Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
2.04k
11k
unique_id
stringlengths
14
14
width
int32
2.04k
11k
height
int32
2.12k
9.52k
image_mode_on_disk
stringclasses
1 value
original_file_format
stringclasses
1 value
img_00001_fbd6
3,375
6,000
RGB
JPEG
img_00002_0e73
4,975
3,317
RGB
JPEG
img_00003_67ef
3,121
4,689
RGB
JPEG
img_00004_f817
4,896
3,264
RGB
JPEG
img_00005_088e
6,016
4,016
RGB
JPEG
img_00006_29b5
6,048
4,024
RGB
JPEG
img_00007_5a71
4,000
6,000
RGB
JPEG
img_00008_6c33
5,923
3,949
RGB
JPEG
img_00009_63cb
6,048
8,064
RGB
JPEG
img_00010_c013
5,836
3,891
RGB
JPEG
img_00011_486c
6,400
4,267
RGB
JPEG
img_00012_2c02
6,720
4,480
RGB
JPEG
img_00013_4624
4,016
6,016
RGB
JPEG
img_00014_47aa
5,450
3,637
RGB
JPEG
img_00015_9f74
5,546
3,697
RGB
JPEG
img_00016_29da
5,976
3,984
RGB
JPEG
img_00017_94f8
5,257
3,505
RGB
JPEG
img_00018_9735
3,879
5,819
RGB
JPEG
img_00019_85d4
8,000
4,504
RGB
JPEG
img_00020_e26b
9,504
6,336
RGB
JPEG
img_00021_89ed
4,331
4,768
RGB
JPEG
img_00022_66c8
4,672
7,008
RGB
JPEG
img_00023_f425
3,861
5,677
RGB
JPEG
img_00024_a34e
4,000
6,000
RGB
JPEG
img_00025_2f00
2,730
3,641
RGB
JPEG
img_00026_0fc3
3,200
4,800
RGB
JPEG
img_00027_35c9
4,032
3,024
RGB
JPEG
img_00028_d150
5,610
3,740
RGB
JPEG
img_00029_83d3
4,016
6,016
RGB
JPEG
img_00030_ad6e
3,000
4,831
RGB
JPEG
img_00031_2c46
4,000
6,000
RGB
JPEG
img_00032_7973
5,616
3,744
RGB
JPEG
img_00033_a1f3
5,716
3,216
RGB
JPEG
img_00034_cc65
6,914
4,731
RGB
JPEG
img_00035_7ec3
6,016
4,000
RGB
JPEG
img_00036_9016
3,264
4,896
RGB
JPEG
img_00037_282b
3,264
4,928
RGB
JPEG
img_00038_2cd4
3,888
6,000
RGB
JPEG
img_00039_cbd2
3,376
6,000
RGB
JPEG
img_00040_a659
5,289
7,929
RGB
JPEG
img_00041_7da6
2,624
3,936
RGB
JPEG
img_00042_4f23
4,032
2,268
RGB
JPEG
img_00043_c14b
6,955
4,637
RGB
JPEG
img_00044_c09c
4,669
7,000
RGB
JPEG
img_00045_2b77
3,952
5,928
RGB
JPEG
img_00046_3837
3,456
4,608
RGB
JPEG
img_00047_3c6a
4,000
5,000
RGB
JPEG
img_00048_058b
2,228
3,963
RGB
JPEG
img_00049_7d2e
6,336
9,520
RGB
JPEG
img_00050_fb36
4,608
2,592
RGB
JPEG
img_00051_0686
5,743
3,836
RGB
JPEG
img_00052_2ea3
7,589
5,062
RGB
JPEG
img_00053_757c
6,016
4,016
RGB
JPEG
img_00054_52d2
2,818
4,928
RGB
JPEG
img_00055_8231
3,024
4,032
RGB
JPEG
img_00056_7fd2
6,691
4,281
RGB
JPEG
img_00057_8ef4
2,750
2,115
RGB
JPEG
img_00058_a95d
2,043
3,047
RGB
JPEG
img_00059_ac6a
3,835
5,755
RGB
JPEG
img_00060_2738
4,553
2,561
RGB
JPEG
img_00061_787f
3,176
4,795
RGB
JPEG
img_00062_821c
3,389
5,083
RGB
JPEG
img_00063_a933
3,648
5,472
RGB
JPEG
img_00064_d5e9
5,464
3,640
RGB
JPEG
img_00065_efd7
3,665
5,498
RGB
JPEG
img_00066_45ab
6,240
3,512
RGB
JPEG
img_00067_2e53
3,648
4,752
RGB
JPEG
img_00068_686e
3,150
4,200
RGB
JPEG
img_00069_4a7e
5,504
7,496
RGB
JPEG
img_00070_13dc
7,952
5,304
RGB
JPEG
img_00071_9a0a
5,135
7,698
RGB
JPEG
img_00072_74f2
4,160
6,240
RGB
JPEG
img_00073_8c8f
8,192
4,684
RGB
JPEG
img_00074_fdf0
7,360
4,912
RGB
JPEG
img_00075_758b
5,803
4,690
RGB
JPEG
img_00076_d146
6,144
8,192
RGB
JPEG
img_00077_1054
5,304
7,072
RGB
JPEG
img_00078_d8bc
6,240
4,160
RGB
JPEG
img_00079_a6e8
5,288
6,630
RGB
JPEG
img_00080_8cca
7,199
4,587
RGB
JPEG
img_00081_d9ff
7,360
4,912
RGB
JPEG
img_00082_94f6
4,160
6,240
RGB
JPEG
img_00083_7183
7,500
5,000
RGB
JPEG
img_00084_533d
4,160
6,240
RGB
JPEG
img_00085_5d79
6,240
4,160
RGB
JPEG
img_00086_6f5d
4,749
7,360
RGB
JPEG
img_00087_88e8
5,433
7,323
RGB
JPEG
img_00088_d400
5,993
5,770
RGB
JPEG
img_00089_e51b
7,072
5,304
RGB
JPEG
img_00090_609c
7,072
5,304
RGB
JPEG
img_00091_2e18
6,739
4,497
RGB
JPEG
img_00092_bbd6
2,868
4,914
RGB
JPEG
img_00093_1582
5,901
3,934
RGB
JPEG
img_00094_f345
5,340
3,004
RGB
JPEG
img_00095_3c27
7,219
4,061
RGB
JPEG
img_00096_c08d
5,542
3,117
RGB
JPEG
img_00097_b237
6,000
4,000
RGB
JPEG
img_00098_9fac
6,000
3,499
RGB
JPEG
img_00099_8735
5,510
3,559
RGB
JPEG
img_00100_85b9
5,671
3,998
RGB
JPEG
End of preview. Expand in Data Studio

