|
""" |
|
References: |
|
https://medium.com/analytics-vidhya/creating-a-custom-logging-mechanism-for-real-time-object-detection-using-tdd-4ca2cfcd0a2f |
|
""" |
|
import json |
|
from os import makedirs |
|
from os.path import exists, join |
|
from datetime import datetime |
|
|
|
|
|
class JsonMeta(object): |
|
HOURS = 3 |
|
MINUTES = 59 |
|
SECONDS = 59 |
|
PATH_TO_SAVE = 'LOGS' |
|
DEFAULT_FILE_NAME = 'remaining' |
|
|
|
|
|
class BaseJsonLogger(object): |
|
""" |
|
This is the base class that returns __dict__ of its own |
|
it also returns the dicts of objects in the attributes that are list instances |
|
|
|
""" |
|
|
|
def dic(self): |
|
|
|
out = {} |
|
for k, v in self.__dict__.items(): |
|
if hasattr(v, 'dic'): |
|
out[k] = v.dic() |
|
elif isinstance(v, list): |
|
out[k] = self.list(v) |
|
else: |
|
out[k] = v |
|
return out |
|
|
|
@staticmethod |
|
def list(values): |
|
|
|
return [v.dic() if hasattr(v, 'dic') else v for v in values] |
|
|
|
|
|
class Label(BaseJsonLogger): |
|
""" |
|
For each bounding box there are various categories with confidences. Label class keeps track of that information. |
|
""" |
|
|
|
def __init__(self, category: str, confidence: float): |
|
self.category = category |
|
self.confidence = confidence |
|
|
|
|
|
class Bbox(BaseJsonLogger): |
|
""" |
|
This module stores the information for each frame and use them in JsonParser |
|
Attributes: |
|
labels (list): List of label module. |
|
top (int): |
|
left (int): |
|
width (int): |
|
height (int): |
|
|
|
Args: |
|
bbox_id (float): |
|
top (int): |
|
left (int): |
|
width (int): |
|
height (int): |
|
|
|
References: |
|
Check Label module for better understanding. |
|
|
|
|
|
""" |
|
|
|
def __init__(self, bbox_id, top, left, width, height): |
|
self.labels = [] |
|
self.bbox_id = bbox_id |
|
self.top = top |
|
self.left = left |
|
self.width = width |
|
self.height = height |
|
|
|
def add_label(self, category, confidence): |
|
|
|
self.labels.append(Label(category, confidence)) |
|
|
|
def labels_full(self, value): |
|
return len(self.labels) == value |
|
|
|
|
|
class Frame(BaseJsonLogger): |
|
""" |
|
This module stores the information for each frame and use them in JsonParser |
|
Attributes: |
|
timestamp (float): The elapsed time of captured frame |
|
frame_id (int): The frame number of the captured video |
|
bboxes (list of Bbox objects): Stores the list of bbox objects. |
|
|
|
References: |
|
Check Bbox class for better information |
|
|
|
Args: |
|
timestamp (float): |
|
frame_id (int): |
|
|
|
""" |
|
|
|
def __init__(self, frame_id: int, timestamp: float = None): |
|
self.frame_id = frame_id |
|
self.timestamp = timestamp |
|
self.bboxes = [] |
|
|
|
def add_bbox(self, bbox_id: int, top: int, left: int, width: int, height: int): |
|
bboxes_ids = [bbox.bbox_id for bbox in self.bboxes] |
|
if bbox_id not in bboxes_ids: |
|
self.bboxes.append(Bbox(bbox_id, top, left, width, height)) |
|
else: |
|
raise ValueError("Frame with id: {} already has a Bbox with id: {}".format(self.frame_id, bbox_id)) |
|
|
|
def add_label_to_bbox(self, bbox_id: int, category: str, confidence: float): |
|
bboxes = {bbox.id: bbox for bbox in self.bboxes} |
|
if bbox_id in bboxes.keys(): |
|
res = bboxes.get(bbox_id) |
|
res.add_label(category, confidence) |
|
else: |
|
raise ValueError('the bbox with id: {} does not exists!'.format(bbox_id)) |
|
|
|
|
|
class BboxToJsonLogger(BaseJsonLogger): |
|
