repository_name
stringlengths
7
107
function_path
stringlengths
4
190
function_identifier
stringlengths
1
236
language
stringclasses
1 value
function
stringlengths
9
647k
docstring
stringlengths
5
488k
function_url
stringlengths
71
285
context
stringlengths
0
2.51M
license
stringclasses
5 values
lostindarkmath/pedantic-python-decorators
pedantic/type_checking_logic/check_types.py
_get_base_generic
python
def _get_base_generic(cls: Any) -> Any: origin = cls.__origin__ if hasattr(cls, '__origin__') else None name = cls._name if hasattr(cls, '_name') else None if name is not None: return getattr(typing, name) elif origin is not None: return origin return cls
>>> from typing import List, Union, Tuple, Callable, Dict, Set >>> _get_base_generic(List) typing.List >>> _get_base_generic(List[float]) typing.List >>> _get_base_generic(List[List[float]]) typing.List >>> _get_base_generic(List[Union[int, float]]) typing.List >>> _get_base_generic(Tuple) typing.Tuple >>> _get_base_generic(Tuple[float, int]) typing.Tuple >>> _get_base_generic(Tuple[Union[int, float], str]) typing.Tuple >>> _get_base_generic(Callable[..., int]) typing.Callable >>> _get_base_generic(Callable[[Union[int, str], float], int]) typing.Callable >>> _get_base_generic(Dict) typing.Dict >>> _get_base_generic(Dict[str, str]) typing.Dict >>> _get_base_generic(Union) typing.Union >>> _get_base_generic(Union[float, int, str]) typing.Union >>> _get_base_generic(Set) typing.Set >>> _get_base_generic(Set[int]) typing.Set
https://github.com/lostindarkmath/pedantic-python-decorators/blob/66865a958a36440b48e790f22ea42d2beb725b16/pedantic/type_checking_logic/check_types.py#L413-L455
import inspect import typing from io import BytesIO, StringIO, BufferedWriter, TextIOWrapper from typing import Any, Dict, Iterable, ItemsView, Callable, Union, Optional, Tuple, Mapping, TypeVar, NewType import collections import sys from pedantic.constants import TypeVar as TypeVar_ from pedantic.exceptions import PedanticTypeCheckException, PedanticTypeVarMismatchException, PedanticException def _assert_value_matches_type(value: Any, type_: Any, err: str, type_vars: Dict[TypeVar_, Any], key: Optional[str] = None, msg: Optional[str] = None ) -> None: if not _check_type(value=value, type_=type_, err=err, type_vars=type_vars): t = type(value) value = f'{key}={value}' if key is not None else str(value) if not msg: msg = f'{err}Type hint is incorrect: Argument {value} of type {t} does not match expected type {type_}.' raise PedanticTypeCheckException(msg) def _check_type(value: Any, type_: Any, err: str, type_vars: Dict[TypeVar_, Any]) -> bool: if type_ is None: return value == type_ elif isinstance(type_, str): class_name = value.__class__.__name__ base_class_name = value.__class__.__base__.__name__ return class_name == type_ or base_class_name == type_ if isinstance(type_, tuple): raise PedanticTypeCheckException(f'{err}Use "Tuple[]" instead of "{type_}" as type hint.') if isinstance(type_, list): raise PedanticTypeCheckException(f'{err}Use "List[]" instead of "{type_}" as type hint.') if type_ is tuple: raise PedanticTypeCheckException(f'{err}Use "Tuple[]" instead of "tuple" as type hint.') if type_ is list: raise PedanticTypeCheckException(f'{err}Use "List[]" instead of "list" as type hint.') if type_ is dict: raise PedanticTypeCheckException(f'{err}Use "Dict[]" instead of "dict" as type hint.') if type_ is set: raise PedanticTypeCheckException(f'{err}Use "Set[]" instead of "set" as type hint.') if type_ is frozenset: raise PedanticTypeCheckException(f'{err}Use "FrozenSet[]" instead of "frozenset" as type hint.') if type_ is type: raise PedanticTypeCheckException(f'{err}Use "Type[]" instead of "type" as type hint.') try: return _is_instance(obj=value, type_=type_, type_vars=type_vars) except PedanticTypeCheckException as ex: raise