Churches

High resolution image subset from the Aesthetic-Train-V2 dataset, a collection of Church buildings including facades, interior shots and landscapes.

Dataset Details

  • Curator: Roscosmos
  • Version: 1.0.0
  • Total Images: 780
  • Average Image Size (on disk): ~5.8 MB compressed
  • Primary Content: Church buildings
  • Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.

Dataset Creation & Provenance

1. Original Master Dataset

This dataset is a subset derived from: zhang0jhon/Aesthetic-Train-V2

2. Iterative Curation Methodology

CLIP retrieval / manual curation.

Dataset Structure & Content

This dataset offers the following configurations/subsets:

  • Default (Full train data) configuration: Contains the full, high-resolution image data and associated metadata. Each example (row) in the dataset contains the following fields:

  • image: The actual image data. In the default (full) configuration.

  • unique_id: A unique identifier assigned to each image.

  • width: The width of the image in pixels (from the full-resolution image).

  • height: The height of the image in pixels (from the full-resolution image).

Usage

To download and load this dataset from the Hugging Face Hub:


from datasets import load_dataset, Dataset, DatasetDict

# Login using e.g. `huggingface-cli login` to access this dataset

# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Church_Buildings", "default")

print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")

if isinstance(ds_main, Dataset):
    print(f"Number of samples: {len(ds_main)}")
    print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
    print(f"Available splits: {list(ds_main.keys())}")
    for split_name, dataset_obj in ds_main.items():
        print(f"  Split '{split_name}': {len(dataset_obj)} samples")
        print(f"  Features of '{split_name}': {dataset_obj.features}")

Citation

@inproceedings{zhang2025diffusion4k,
    title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
    title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    note={arXiv:2506.01331},
}

Disclaimer and Bias Considerations

Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.

Contact

N/A

Downloads last month
10