metadata
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: string
splits:
- name: train
num_bytes: 40279487
num_examples: 513
download_size: 40287929
dataset_size: 40279487
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
UBC-OCEAN
UBC Ovarian Cancer Subtype Classification and Outlier Detection [UBC-OCEAN] is the world's most extensive ovarian cancer dataset of histopathology images obtained from more than 20 medical centers.
Navigating Ovarian Cancer: Unveiling Common Histotypes and Unearthing Rare Variants
Citation
@misc{UBC-OCEAN,
author = {Ali Bashashati, Hossein Farahani, OTTA Consortium, Anthony Karnezis, Ardalan Akbari, Sirim Kim, Ashley Chow, Sohier Dane, Allen Zhang, Maryam Asadi},
title = {UBC Ovarian Cancer Subtype Classification and Outlier Detection (UBC-OCEAN)},
publisher = {Kaggle},
year = {2023},
url = {https://kaggle.com/competitions/UBC-OCEAN}
}