PedanticTypeCheckException(f'{err} {ex}') except PedanticTypeVarMismatchException as ex: raise PedanticTypeVarMismatchException(f'{err} {ex}') except (AttributeError, Exception) as ex: raise PedanticTypeCheckException( f'{err}An error occurred during type hint checking. Value: {value} Annotation: ' f'{type_} Mostly this is caused by an incorrect type annotation. Details: {ex} ') def _is_instance(obj: Any, type_: Any, type_vars: Dict[TypeVar_, Any]) -> bool: if not _has_required_type_arguments(type_): raise PedanticTypeCheckException( f'The type annotation "{type_}" misses some type arguments e.g. ' f'"typing.Tuple[Any, ...]" or "typing.Callable[..., str]".') if type_.__module__ == 'typing': if _is_generic(type_): origin = _get_base_generic(type_) else: origin = type_ name = _get_name(origin) if name in _SPECIAL_INSTANCE_CHECKERS: validator = _SPECIAL_INSTANCE_CHECKERS[name] return validator(obj, type_, type_vars) if type_ == typing.BinaryIO: return isinstance(obj, (BytesIO, BufferedWriter)) elif type_ == typing.TextIO: return isinstance(obj, (StringIO, TextIOWrapper)) if _is_generic(type_): python_type = type_.__origin__ if not isinstance(obj, python_type): return False base = _get_base_generic(type_) type_args = _get_type_arguments(cls=type_) if base in _ORIGIN_TYPE_CHECKERS: validator = _ORIGIN_TYPE_CHECKERS[base] return validator(obj, type_args, type_vars) assert base.__base__ == typing.Generic, f'Unknown base: {base}' return isinstance(obj, base) if isinstance(type_, TypeVar): constraints = type_.__constraints__ if len(constraints) > 0 and type(obj) not in constraints: return False if _is_forward_ref(type_=type_.__bound__): return type(obj).__name__ == type_.__bound__.__forward_arg__ if type_.__bound__ is not None and not isinstance(obj, type_.__bound__): return False if type_ in type_vars: other = type_vars[type_] if type_.__contravariant__: if not _is_subtype(sub_type=other, super_type=obj.__class__): raise PedanticTypeVarMismatchException( f'For TypeVar {type_} exists a type conflict: value {obj} has type {type(obj)} but TypeVar {type_} ' f'was previously matched to type {other}') else: if not _is_instance(obj=obj, type_=other, type_vars=type_vars): raise PedanticTypeVarMismatchException( f'For TypeVar {type_} exists a type conflict: value {obj} has type {type(obj)} but TypeVar {type_} ' f'was previously matched to type {other}') type_vars[type_] = type(obj) return True if _is_forward_ref(type_=type_): return type(obj).__name__ == type_.__forward_arg__ if _is_type_new_type(type_): return isinstance(obj, type_.__supertype__) if hasattr(obj, '_asdict'): if hasattr(type_, '_field_types'): field_types = type_._field_types elif hasattr(type_, '__annotations__'): field_types = type_.__annotations__ else: return False if not obj._asdict().keys() == field_types.keys(): return False return all([_is_instance(obj=obj._asdict()[k], type_=v, type_vars=type_vars) for k, v in field_types.items()]) return isinstance(obj, type_) def _is_forward_ref(type_: Any) -> bool: return hasattr(typing, 'ForwardRef') and isinstance(type_, typing.ForwardRef) or hasattr(typing, '_ForwardRef') and isinstance(type_, typing._ForwardRef) def _is_type_new_type(type_: Any) -> bool: return type_.__qualname__ == NewType('name', int).__qualname__ def _get_name(cls: Any) -> str: if hasattr(cls, '_name'): return cls._name elif hasattr(cls, '__name__'): return cls.__name__ else: return type(cls).__name__[1:] def _is_generic(cls: Any) -> bool: if hasattr(typing, '_SpecialGenericAlias') and isinstance(cls, typing._SpecialGenericAlias): return True elif hasattr(typing, '_GenericAlias'): if isinstance(cls, typing._GenericAlias): return True if isinstance(cls, typing._SpecialForm): return cls not in {Any} elif isinstance(cls, (typing.GenericMeta, typing._Union, typing._Optional, typing._ClassVar)): return True return False def _has_required_type_arguments(cls: Any) -> bool: base: str = _get_name(cls=cls) num_type_args = len(_get_type_arguments(cls=cls)) if base in NUM_OF_REQUIRED_TYPE_ARGS_EXACT: return NUM_OF_REQUIRED_TYPE_ARGS_EXACT[base] == num_type_args elif base in NUM_OF_REQUIRED_TYPE_ARGS_MIN: return NUM_OF_REQUIRED_TYPE_ARGS_MIN[base] <= num_type_args return True def _get_type_arguments(cls: Any) -> Tuple[Any, ...]: result = () if hasattr(cls, '__args__'): result = cls.