""" |
|
ُ This module is designed to automate the task of logging jsons. An example json is used |
|
to show the contents of json file shortly |
|
Example: |
|
{ |
|
"video_details": { |
|
"frame_width": 1920, |
|
"frame_height": 1080, |
|
"frame_rate": 20, |
|
"video_name": "/home/gpu/codes/MSD/pedestrian_2/project/public/camera1.avi" |
|
}, |
|
"frames": [ |
|
{ |
|
"frame_id": 329, |
|
"timestamp": 3365.1254 |
|
"bboxes": [ |
|
{ |
|
"labels": [ |
|
{ |
|
"category": "pedestrian", |
|
"confidence": 0.9 |
|
} |
|
], |
|
"bbox_id": 0, |
|
"top": 1257, |
|
"left": 138, |
|
"width": 68, |
|
"height": 109 |
|
} |
|
] |
|
}], |
|
|
|
Attributes: |
|
frames (dict): It's a dictionary that maps each frame_id to json attributes. |
|
video_details (dict): information about video file. |
|
top_k_labels (int): shows the allowed number of labels |
|
start_time (datetime object): we use it to automate the json output by time. |
|
|
|
Args: |
|
top_k_labels (int): shows the allowed number of labels |
|
|
|
""" |
|
|
|
def __init__(self, top_k_labels: int = 1): |
|
self.frames = {} |
|
self.video_details = self.video_details = dict(frame_width=None, frame_height=None, frame_rate=None, |
|
video_name=None) |
|
self.top_k_labels = top_k_labels |
|
self.start_time = datetime.now() |
|
|
|
def set_top_k(self, value): |
|
self.top_k_labels = value |
|
|
|
def frame_exists(self, frame_id: int) -> bool: |
|
""" |
|
Args: |
|
frame_id (int): |
|
|
|
Returns: |
|
bool: true if frame_id is recognized |
|
""" |
|
return frame_id in self.frames.keys() |
|
|
|
def add_frame(self, frame_id: int, timestamp: float = None) -> None: |
|
""" |
|
Args: |
|
frame_id (int): |
|
timestamp (float): opencv captured frame time property |
|
|
|
Raises: |
|
ValueError: if frame_id would not exist in class frames attribute |
|
|
|
Returns: |
|
None |
|
|
|
""" |
|
if not self.frame_exists(frame_id): |
|
self.frames[frame_id] = Frame(frame_id, timestamp) |
|
else: |
|
raise ValueError("Frame id: {} already exists".format(frame_id)) |
|
|
|
def bbox_exists(self, frame_id: int, bbox_id: int) -> bool: |
|
""" |
|
Args: |
|
frame_id: |
|
bbox_id: |
|
|
|
Returns: |
|
bool: if bbox exists in frame bboxes list |
|
""" |
|
bboxes = [] |
|
if self.frame_exists(frame_id=frame_id): |
|
bboxes = [bbox.bbox_id for bbox in self.frames[frame_id].bboxes] |
|
return bbox_id in bboxes |
|
|
|
def find_bbox(self, frame_id: int, bbox_id: int): |
|
""" |
|
|
|
Args: |
|
frame_id: |
|
bbox_id: |
|
|
|
Returns: |
|
bbox_id (int): |
|
|
|
Raises: |
|
ValueError: if bbox_id does not exist in the bbox list of specific frame. |
|
""" |
|
if not self.bbox_exists(frame_id, bbox_id): |
|
raise ValueError("frame with id: {} does not contain bbox with id: {}".format(frame_id, bbox_id)) |
|
bboxes = {bbox.bbox_id: bbox for bbox in self.frames[frame_id].bboxes} |
|
return bboxes.get(bbox_id) |
|
|
|
def add_bbox_to_frame(self, frame_id: int, bbox_id: int, top: int, left: int, width: int, height: int) -> None: |
|
""" |
|
|
|
Args: |
|
frame_id (int): |
|
bbox_id (int): |
|
top (int): |
|
left (int): |
|
width (int): |
|
height (int): |
|
|
|
Returns: |
|
None |
|
|
|
Raises: |
|
ValueError: if bbox_id already exist in frame information with frame_id |
|
ValueError: if frame_id does not exist in frames attribute |
|
""" |
|
if self.frame_exists(frame_id): |
|
frame = self.frames[frame_id] |
|
if not self.bbox_exists(frame_id, bbox_id): |
|
