|
import os |
|
from typing import Dict |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
def write_results(filename, results, data_type): |
|
if data_type == 'mot': |
|
save_format = '{frame},{id},{cls},{x1},{y1},{w},{h},-1,-1,-1,-1\n' |
|
elif data_type == 'kitti': |
|
save_format = '{frame} {id} pedestrian 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' |
|
else: |
|
raise ValueError(data_type) |
|
|
|
with open(filename, 'w') as f: |
|
for frame_id, tlwhs, track_ids, classes in results: |
|
if data_type == 'kitti': |
|
frame_id -= 1 |
|
for tlwh, track_id, cls_id in zip(tlwhs, track_ids, classes): |
|
if track_id < 0: |
|
continue |
|
x1, y1, w, h = tlwh |
|
x2, y2 = x1 + w, y1 + h |
|
line = save_format.format(frame=frame_id, id=track_id, cls=cls_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h) |
|
f.write(line) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def read_results(filename, data_type: str, is_gt=False, is_ignore=False): |
|
if data_type in ('mot', 'lab'): |
|
read_fun = read_mot_results |
|
else: |
|
raise ValueError('Unknown data type: {}'.format(data_type)) |
|
|
|
return read_fun(filename, is_gt, is_ignore) |
|
|
|
|
|
""" |
|
labels={'ped', ... % 1 |
|
'person_on_vhcl', ... % 2 |
|
'car', ... % 3 |
|
'bicycle', ... % 4 |
|
'mbike', ... % 5 |
|
'non_mot_vhcl', ... % 6 |
|
'static_person', ... % 7 |
|
'distractor', ... % 8 |
|
'occluder', ... % 9 |
|
'occluder_on_grnd', ... %10 |
|
'occluder_full', ... % 11 |
|
'reflection', ... % 12 |
|
'crowd' ... % 13 |
|
}; |
|
""" |
|
|
|
|
|
def read_mot_results(filename, is_gt, is_ignore): |
|
valid_labels = {1} |
|
ignore_labels = {2, 7, 8, 12} |
|
results_dict = dict() |
|
if os.path.isfile(filename): |
|
with open(filename, 'r') as f: |
|
for line in f.readlines(): |
|
linelist = line.split(',') |
|
if len(linelist) < 7: |
|
continue |
|
fid = int(linelist[0]) |
|
if fid < 1: |
|
continue |
|
results_dict.setdefault(fid, list()) |
|
|
|
if is_gt: |
|
if 'MOT16-' in filename or 'MOT17-' in filename: |
|
label = int(float(linelist[7])) |
|
mark = int(float(linelist[6])) |
|
if mark == 0 or label not in valid_labels: |
|
continue |
|
score = 1 |
|
elif is_ignore: |
|
if 'MOT16-' in filename or 'MOT17-' in filename: |
|
label = int(float(linelist[7])) |
|
vis_ratio = float(linelist[8]) |
|
if label not in ignore_labels and vis_ratio >= 0: |
|
continue |
|
else: |
|
continue |
|
score = 1 |
|
else: |
|
score = float(linelist[6]) |
|
|
|
tlwh = tuple(map(float, linelist[2:6])) |
|
target_id = int(linelist[1]) |
|
|
|
results_dict[fid].append((tlwh, target_id, score)) |
|
|
|
return results_dict |
|
|
|
|
|
def unzip_objs(objs): |
|
if len(objs) > 0: |
|
tlwhs, ids, scores = zip(*objs) |
|
else: |
|
tlwhs, ids, scores = [], [], [] |
|
tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4) |
|
|
|
return tlwhs, ids, scores |