|
""" |
|
|
|
# TODO: Load ML model with redis and keep it for sometime. |
|
1- detector/yolov3/detector.py |=> yolov3 weightfile -> redis cache |
|
2- deepsort/deep/feature_extractor |=> model_path -> redis cache |
|
3- Use tmpfs (Insert RAM as a virtual disk and store model state): https://pypi.org/project/memory-tempfile/ |
|
|
|
""" |
|
from os.path import join |
|
from os import getenv, environ |
|
from dotenv import load_dotenv |
|
import argparse |
|
from threading import Thread |
|
|
|
from redis import Redis |
|
from flask import Response, Flask, jsonify, request, abort |
|
|
|
from rtsp_threaded_tracker import RealTimeTracking |
|
from server_cfg import model, deep_sort_dict |
|
from config.config import DevelopmentConfig |
|
from utils.parser import get_config |
|
|
|
redis_cache = Redis('127.0.0.1') |
|
app = Flask(__name__) |
|
environ['in_progress'] = 'off' |
|
|
|
|
|
def parse_args(): |
|
""" |
|
Parses the arguments |
|
Returns: |
|
argparse Namespace |
|
""" |
|
assert 'project_root' in environ.keys() |
|
project_root = getenv('project_root') |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--input", |
|
type=str, |
|
default=getenv('camera_stream')) |
|
|
|
parser.add_argument("--model", |
|
type=str, |
|
default=join(project_root, |
|
getenv('model_type'))) |
|
|
|
parser.add_argument("--cpu", |
|
dest="use_cuda", |
|
action="store_false", default=True) |
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
def gen(): |
|
""" |
|
|
|
Returns: video frames from redis cache |
|
|
|
""" |
|
while True: |
|
frame = redis_cache.get('frame') |
|
if frame is not None: |
|
yield b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n' |
|
|
|
|
|
def pedestrian_tracking(cfg, args): |
|
""" |
|
starts the pedestrian detection on rtsp link |
|
Args: |
|
cfg: |
|
args: |
|
|
|
Returns: |
|
|
|
""" |
|
tracker = RealTimeTracking(cfg, args) |
|
tracker.run() |
|
|
|
|
|
def trigger_process(cfg, args): |
|
""" |
|
triggers pedestrian_tracking process on rtsp link using a thread |
|
Args: |
|
cfg: |
|
args: |
|
|
|
Returns: |
|
""" |
|
try: |
|
t = Thread(target=pedestrian_tracking, args=(cfg, args)) |
|
t.start() |
|
return jsonify({"message": "Pedestrian detection started successfully"}) |
|
except Exception: |
|
return jsonify({'message': "Unexpected exception occured in process"}) |
|
|
|
|
|
@app.errorhandler(400) |
|
def bad_argument(error): |
|
return jsonify({'message': error.description['message']}) |
|
|
|
|
|
|
|
@app.route('/stream', methods=['GET']) |
|
def stream(): |
|
""" |
|
Provides video frames on http link |
|
Returns: |
|
|
|
""" |
|
return Response(gen(), |
|
mimetype='multipart/x-mixed-replace; boundary=frame') |
|
|
|
|
|
@app.route("/run", methods=['GET']) |
|
def process_manager(): |
|
""" |
|
request parameters: |
|
run (bool): 1 -> start the pedestrian tracking |
|
0 -> stop it |
|
camera_stream: str -> rtsp link to security camera |
|
|
|
:return: |
|
""" |
|
|
|
data = request.args |
|
status = data['run'] |
|
status = int(status) if status.isnumeric() else abort(400, {'message': f"bad argument for run {data['run']}"}) |
|
if status == 1: |
|
|
|
try: |
|
if environ.get('in_progress', 'off') == 'off': |
|
global cfg, args |
|
vdo = data.get('camera_stream') |
|
if vdo is not None: |
|
args.input = int(vdo) |
|
environ['in_progress'] = 'on' |
|
return trigger_process(cfg, args) |
|
elif environ.get('in_progress') == 'on': |
|
|
|
return jsonify({"message": " Pedestrian detection is already in progress."}) |
|
except Exception: |
|
environ['in_progress'] = 'off' |
|
return abort(503) |
|
elif status == 0: |
|
if environ.get('in_progress', 'off') == 'off': |
|
return jsonify({"message": "pedestrian detection is already terminated!"}) |
|
else: |
|
environ['in_progress'] = 'off' |
|
return jsonify({"message": "Pedestrian detection terminated!"}) |
|
|
|
|
|
if __name__ == '__main__': |
|
load_dotenv() |
|
app.config.from_object(DevelopmentConfig) |
|
|
|
|
|
args = parse_args() |
|
cfg = get_config() |
|
cfg.merge_from_dict(model) |
|
cfg.merge_from_dict(deep_sort_dict) |
|
|
|
app.run() |
|
|