index
int64 0
180k
| image
imagewidth (px) 224
512
| size
int64 224
512
| category
stringclasses 12
values | class_id
stringclasses 80
values | model
stringclasses 4
values | gen_type
stringclasses 3
values | reference
bool 1
class |
---|---|---|---|---|---|---|---|
0 | 224 |
animal
|
25
|
GALIP
|
T2I
| false |
|
1 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
2 | 224 |
vehicle
|
7
|
GALIP
|
T2I
| false |
|
3 | 224 |
food
|
52
|
GALIP
|
T2I
| false |
|
4 | 224 |
sports
|
41
|
GALIP
|
T2I
| false |
|
5 | 224 |
animal
|
24
|
GALIP
|
T2I
| false |
|
6 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
7 | 224 |
vehicle
|
3
|
GALIP
|
T2I
| false |
|
8 | 224 |
furniture
|
62
|
GALIP
|
T2I
| false |
|
9 | 224 |
sports
|
37
|
GALIP
|
T2I
| false |
|
10 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
11 | 224 |
food
|
56
|
GALIP
|
T2I
| false |
|
12 | 224 |
kitchen
|
47
|
GALIP
|
T2I
| false |
|
13 | 224 |
animal
|
24
|
GALIP
|
T2I
| false |
|
14 | 224 |
vehicle
|
5
|
GALIP
|
T2I
| false |
|
15 | 224 |
animal
|
23
|
GALIP
|
T2I
| false |
|
16 | 224 |
electronic
|
77
|
GALIP
|
T2I
| false |
|
17 | 224 |
kitchen
|
50
|
GALIP
|
T2I
| false |
|
18 | 224 |
electronic
|
76
|
GALIP
|
T2I
| false |
|
19 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
20 | 224 |
electronic
|
77
|
GALIP
|
T2I
| false |
|
21 | 224 |
animal
|
23
|
GALIP
|
T2I
| false |
|
22 | 224 |
vehicle
|
5
|
GALIP
|
T2I
| false |
|
23 | 224 |
animal
|
25
|
GALIP
|
T2I
| false |
|
24 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
25 | 224 |
animal
|
22
|
GALIP
|
T2I
| false |
|
26 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
27 | 224 |
kitchen
|
49
|
GALIP
|
T2I
| false |
|
28 | 224 | null | null |
GALIP
|
T2I
| false |
|
29 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
30 | 224 |
accessory
|
33
|
GALIP
|
T2I
| false |
|
31 | 224 |
electronic
|
75
|
GALIP
|
T2I
| false |
|
32 | 224 |
indoor
|
85
|
GALIP
|
T2I
| false |
|
33 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
34 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
35 | 224 | null | null |
GALIP
|
T2I
| false |
|
36 | 224 |
kitchen
|
51
|
GALIP
|
T2I
| false |
|
37 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
38 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
39 | 224 |
kitchen
|
51
|
GALIP
|
T2I
| false |
|
40 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
41 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
42 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
43 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
44 | 224 |
outdoor
|
10
|
GALIP
|
T2I
| false |
|
45 | 224 |
vehicle
|
3
|
GALIP
|
T2I
| false |
|
46 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
47 | 224 |
indoor
|
86
|
GALIP
|
T2I
| false |
|
48 | 224 |
furniture
|
64
|
GALIP
|
T2I
| false |
|
49 | 224 |
animal
|
16
|
GALIP
|
T2I
| false |
|
50 | 224 |
indoor
|
84
|
GALIP
|
T2I
| false |
|
51 | 224 |
kitchen
|
51
|
GALIP
|
T2I
| false |
|
52 | 224 |
food
|
54
|
GALIP
|
T2I
| false |
|
53 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
54 | 224 |
animal
|
22
|
GALIP
|
T2I
| false |
|
55 | 224 |
indoor
|
84
|
GALIP
|
T2I
| false |
|
56 | 224 |
furniture
|
62
|
GALIP
|
T2I
| false |
|
57 | 224 |
accessory
|
31
|
GALIP
|
T2I
| false |
|
58 | 224 |
outdoor
|
10
|
GALIP
|
T2I
| false |
|
59 | 224 |
vehicle
|
8
|
GALIP
|
T2I
| false |
|
60 | 224 |
vehicle
|
2
|
GALIP
|
T2I
| false |
|
61 | 224 |
sports
|
41
|
GALIP
|
T2I
| false |
|
62 | 224 |
vehicle
|
8
|
GALIP
|
T2I
| false |
|
63 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
64 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
65 | 224 |
food
|
53
|
GALIP
|
T2I
| false |
|
66 | 224 |
food
|
54
|
GALIP
|
T2I
| false |
|
67 | 224 | null | null |
GALIP
|
T2I
| false |
|
68 | 224 |
indoor
|
86
|
GALIP
|
T2I
| false |
|
69 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
70 | 224 |
indoor
|
85
|
GALIP
|
T2I
| false |
|
71 | 224 |
accessory
|
27
|
GALIP
|
T2I
| false |
|
72 | 224 |
sports
|
42
|
GALIP
|
T2I
| false |
|
73 | 224 |
furniture
|
62
|
GALIP
|
T2I
| false |
|
74 | 224 |
food
|
54
|
GALIP
|
T2I
| false |
|
75 | 224 |
animal
|
24
|
GALIP
|
T2I
| false |
|
76 | 224 |
sports
|
37
|
GALIP
|
T2I
| false |
|
77 | 224 |
animal
|
22
|
GALIP
|
T2I
| false |
|
78 | 224 |
animal
|
17
|
GALIP
|
T2I
| false |
|
79 | 224 |
sports
|
42
|
GALIP
|
T2I
| false |
|
80 | 224 |
furniture
|
67
|
GALIP
|
T2I
| false |
|
81 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
82 | 224 |
appliance
|
82
|
GALIP
|
T2I
| false |
|
83 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
84 | 224 |
indoor
|
85
|
GALIP
|
T2I
| false |
|
85 | 224 |
food
|
57
|
GALIP
|
T2I
| false |
|
86 | 224 |
animal
|
19
|
GALIP
|
T2I
| false |
|
87 | 224 |
electronic
|
76
|
GALIP
|
T2I
| false |
|
88 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
89 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
90 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
91 | 224 |
vehicle
|
9
|
GALIP
|
T2I
| false |
|
92 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
93 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
94 | 224 |
indoor
|
84
|
GALIP
|
T2I
| false |
|
95 | 224 |
vehicle
|
4
|
GALIP
|
T2I
| false |
|
96 | 224 |
indoor
|
85
|
GALIP
|
T2I
| false |
|
97 | 224 |
person
|
1
|
GALIP
|
T2I
| false |
|
98 | 224 |
outdoor
|
15
|
GALIP
|
T2I
| false |
|
99 | 224 |
vehicle
|
7
|
GALIP
|
T2I
| false |
DANI: Discrepancy Assessing for Natural and AI Images
Paper: D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance Code: https://github.com/RenyangLiu/DJudge
A Large-Scale Dataset for Visual Research on AI-Synthesized and Natural Images
Overview
DANI (Discrepancy Assessing for Natural and AI Images) is a large-scale, multimodal dataset for benchmarking and broad visual research on both AI-generated images (AIGIs) and natural images.
