deep_sort_yolov3 / webserver /rtsp_threaded_tracker.py
NamYeongCho's picture
Upload entire local dataset folder
443c61f verified
import warnings
from os import getenv
import sys
from os.path import dirname, abspath
sys.path.append(dirname(dirname(abspath(__file__))))
import torch
from deep_sort import build_tracker
from detector import build_detector
import cv2
from utils.draw import compute_color_for_labels
from concurrent.futures import ThreadPoolExecutor
from redis import Redis
redis_cache = Redis('127.0.0.1')
class RealTimeTracking(object):
"""
This class is built to get frame from rtsp link and continuously
assign each frame to an attribute namely as frame in order to
compensate the network packet loss. then we use flask to give it
as service to client.
Args:
args: parse_args inputs
cfg: deepsort dict and yolo-model cfg from server_cfg file
"""
def __init__(self, cfg, args):
# Create a VideoCapture object
self.cfg = cfg
self.args = args
use_cuda = self.args.use_cuda and torch.cuda.is_available()
if not use_cuda:
warnings.warn(UserWarning("Running in cpu mode!"))
self.detector = build_detector(cfg, use_cuda=use_cuda)
self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
self.class_names = self.detector.class_names
self.vdo = cv2.VideoCapture(self.args.input)
self.status, self.frame = None, None
self.total_frames = int(cv2.VideoCapture.get(self.vdo, cv2.CAP_PROP_FRAME_COUNT))
self.im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
self.im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
self.output_frame = None
self.thread = ThreadPoolExecutor(max_workers=1)
self.thread.submit(self.update)
def update(self):
while True:
if self.vdo.isOpened():
(self.status, self.frame) = self.vdo.read()
def run(self):
print('streaming started ...')
while getenv('in_progress') != 'off':
try:
frame = self.frame.copy()
self.detection(frame=frame)
frame_to_bytes = cv2.imencode('.jpg', frame)[1].tobytes()
redis_cache.set('frame', frame_to_bytes)
except AttributeError:
pass
print('streaming stopped ...')
def detection(self, frame):
im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# do detection
bbox_xywh, cls_conf, cls_ids = self.detector(im)
if bbox_xywh is not None:
# select person class
mask = cls_ids == 0
bbox_xywh = bbox_xywh[mask]
bbox_xywh[:, 3:] *= 1.2 # bbox dilation just in case bbox too small
cls_conf = cls_conf[mask]
# do tracking
outputs = self.deepsort.update(bbox_xywh, cls_conf, im)
# draw boxes for visualization
if len(outputs) > 0:
self.draw_boxes(img=frame, output=outputs)
@staticmethod
def draw_boxes(img, output, offset=(0, 0)):
for i, box in enumerate(output):
x1, y1, x2, y2, identity = [int(ii) for ii in box]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
# box text and bar
color = compute_color_for_labels(identity)
label = '{}{:d}'.format("", identity)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
cv2.rectangle(img, (x1, y1), (x2, y2), color, 3)
cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1)
cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2)
return img