deep_sort_yolov3 / webserver /rtsp_webserver.py
NamYeongCho's picture
Upload entire local dataset folder
443c61f verified
"""
# TODO: Load ML model with redis and keep it for sometime.
1- detector/yolov3/detector.py |=> yolov3 weightfile -> redis cache
2- deepsort/deep/feature_extractor |=> model_path -> redis cache
3- Use tmpfs (Insert RAM as a virtual disk and store model state): https://pypi.org/project/memory-tempfile/
"""
from os.path import join
from os import getenv, environ
from dotenv import load_dotenv
import argparse
from threading import Thread
from redis import Redis
from flask import Response, Flask, jsonify, request, abort
from rtsp_threaded_tracker import RealTimeTracking
from server_cfg import model, deep_sort_dict
from config.config import DevelopmentConfig
from utils.parser import get_config
redis_cache = Redis('127.0.0.1')
app = Flask(__name__)
environ['in_progress'] = 'off'
def parse_args():
"""
Parses the arguments
Returns:
argparse Namespace
"""
assert 'project_root' in environ.keys()
project_root = getenv('project_root')
parser = argparse.ArgumentParser()
parser.add_argument("--input",
type=str,
default=getenv('camera_stream'))
parser.add_argument("--model",
type=str,
default=join(project_root,
getenv('model_type')))
parser.add_argument("--cpu",
dest="use_cuda",
action="store_false", default=True)
args = parser.parse_args()
return args
def gen():
"""
Returns: video frames from redis cache
"""
while True:
frame = redis_cache.get('frame')
if frame is not None:
yield b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n'
def pedestrian_tracking(cfg, args):
"""
starts the pedestrian detection on rtsp link
Args:
cfg:
args:
Returns:
"""
tracker = RealTimeTracking(cfg, args)
tracker.run()
def trigger_process(cfg, args):
"""
triggers pedestrian_tracking process on rtsp link using a thread
Args:
cfg:
args:
Returns:
"""
try:
t = Thread(target=pedestrian_tracking, args=(cfg, args))
t.start()
return jsonify({"message": "Pedestrian detection started successfully"})
except Exception:
return jsonify({'message': "Unexpected exception occured in process"})
@app.errorhandler(400)
def bad_argument(error):
return jsonify({'message': error.description['message']})
# Routes
@app.route('/stream', methods=['GET'])
def stream():
"""
Provides video frames on http link
Returns:
"""
return Response(gen(),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route("/run", methods=['GET'])
def process_manager():
"""
request parameters:
run (bool): 1 -> start the pedestrian tracking
0 -> stop it
camera_stream: str -> rtsp link to security camera
:return:
"""
# data = request.args
data = request.args
status = data['run']
status = int(status) if status.isnumeric() else abort(400, {'message': f"bad argument for run {data['run']}"})
if status == 1:
# if pedestrian tracking is not running, start it off!
try:
if environ.get('in_progress', 'off') == 'off':
global cfg, args
vdo = data.get('camera_stream')
if vdo is not None:
args.input = int(vdo)
environ['in_progress'] = 'on'
return trigger_process(cfg, args)
elif environ.get('in_progress') == 'on':
# if pedestrian tracking is running, don't start another one (we are short of gpu resources)
return jsonify({"message": " Pedestrian detection is already in progress."})
except Exception:
environ['in_progress'] = 'off'
return abort(503)
elif status == 0:
if environ.get('in_progress', 'off') == 'off':
return jsonify({"message": "pedestrian detection is already terminated!"})
else:
environ['in_progress'] = 'off'
return jsonify({"message": "Pedestrian detection terminated!"})
if __name__ == '__main__':
load_dotenv()
app.config.from_object(DevelopmentConfig)
# BackProcess Initialization
args = parse_args()
cfg = get_config()
cfg.merge_from_dict(model)
cfg.merge_from_dict(deep_sort_dict)
# Start the flask app
app.run()