File size: 7,054 Bytes
443c61f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import cv2
import time
import argparse
import torch
import warnings
import json
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), 'thirdparty/fast-reid'))

from detector import build_detector
from deep_sort import build_tracker
from utils.draw import draw_boxes
from utils.parser import get_config
from utils.log import get_logger
from utils.io import write_results


class VideoTracker(object):
    def __init__(self, cfg, args, video_path):
        self.cfg = cfg
        self.args = args
        self.video_path = video_path
        self.logger = get_logger("root")

        use_cuda = args.use_cuda and torch.cuda.is_available()
        if not use_cuda:
            warnings.warn("Running in cpu mode which maybe very slow!", UserWarning)

        if args.display:
            cv2.namedWindow("test", cv2.WINDOW_NORMAL)
            cv2.resizeWindow("test", args.display_width, args.display_height)

        if args.cam != -1:
            print("Using webcam " + str(args.cam))
            self.vdo = cv2.VideoCapture(args.cam)
        else:
            self.vdo = cv2.VideoCapture()
        self.detector = build_detector(cfg, use_cuda=use_cuda, segment=self.args.segment)
        self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
        self.class_names = self.detector.class_names

    def __enter__(self):
        if self.args.cam != -1:
            ret, frame = self.vdo.read()
            assert ret, "Error: Camera error"
            self.im_width = frame.shape[0]
            self.im_height = frame.shape[1]

        else:
            assert os.path.isfile(self.video_path), "Path error"
            self.vdo.open(self.video_path)
            self.im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
            self.im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
            assert self.vdo.isOpened()

        if self.args.save_path:
            os.makedirs(self.args.save_path, exist_ok=True)
            # TODO save masks

            # path of saved video and results
            self.save_video_path = os.path.join(self.args.save_path, "results.avi")
            self.save_results_path = os.path.join(self.args.save_path, "results.txt")

            # create video writer
            fourcc = cv2.VideoWriter_fourcc(*'MJPG')
            self.writer = cv2.VideoWriter(self.save_video_path, fourcc, 20, (self.im_width, self.im_height))

            # logging
            self.logger.info("Save results to {}".format(self.args.save_path))

        return self

    def __exit__(self, exc_type, exc_value, exc_traceback):
        if exc_type:
            print(exc_type, exc_value, exc_traceback)

    def run(self):
        results = []
        idx_frame = 0
        with open('coco_classes.json', 'r') as f:
            idx_to_class = json.load(f)
        while self.vdo.grab():
            idx_frame += 1
            if idx_frame % self.args.frame_interval:
                continue

            start = time.time()
            _, ori_im = self.vdo.retrieve()
            im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)

            # do detection
            if self.args.segment:
                bbox_xywh, cls_conf, cls_ids, seg_masks = self.detector(im)
            else:
                bbox_xywh, cls_conf, cls_ids = self.detector(im)

            # select person class
            mask = cls_ids == 0

            bbox_xywh = bbox_xywh[mask]
            # bbox dilation just in case bbox too small, delete this line if using a better pedestrian detector
            bbox_xywh[:, 2:] *= 1.2
            cls_conf = cls_conf[mask]
            cls_ids = cls_ids[mask]

            # do tracking
            if self.args.segment:
                seg_masks = seg_masks[mask]
                outputs, mask_outputs = self.deepsort.update(bbox_xywh, cls_conf, cls_ids, im, seg_masks)
            else:
                outputs, _ = self.deepsort.update(bbox_xywh, cls_conf, cls_ids, im)

            # draw boxes for visualization
            if len(outputs) > 0:
                bbox_tlwh = []
                bbox_xyxy = outputs[:, :4]
                identities = outputs[:, -1]
                cls = outputs[:, -2]
                names = [idx_to_class[str(label)] for label in cls]

                ori_im = draw_boxes(ori_im, bbox_xyxy, names, identities, None if not self.args.segment else mask_outputs)

                for bb_xyxy in bbox_xyxy:
                    bbox_tlwh.append(self.deepsort._xyxy_to_tlwh(bb_xyxy))

                results.append((idx_frame - 1, bbox_tlwh, identities, cls))

            end = time.time()

            if self.args.display:
                cv2.imshow("test", ori_im)
                cv2.waitKey(1)

            if self.args.save_path:
                self.writer.write(ori_im)

            # save results
            write_results(self.save_results_path, results, 'mot')

            # logging
            self.logger.info("time: {:.03f}s, fps: {:.03f}, detection numbers: {}, tracking numbers: {}" \
                             .format(end - start, 1 / (end - start), bbox_xywh.shape[0], len(outputs)))


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--VIDEO_PATH", type=str, default='demo.avi')
    parser.add_argument("--config_mmdetection", type=str, default="./configs/mmdet.yaml")
    parser.add_argument("--config_detection", type=str, default="./configs/mask_rcnn.yaml")
    parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml")
    parser.add_argument("--config_fastreid", type=str, default="./configs/fastreid.yaml")
    parser.add_argument("--fastreid", action="store_true")
    parser.add_argument("--mmdet", action="store_true")
    parser.add_argument("--segment", action="store_true")
    # parser.add_argument("--ignore_display", dest="display", action="store_false", default=True)
    parser.add_argument("--display", action="store_true")
    parser.add_argument("--frame_interval", type=int, default=1)
    parser.add_argument("--display_width", type=int, default=800)
    parser.add_argument("--display_height", type=int, default=600)
    parser.add_argument("--save_path", type=str, default="./output/")
    parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True)
    parser.add_argument("--camera", action="store", dest="cam", type=int, default="-1")
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    cfg = get_config()
    if args.segment:
        cfg.USE_SEGMENT = True
    else:
        cfg.USE_SEGMENT = False
    if args.mmdet:
        cfg.merge_from_file(args.config_mmdetection)
        cfg.USE_MMDET = True
    else:
        cfg.merge_from_file(args.config_detection)
        cfg.USE_MMDET = False
    cfg.merge_from_file(args.config_deepsort)
    if args.fastreid:
        cfg.merge_from_file(args.config_fastreid)
        cfg.USE_FASTREID = True
    else:
        cfg.USE_FASTREID = False

    with VideoTracker(cfg, args, video_path=args.VIDEO_PATH) as vdo_trk:
        vdo_trk.run()