Dataset Viewer
Auto-converted to Parquet
index
int64
0
180k
image
imagewidth (px)
224
512
size
int64
224
512
category
stringclasses
12 values
class_id
stringclasses
80 values
model
stringclasses
4 values
gen_type
stringclasses
3 values
reference
bool
1 class
0
224
animal
25
GALIP
T2I
false
1
224
outdoor
15
GALIP
T2I
false
2
224
vehicle
7
GALIP
T2I
false
3
224
food
52
GALIP
T2I
false
4
224
sports
41
GALIP
T2I
false
5
224
animal
24
GALIP
T2I
false
6
224
person
1
GALIP
T2I
false
7
224
vehicle
3
GALIP
T2I
false
8
224
furniture
62
GALIP
T2I
false
9
224
sports
37
GALIP
T2I
false
10
224
person
1
GALIP
T2I
false
11
224
food
56
GALIP
T2I
false
12
224
kitchen
47
GALIP
T2I
false
13
224
animal
24
GALIP
T2I
false
14
224
vehicle
5
GALIP
T2I
false
15
224
animal
23
GALIP
T2I
false
16
224
electronic
77
GALIP
T2I
false
17
224
kitchen
50
GALIP
T2I
false
18
224
electronic
76
GALIP
T2I
false
19
224
person
1
GALIP
T2I
false
20
224
electronic
77
GALIP
T2I
false
21
224
animal
23
GALIP
T2I
false
22
224
vehicle
5
GALIP
T2I
false
23
224
animal
25
GALIP
T2I
false
24
224
person
1
GALIP
T2I
false
25
224
animal
22
GALIP
T2I
false
26
224
person
1
GALIP
T2I
false
27
224
kitchen
49
GALIP
T2I
false
28
224
null
null
GALIP
T2I
false
29
224
person
1
GALIP
T2I
false
30
224
accessory
33
GALIP
T2I
false
31
224
electronic
75
GALIP
T2I
false
32
224
indoor
85
GALIP
T2I
false
33
224
person
1
GALIP
T2I
false
34
224
person
1
GALIP
T2I
false
35
224
null
null
GALIP
T2I
false
36
224
kitchen
51
GALIP
T2I
false
37
224
person
1
GALIP
T2I
false
38
224
person
1
GALIP
T2I
false
39
224
kitchen
51
GALIP
T2I
false
40
224
person
1
GALIP
T2I
false
41
224
outdoor
15
GALIP
T2I
false
42
224
person
1
GALIP
T2I
false
43
224
person
1
GALIP
T2I
false
44
224
outdoor
10
GALIP
T2I
false
45
224
vehicle
3
GALIP
T2I
false
46
224
person
1
GALIP
T2I
false
47
224
indoor
86
GALIP
T2I
false
48
224
furniture
64
GALIP
T2I
false
49
224
animal
16
GALIP
T2I
false
50
224
indoor
84
GALIP
T2I
false
51
224
kitchen
51
GALIP
T2I
false
52
224
food
54
GALIP
T2I
false
53
224
person
1
GALIP
T2I
false
54
224
animal
22
GALIP
T2I
false
55
224
indoor
84
GALIP
T2I
false
56
224
furniture
62
GALIP
T2I
false
57
224
accessory
31
GALIP
T2I
false
58
224
outdoor
10
GALIP
T2I
false
59
224
vehicle
8
GALIP
T2I
false
60
224
vehicle
2
GALIP
T2I
false
61
224
sports
41
GALIP
T2I
false
62
224
vehicle
8
GALIP
T2I
false
63
224
person
1
GALIP
T2I
false
64
224
outdoor
15
GALIP
T2I
false
65
224
food
53
GALIP
T2I
false
66
224
food
54
GALIP
T2I
false
67
224
null
null
GALIP
T2I
false
68
224
indoor
86
GALIP
T2I
false
69
224
person
1
GALIP
T2I
false
70
224
indoor
85
GALIP
T2I
false
71
224
accessory
27
GALIP
T2I
false
72
224
sports
42
GALIP
T2I
false
73
224
furniture
62
GALIP
T2I
false
74
224
food
54
GALIP
T2I
false
75
224
animal
24
GALIP
T2I
false
76
224
sports
37
GALIP
T2I
false
77
224
animal
22
GALIP
T2I
false
78
224
animal
17
GALIP
T2I
false
79
224
sports
42
GALIP
T2I
false
80
224
furniture
67
GALIP
T2I
false
81
224
person
1
GALIP
T2I
false
82
224
appliance
82
GALIP
T2I
false
83
224
outdoor
15
GALIP
T2I
false
84
224
indoor
85
GALIP
T2I
false
85
224
food
57
GALIP
T2I
false
86
224
animal
19
GALIP
T2I
false
87
224
electronic
76
GALIP
T2I
false
88
224
person
1
GALIP
T2I
false
89
224
person
1
GALIP
T2I
false
90
224
person
1
GALIP
T2I
false
91
224
vehicle
9
GALIP
T2I
false
92
224
outdoor
15
GALIP
T2I
false
93
224
outdoor
15
GALIP
T2I
false
94
224
indoor
84
GALIP
T2I
false
95
224
vehicle
4
GALIP
T2I
false
96
224
indoor
85
GALIP
T2I
false
97
224
person
1
GALIP
T2I
false
98
224
outdoor
15
GALIP
T2I
false
99
224
vehicle
7
GALIP
T2I
false
End of preview. Expand in Data Studio

