Datasets:
image
imagewidth (px) 2.04k
11k
| unique_id
stringlengths 14
14
| width
int32 2.04k
11k
| height
int32 2.12k
9.52k
| image_mode_on_disk
stringclasses 1
value | original_file_format
stringclasses 1
value |
---|---|---|---|---|---|
img_00001_fbd6 | 3,375 | 6,000 | RGB | JPEG |
|
img_00002_0e73 | 4,975 | 3,317 | RGB | JPEG |
|
img_00003_67ef | 3,121 | 4,689 | RGB | JPEG |
|
img_00004_f817 | 4,896 | 3,264 | RGB | JPEG |
|
img_00005_088e | 6,016 | 4,016 | RGB | JPEG |
|
img_00006_29b5 | 6,048 | 4,024 | RGB | JPEG |
|
img_00007_5a71 | 4,000 | 6,000 | RGB | JPEG |
|
img_00008_6c33 | 5,923 | 3,949 | RGB | JPEG |
|
img_00009_63cb | 6,048 | 8,064 | RGB | JPEG |
|
img_00010_c013 | 5,836 | 3,891 | RGB | JPEG |
|
img_00011_486c | 6,400 | 4,267 | RGB | JPEG |
|
img_00012_2c02 | 6,720 | 4,480 | RGB | JPEG |
|
img_00013_4624 | 4,016 | 6,016 | RGB | JPEG |
|
img_00014_47aa | 5,450 | 3,637 | RGB | JPEG |
|
img_00015_9f74 | 5,546 | 3,697 | RGB | JPEG |
|
img_00016_29da | 5,976 | 3,984 | RGB | JPEG |
|
img_00017_94f8 | 5,257 | 3,505 | RGB | JPEG |
|
img_00018_9735 | 3,879 | 5,819 | RGB | JPEG |
|
img_00019_85d4 | 8,000 | 4,504 | RGB | JPEG |
|
img_00020_e26b | 9,504 | 6,336 | RGB | JPEG |
|
img_00021_89ed | 4,331 | 4,768 | RGB | JPEG |
|
img_00022_66c8 | 4,672 | 7,008 | RGB | JPEG |
|
img_00023_f425 | 3,861 | 5,677 | RGB | JPEG |
|
img_00024_a34e | 4,000 | 6,000 | RGB | JPEG |
|
img_00025_2f00 | 2,730 | 3,641 | RGB | JPEG |
|
img_00026_0fc3 | 3,200 | 4,800 | RGB | JPEG |
|
img_00027_35c9 | 4,032 | 3,024 | RGB | JPEG |
|
img_00028_d150 | 5,610 | 3,740 | RGB | JPEG |
|
img_00029_83d3 | 4,016 | 6,016 | RGB | JPEG |
|
img_00030_ad6e | 3,000 | 4,831 | RGB | JPEG |
|
img_00031_2c46 | 4,000 | 6,000 | RGB | JPEG |
|
img_00032_7973 | 5,616 | 3,744 | RGB | JPEG |
|
img_00033_a1f3 | 5,716 | 3,216 | RGB | JPEG |
|
img_00034_cc65 | 6,914 | 4,731 | RGB | JPEG |
|
img_00035_7ec3 | 6,016 | 4,000 | RGB | JPEG |
|
img_00036_9016 | 3,264 | 4,896 | RGB | JPEG |
|
img_00037_282b | 3,264 | 4,928 | RGB | JPEG |
|
img_00038_2cd4 | 3,888 | 6,000 | RGB | JPEG |
|
img_00039_cbd2 | 3,376 | 6,000 | RGB | JPEG |
|
img_00040_a659 | 5,289 | 7,929 | RGB | JPEG |
|
img_00041_7da6 | 2,624 | 3,936 | RGB | JPEG |
|
img_00042_4f23 | 4,032 | 2,268 | RGB | JPEG |
|
img_00043_c14b | 6,955 | 4,637 | RGB | JPEG |
|
img_00044_c09c | 4,669 | 7,000 | RGB | JPEG |
|
img_00045_2b77 | 3,952 | 5,928 | RGB | JPEG |
|
img_00046_3837 | 3,456 | 4,608 | RGB | JPEG |
|
img_00047_3c6a | 4,000 | 5,000 | RGB | JPEG |
|
img_00048_058b | 2,228 | 3,963 | RGB | JPEG |
|
img_00049_7d2e | 6,336 | 9,520 | RGB | JPEG |
|
img_00050_fb36 | 4,608 | 2,592 | RGB | JPEG |
|
img_00051_0686 | 5,743 | 3,836 | RGB | JPEG |
|
img_00052_2ea3 | 7,589 | 5,062 | RGB | JPEG |
|
img_00053_757c | 6,016 | 4,016 | RGB | JPEG |
|
img_00054_52d2 | 2,818 | 4,928 | RGB | JPEG |
|
img_00055_8231 | 3,024 | 4,032 | RGB | JPEG |
|
img_00056_7fd2 | 6,691 | 4,281 | RGB | JPEG |
|
img_00057_8ef4 | 2,750 | 2,115 | RGB | JPEG |
|
img_00058_a95d | 2,043 | 3,047 | RGB | JPEG |
|
img_00059_ac6a | 3,835 | 5,755 | RGB | JPEG |
|
img_00060_2738 | 4,553 | 2,561 | RGB | JPEG |
|
img_00061_787f | 3,176 | 4,795 | RGB | JPEG |
|
img_00062_821c | 3,389 | 5,083 | RGB | JPEG |
|
img_00063_a933 | 3,648 | 5,472 | RGB | JPEG |
|
img_00064_d5e9 | 5,464 | 3,640 | RGB | JPEG |
