648 | no | https://www.mapillary.com/app/?pKey=155626406521648&focus=photo | random sample and manual label | Donostia | 1,724,910,555 | Spain | Europe | 43.31852 | -1.979218 | 2020-04-23 08:44:48.736000+02:00 | 56 | 8stts5inztcuh3yilgzlei | train | img/3/00de81fc-d5d7-463b-82f2-0ab1b9f2f6d3.jpeg |
6c8d3fca-d9da-4e41-8aad-608b13a5a810 | Mapillary | 520,744,618,938,239 | no | https://www.mapillary.com/app/?pKey=520744618938239&focus=photo | random sample and manual label | Zemun | 1,688,453,076 | Serbia | Europe | 44.851804 | 20.395619 | 2019-01-29 14:34:04+01:00 | 16 | nMqJT1fl2h4sIFuUhOk8ig | train | img/5/6c8d3fca-d9da-4e41-8aad-608b13a5a810.jpeg |
84ae4416-6642-4110-9e04-43e43684a610 | Mapillary | 181,639,447,171,385 | no | https://www.mapillary.com/app/?pKey=181639447171385&focus=photo | random sample and manual label | Moscow | 1,643,318,494 | Russia | Europe | 55.757615 | 37.628496 | 2020-09-02 14:06:54.965000+03:00 | 195 | fbhgwys31ahzkkmgj2e1yl | train | img/4/84ae4416-6642-4110-9e04-43e43684a610.jpeg |
Global Streetscapes
Repository for the tabular portion of the Global Streetscapes dataset by the Urban Analytics Lab (UAL) at the National University of Singapore (NUS).
Content breakdown:
data/
(37 GB)- 21
csv
files with 346 unique features in total and 10 million rows each to characterise the 10 million street-level images in our dataset
- 21
manual_labels/
(23 GB)train/
- 8
csv
files of manual labels for training computer vision models to classify 8 different contextual characteristics of a street view image, along with other metadata such as the image's location, city, file path etc.
- 8
test/
- 8
csv
files of manual labels for model testing, along with other metadata such as the image's location, city, file path etc.
- 8
img/
- 7
tar.gz
files containing all images used for training and testing
- 7
models/
(2.8 GB)- 8
ckpt
files storing the trained models
- 8
cities688.csv
contains basic information for the 688 cities included in the dataset, such as population, continent, image count etc.info.csv
overviews the content of eachcsv
file in/data
and explains the 346 features
This repository has a total size of about 62 GB.
Please follow this guide from huggingface for download instructions. Please avoid using 'git clone' to download the repo as Git stores the files twice and will double the disk space usage to 124+ GB.
We have also provided a script download_folder.py
to download one folder from this dataset, instead of just a single file or the entire dataset.
To download the imagery portion (10 million images, ~6TB), please follow the code and documentation in our GitHub repo. Our Wiki contains instructions and a demo on how to filter the dataset for a subset of data of your interest and download the image files for them.
Read more about this project on its website, which includes an overview of this effort together with the background, paper, examples, and FAQ.
To cite this work, please refer to the paper:
Hou Y, Quintana M, Khomiakov M, Yap W, Ouyang J, Ito K, Wang Z, Zhao T, Biljecki F (2024): Global Streetscapes — A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics. ISPRS Journal of Photogrammetry and Remote Sensing 215: 216-238. doi:10.1016/j.isprsjprs.2024.06.023
BibTeX:
@article{2024_global_streetscapes,
author = {Hou, Yujun and Quintana, Matias and Khomiakov, Maxim and Yap, Winston and Ouyang, Jiani and Ito, Koichi and Wang, Zeyu and Zhao, Tianhong and Biljecki, Filip},
doi = {10.1016/j.isprsjprs.2024.06.023},
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
pages = {216-238},
title = {Global Streetscapes -- A comprehensive dataset of 10 million street-level images across 688 cities for urban science and analytics},
volume = {215},
year = {2024}
}
A free version (postprint / author-accepted manuscript) can be downloaded here.
- Downloads last month
- 726