The dataset is designed to support a wide range of computer vision and multimodal research tasks, including but not limited to:
- AI-generated vs. real image discrimination
- Representation learning
- Image quality assessment
- Style transfer
- Image reconstruction
- Domain adaptation
- Multimodal understanding and beyond
DANI accompanies the paper:
Liu, Renyang; Lyu, Ziyu; Zhou, Wei; Ng, See-Kiong.
D-Judge: How Far Are We? Assessing the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance.
ACM International Conference on Multimedia (MM), 2025.
Dataset Summary
DANI contains over 445,000 images, including 5,000 natural images (from COCO, with resolutions 224, 256, 512, 1024) and more than 440,000 AI-generated images produced by diverse state-of-the-art generative models.
Each sample is annotated with detailed metadata, enabling comprehensive evaluation and flexible use for a broad range of visual and multimodal research.
Images are generated using a wide range of generative models and protocols:
- Models: GALIP, DFGAN, SD_V14, SD_V15, Versatile Diffusion (VD), SD_V21, SD_XL, Dalle2, Dalle3, and COCO (real images)
- Image Sizes: 224, 256, 512, 768, 1024
- Generation Types: Text-to-Image (T2I), Image-to-Image (I2I), Text and Image-to-Image (TI2I)
- Categories: indoor, outdoor, etc.
Data Fields
Each sample in the dataset contains the following fields:
Field | Description |
---|---|
index | Unique index for each image |
image | The image itself (as a file, not just path) |
size | Image resolution (e.g., 224, 256, 512, 768, 1024) |
category | Scene category (e.g., indoor , outdoor , etc.) |
class_id | COCO class or semantic category ID/name |
model | Generative model used (GALIP , DFGAN , SD_V14 , SD_V15 , VD , etc.) |
gen_type | Generation method (T2I , I2I , TI2I ) |
reference | Whether it is a real/natural image (True for real, False for generated) |
Note:
- COCO images have
reference=True
, and may appear at multiple resolutions.- For AI-generated images, the
model
andgen_type
fields indicate the specific generative model and generation protocol (T2I, I2I, or TI2I) used for each sample.
Model/Generation Configurations
The dataset covers the following models and settings:
Model | Image Size | Generation Types Supported |
---|---|---|
GALIP | 224 | T2I |
DFGAN | 256 | T2I |
SD_V14 | 512 | T2I, I2I, TI2I |
SD_V15 | 512 | T2I, I2I, TI2I |
VD | 512 | T2I, I2I, TI2I |
SD_V21 | 768 | T2I, I2I, TI2I |
SD_XL | 1024 | T2I, I2I, TI2I |
Dalle2 | 512 | T2I, I2I |
Dalle3 | 1024 | T2I |
COCO | 224,256,512,1024 | Reference/Real Images |
For each generation type (T2I
, I2I
, TI2I
), a diverse set of models are covered.
Usage
You can load DANI directly using the 🤗 datasets library:
from datasets import load_dataset
ds = load_dataset("Renyang/DANI")
print(ds)
# Output: DatasetDict({
# train: Dataset({
# features: ['index', 'image', 'size', 'category', 'class_id','model', 'gen_type','reference'],
# num_rows: 540257
# })
# })
# Access images and metadata
img = ds["train"][0]["image"]
meta = {k: ds["train"][0][k] for k in ds["train"].column_names if k != "image"}
Note: Images are loaded as PIL Images. Use .convert("RGB")
if needed.
Citation
If you use this dataset or the associated benchmark, please cite:
@inproceedings{liu2024djudge,
title = {D-Judge: How Far Are We? Assessing the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance},
author = {Liu, Renyang and Lyu, Ziyu and Zhou, Wei and Ng, See-Kiong},
booktitle = {ACM International Conference on Multimedia (MM)},
organization = {ACM},
year = {2025},
}
License
This dataset is released under the CC BY-NC 4.0 license (for non-commercial research use).
Contact
For questions or collaborations, please visit Renyang Liu's homepage.
- Downloads last month
- 147