__args__ origin = _get_base_generic(cls=cls) if origin != cls and ((origin is Callable) or (origin is collections.abc.Callable)) and result[0] is not Ellipsis: result = (list(result[:-1]), result[-1]) result = result or () return result if '[' in str(cls) else ()
Apache License 2.0
seung-lab/chunkflow
chunkflow/chunk/base.py
Chunk.ndoffset
python
def ndoffset(self) -> tuple: if self.ndim == 4: return (0, *self.voxel_offset) else: return self.voxel_offset
make the voxel offset have the same dimension with array
https://github.com/seung-lab/chunkflow/blob/0e032cdf4f2ba104af4f7809ac11df17352384ed/chunkflow/chunk/base.py#L395-L402
from typing import Union import os from numbers import Number import h5py import numpy as np import nrrd from numpy.core.numerictypes import issubdtype from numpy.lib.mixins import NDArrayOperatorsMixin from scipy.ndimage import gaussian_filter import tifffile import cc3d from cloudvolume.lib import yellow, Bbox from chunkflow.lib.bounding_boxes import BoundingBox from .validate import validate_by_template_matching class Chunk(NDArrayOperatorsMixin): def __init__(self, array: np.ndarray, voxel_offset: tuple = None, voxel_size: tuple = None): assert isinstance(array, np.ndarray) or isinstance(array, Chunk) self.array = array if voxel_offset is None: if isinstance(array, Chunk): self.array = array.array voxel_offset = array.voxel_offset else: voxel_offset = (0, 0, 0) if voxel_offset is not None: if len(voxel_offset) == 4: assert voxel_offset[0] == 0 voxel_offset = voxel_offset[1:] assert len(voxel_offset) == 3 self.voxel_offset = voxel_offset self.voxel_size = voxel_size if voxel_size is not None: assert len(voxel_size) == 3 assert np.alltrue([vs > 0 for vs in voxel_size]) assert array.ndim >= 3 and array.ndim <= 4 _HANDLED_TYPES = (np.ndarray, Number) @classmethod def from_array(cls, array: np.ndarray, bbox: BoundingBox, voxel_size: tuple = None): return cls(array, voxel_offset=bbox.minpt, voxel_size=voxel_size) @classmethod def from_bbox(cls, bbox: BoundingBox, dtype: type = np.uint8, voxel_size: tuple=None, all_zero: bool=False): assert isinstance(bbox, BoundingBox) size = bbox.maxpt - bbox.minpt return cls.create(size=size, dtype=dtype, voxel_offset=bbox.minpt, voxel_size=voxel_size, all_zero=all_zero) @classmethod def create(cls, size: tuple = (64, 64, 64), dtype: type = np.uint8, voxel_offset: tuple = (0, 0, 0), voxel_size: tuple = None, all_zero: bool = False): if isinstance(dtype, str): dtype = np.dtype(dtype) if all_zero: chunk = np.zeros(size, dtype=dtype) else: ix, iy, iz = np.meshgrid(*[np.linspace(0, 1, n) for n in size[-3:]], indexing='ij') chunk = np.abs(np.sin(4 * (ix + iy + iz))) if len(size) == 4: chunk = np.expand_dims(chunk, axis=0) chunk = np.repeat(chunk, size[0], axis=0) if np.dtype(dtype) == np.uint8: chunk = (chunk * 255).astype( dtype ) elif np.dtype(dtype) == np.uint32: chunk = (chunk>0.5).astype(dtype) elif np.issubdtype(dtype, np.floating): chunk = chunk.astype(dtype) else: raise NotImplementedError() return cls(chunk, voxel_offset=voxel_offset, voxel_size=voxel_size) def clone(self): return Chunk(self.array.copy(), voxel_offset=self.voxel_offset, voxel_size=self.voxel_size) @classmethod def from_nrrd(cls, file_name: str, voxel_offset: tuple=None, dtype: str = None, voxel_size: tuple=None): arr, _ = nrrd.read(file_name) if dtype: arr = arr.astype(dtype) return cls(arr, voxel_offset=voxel_offset, voxel_size=voxel_size) def