DANI: Discrepancy Assessing for Natural and AI Images

Paper: D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance Code: https://github.com/RenyangLiu/DJudge

A Large-Scale Dataset for Visual Research on AI-Synthesized and Natural Images

Overview

DANI (Discrepancy Assessing for Natural and AI Images) is a large-scale, multimodal dataset for benchmarking and broad visual research on both AI-generated images (AIGIs) and natural images.
The dataset is designed to support a wide range of computer vision and multimodal research tasks, including but not limited to:

  • AI-generated vs. real image discrimination
  • Representation learning
  • Image quality assessment
  • Style transfer
  • Image reconstruction
  • Domain adaptation
  • Multimodal understanding and beyond

DANI accompanies the paper:

Liu, Renyang; Lyu, Ziyu; Zhou, Wei; Ng, See-Kiong.
D-Judge: How Far Are We? Assessing the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance.
ACM International Conference on Multimedia (MM), 2025.

Dataset Summary

DANI contains over 445,000 images, including 5,000 natural images (from COCO, with resolutions 224, 256, 512, 1024) and more than 440,000 AI-generated images produced by diverse state-of-the-art generative models.
Each sample is annotated with detailed metadata, enabling comprehensive evaluation and flexible use for a broad range of visual and multimodal research. Images are generated using a wide range of generative models and protocols:

  • Models: GALIP, DFGAN, SD_V14, SD_V15, Versatile Diffusion (VD), SD_V21, SD_XL, Dalle2, Dalle3, and COCO (real images)
  • Image Sizes: 224, 256, 512, 768, 1024
  • Generation Types: Text-to-Image (T2I), Image-to-Image (I2I), Text and Image-to-Image (TI2I)
  • Categories: indoor, outdoor, etc.

Data Fields

Each sample in the dataset contains the following fields:

Field Description
index Unique index for each image
image The image itself (as a file, not just path)
size Image resolution (e.g., 224, 256, 512, 768, 1024)
category Scene category (e.g., indoor, outdoor, etc.)
class_id COCO class or semantic category ID/name
model Generative model used (GALIP, DFGAN, SD_V14, SD_V15, VD, etc.)
gen_type Generation method (T2I, I2I, TI2I)
reference Whether it is a real/natural image (True for real, False for generated)

Note:

  • COCO images have reference=True, and may appear at multiple resolutions.
  • For AI-generated images, the model and gen_type fields indicate the specific generative model and generation protocol (T2I, I2I, or TI2I) used for each sample.

Model/Generation Configurations

The dataset covers the following models and settings:

Model Image Size Generation Types Supported
GALIP 224 T2I
DFGAN 256 T2I
SD_V14 512 T2I, I2I, TI2I
SD_V15 512 T2I, I2I, TI2I
VD 512 T2I, I2I, TI2I
SD_V21 768 T2I, I2I, TI2I
SD_XL 1024 T2I, I2I, TI2I
Dalle2 512 T2I, I2I
Dalle3 1024 T2I
COCO 224,256,512,1024 Reference/Real Images

For each generation type (T2I, I2I, TI2I), a diverse set of models are covered.

Usage

You can load DANI directly using the 🤗 datasets library:

from datasets import load_dataset

ds = load_dataset("Renyang/DANI")
print(ds)
# Output: DatasetDict({
#     train: Dataset({
#         features: ['index', 'image', 'size', 'category', 'class_id','model', 'gen_type','reference'],
#         num_rows: 540257
#     })
# })
# Access images and metadata
img = ds["train"][0]["image"]
meta = {k: ds["train"][0][k] for k in ds["train"].column_names if k != "image"}

Note: Images are loaded as PIL Images. Use .convert("RGB") if needed.

Citation

If you use this dataset or the associated benchmark, please cite:

@inproceedings{liu2024djudge,
  title = {D-Judge: How Far Are We? Assessing the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance},
  author = {Liu, Renyang and Lyu, Ziyu and Zhou, Wei and Ng, See-Kiong},
  booktitle = {ACM International Conference on Multimedia (MM)},
  organization = {ACM},
  year = {2025},
}

License

This dataset is released under the CC BY-NC 4.0 license (for non-commercial research use).

Contact

For questions or collaborations, please visit Renyang Liu's homepage.

Downloads last month
147