frame.add_bbox(bbox_id, top, left, width, height) |
|
else: |
|
raise ValueError( |
|
"frame with frame_id: {} already contains the bbox with id: {} ".format(frame_id, bbox_id)) |
|
else: |
|
raise ValueError("frame with frame_id: {} does not exist".format(frame_id)) |
|
|
|
def add_label_to_bbox(self, frame_id: int, bbox_id: int, category: str, confidence: float): |
|
""" |
|
Args: |
|
frame_id: |
|
bbox_id: |
|
category: |
|
confidence: the confidence value returned from yolo detection |
|
|
|
Returns: |
|
None |
|
|
|
Raises: |
|
ValueError: if labels quota (top_k_labels) exceeds. |
|
""" |
|
bbox = self.find_bbox(frame_id, bbox_id) |
|
if not bbox.labels_full(self.top_k_labels): |
|
bbox.add_label(category, confidence) |
|
else: |
|
raise ValueError("labels in frame_id: {}, bbox_id: {} is fulled".format(frame_id, bbox_id)) |
|
|
|
def add_video_details(self, frame_width: int = None, frame_height: int = None, frame_rate: int = None, |
|
video_name: str = None): |
|
self.video_details['frame_width'] = frame_width |
|
self.video_details['frame_height'] = frame_height |
|
self.video_details['frame_rate'] = frame_rate |
|
self.video_details['video_name'] = video_name |
|
|
|
def output(self): |
|
output = {'video_details': self.video_details} |
|
result = list(self.frames.values()) |
|
output['frames'] = [item.dic() for item in result] |
|
return output |
|
|
|
def json_output(self, output_name): |
|
""" |
|
Args: |
|
output_name: |
|
|
|
Returns: |
|
None |
|
|
|
Notes: |
|
It creates the json output with `output_name` name. |
|
""" |
|
if not output_name.endswith('.json'): |
|
output_name += '.json' |
|
with open(output_name, 'w') as file: |
|
json.dump(self.output(), file) |
|
file.close() |
|
|
|
def set_start(self): |
|
self.start_time = datetime.now() |
|
|
|
def schedule_output_by_time(self, output_dir=JsonMeta.PATH_TO_SAVE, hours: int = 0, minutes: int = 0, |
|
seconds: int = 60) -> None: |
|
""" |
|
Notes: |
|
Creates folder and then periodically stores the jsons on that address. |
|
|
|
Args: |
|
output_dir (str): the directory where output files will be stored |
|
hours (int): |
|
minutes (int): |
|
seconds (int): |
|
|
|
Returns: |
|
None |
|
|
|
""" |
|
end = datetime.now() |
|
interval = 0 |
|
interval += abs(min([hours, JsonMeta.HOURS]) * 3600) |
|
interval += abs(min([minutes, JsonMeta.MINUTES]) * 60) |
|
interval += abs(min([seconds, JsonMeta.SECONDS])) |
|
diff = (end - self.start_time).seconds |
|
|
|
if diff > interval: |
|
output_name = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '.json' |
|
if not exists(output_dir): |
|
makedirs(output_dir) |
|
output = join(output_dir, output_name) |
|
self.json_output(output_name=output) |
|
self.frames = {} |
|
self.start_time = datetime.now() |
|
|
|
def schedule_output_by_frames(self, frames_quota, frame_counter, output_dir=JsonMeta.PATH_TO_SAVE): |
|
""" |
|
saves as the number of frames quota increases higher. |
|
:param frames_quota: |
|
:param frame_counter: |
|
:param output_dir: |
|
:return: |
|
""" |
|
pass |
|
|
|
def flush(self, output_dir): |
|
""" |
|
Notes: |
|
We use this function to output jsons whenever possible. |
|
like the time that we exit the while loop of opencv. |
|
|
|
Args: |
|
output_dir: |
|
|
|
Returns: |
|
None |
|
|
|
""" |
|
filename = self.start_time.strftime('%Y-%m-%d %H-%M-%S') + '-remaining.json' |
|
output = join(output_dir, filename) |
|
self.json_output(output_name=output) |
|
|