|
img_00065_efd7 | 3,665 | 5,498 | RGB | JPEG |
|
img_00066_45ab | 6,240 | 3,512 | RGB | JPEG |
|
img_00067_2e53 | 3,648 | 4,752 | RGB | JPEG |
|
img_00068_686e | 3,150 | 4,200 | RGB | JPEG |
|
img_00069_4a7e | 5,504 | 7,496 | RGB | JPEG |
|
img_00070_13dc | 7,952 | 5,304 | RGB | JPEG |
|
img_00071_9a0a | 5,135 | 7,698 | RGB | JPEG |
|
img_00072_74f2 | 4,160 | 6,240 | RGB | JPEG |
|
img_00073_8c8f | 8,192 | 4,684 | RGB | JPEG |
|
img_00074_fdf0 | 7,360 | 4,912 | RGB | JPEG |
|
img_00075_758b | 5,803 | 4,690 | RGB | JPEG |
|
img_00076_d146 | 6,144 | 8,192 | RGB | JPEG |
|
img_00077_1054 | 5,304 | 7,072 | RGB | JPEG |
|
img_00078_d8bc | 6,240 | 4,160 | RGB | JPEG |
|
img_00079_a6e8 | 5,288 | 6,630 | RGB | JPEG |
|
img_00080_8cca | 7,199 | 4,587 | RGB | JPEG |
|
img_00081_d9ff | 7,360 | 4,912 | RGB | JPEG |
|
img_00082_94f6 | 4,160 | 6,240 | RGB | JPEG |
|
img_00083_7183 | 7,500 | 5,000 | RGB | JPEG |
|
img_00084_533d | 4,160 | 6,240 | RGB | JPEG |
|
img_00085_5d79 | 6,240 | 4,160 | RGB | JPEG |
|
img_00086_6f5d | 4,749 | 7,360 | RGB | JPEG |
|
img_00087_88e8 | 5,433 | 7,323 | RGB | JPEG |
|
img_00088_d400 | 5,993 | 5,770 | RGB | JPEG |
|
img_00089_e51b | 7,072 | 5,304 | RGB | JPEG |
|
img_00090_609c | 7,072 | 5,304 | RGB | JPEG |
|
img_00091_2e18 | 6,739 | 4,497 | RGB | JPEG |
|
img_00092_bbd6 | 2,868 | 4,914 | RGB | JPEG |
|
img_00093_1582 | 5,901 | 3,934 | RGB | JPEG |
|
img_00094_f345 | 5,340 | 3,004 | RGB | JPEG |
|
img_00095_3c27 | 7,219 | 4,061 | RGB | JPEG |
|
img_00096_c08d | 5,542 | 3,117 | RGB | JPEG |
|
img_00097_b237 | 6,000 | 4,000 | RGB | JPEG |
|
img_00098_9fac | 6,000 | 3,499 | RGB | JPEG |
|
img_00099_8735 | 5,510 | 3,559 | RGB | JPEG |
|
img_00100_85b9 | 5,671 | 3,998 | RGB | JPEG |
Churches
High resolution image subset from the Aesthetic-Train-V2 dataset, a collection of Church buildings including facades, interior shots and landscapes.
Dataset Details
- Curator: Roscosmos
- Version: 1.0.0
- Total Images: 780
- Average Image Size (on disk): ~5.8 MB compressed
- Primary Content: Church buildings
- Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.
Dataset Creation & Provenance
1. Original Master Dataset
This dataset is a subset derived from:
zhang0jhon/Aesthetic-Train-V2
- Link: https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
- Providence: Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
- Original License: MIT
2. Iterative Curation Methodology
CLIP retrieval / manual curation.
Dataset Structure & Content
This dataset offers the following configurations/subsets:
Default (Full
train
data) configuration: Contains the full, high-resolution image data and associated metadata. Each example (row) in the dataset contains the following fields:image
: The actual image data. In the default (full) configuration.unique_id
: A unique identifier assigned to each image.width
: The width of the image in pixels (from the full-resolution image).height
: The height of the image in pixels (from the full-resolution image).
Usage
To download and load this dataset from the Hugging Face Hub:
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Church_Buildings", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
Citation
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
Contact
N/A
- Downloads last month
- 10