to_nrrd(self, file_name: str=None): if file_name is None: file_name = f'{self.bbox.to_filename()}.nrrd' elif not file_name.endswith('.nrrd'): file_name += f'_{self.bbox.to_filename()}.nrrd' print('write chunk to file: ', file_name) nrrd.write(file_name, self.array) @classmethod def from_tif(cls, file_name: str, voxel_offset: tuple=None, dtype: str = None, voxel_size: tuple=None): arr = tifffile.imread(file_name) if dtype: arr = arr.astype(dtype) print(f'read tif chunk with size of {arr.shape}, voxel offset: {voxel_offset}, voxel size: {voxel_size}') return cls(arr, voxel_offset=voxel_offset, voxel_size=voxel_size) def to_tif(self, file_name: str=None): if file_name is None: file_name = f'{self.bbox.to_filename()}.tif' print('write chunk to file: ', file_name) if self.array.dtype==np.float32: print(yellow('transforming data type from float32 to uint8')) img = self.array*255 img = img.astype( np.uint8 ) else: img = self.array tifffile.imwrite(file_name, data=img) @classmethod def from_h5(cls, file_name: str, voxel_offset: tuple=None, dataset_path: str = None, voxel_size: tuple = None, cutout_start: tuple = None, cutout_stop: tuple = None, cutout_size: tuple = None, zero_filling: bool = False, dtype: str = None): assert os.path.exists(file_name) if cutout_start is not None and cutout_size is not None: cutout_stop = tuple(t+s for t, s in zip(cutout_start, cutout_size)) if not h5py.is_hdf5(file_name): assert cutout_start is not None assert cutout_stop is not None bbox = BoundingBox.from_list([*cutout_start, *cutout_stop]) file_name += f'{bbox.to_filename()}.h5' if not os.path.exists(file_name) and zero_filling: assert dtype is not None print(f'file do not exist, will fill with zero: {file_name}') return cls.from_bbox(bbox, dtype=dtype, voxel_size=voxel_size, all_zero=True) with h5py.File(file_name, 'r') as f: if dataset_path is None: for key in f.keys(): if 'offset' not in key and 'unique' not in key: dataset_path = key break dset = f[dataset_path] if voxel_offset is None: if 'voxel_offset' in f: voxel_offset = tuple(f['voxel_offset']) else: voxel_offset = (0, 0, 0) if voxel_size is None: if 'voxel_size' in f: voxel_size = tuple(f['voxel_size']) else: voxel_size = (1, 1, 1) if cutout_start is None: cutout_start = voxel_offset if cutout_size is None: cutout_size = dset.shape[-3:] if cutout_stop is None: cutout_stop = tuple(t+s for t, s in zip(cutout_start, cutout_size)) for c, v in zip(cutout_start, voxel_offset): assert c >= v, "can only cutout after the global voxel offset." assert len(cutout_start) == 3 assert len(cutout_stop) == 3 dset = dset[..., cutout_start[0]-voxel_offset[0]:cutout_stop[0]-voxel_offset[0], cutout_start[1]-voxel_offset[1]:cutout_stop[1]-voxel_offset[1], cutout_start[2]-voxel_offset[2]:cutout_stop[2]-voxel_offset[2], ] print(f"""read from HDF5 file: {file_name} and start with {cutout_start}, \ ends with {cutout_stop}, size is {cutout_size}, voxel size is {voxel_size}.""") arr = np.asarray(dset) if arr.dtype == np.dtype('<f4'): arr = arr.astype('float32') elif arr.dtype == np.dtype('<f8'): arr = arr.astype('float64') print('new chunk voxel offset: {}'.format(cutout_start)) return cls(arr, voxel_offset=cutout_start, voxel_size=voxel_size) def to_h5(self, file_name: str, with_offset: bool=True, chunk_size: tuple=(64,64,64), with_unique: bool= True, compression="gzip", voxel_size: tuple = None): if chunk_size: assert len(chunk_size) == 3 if not file_name.endswith('.h5'): file_name += self.bbox.to_filename() + '.h5' print('write chunk to file: ', file_name) if os.path.exists(file_name): print(yellow(f'deleting existing file: {file_name}')) os.remove(file_name) with h5py.File(file_name, 'w') as f: f.create_dataset('/main', data=self.array, chunks=chunk_size, compression=compression) if voxel_size is None and self.voxel_size is not None: voxel_size = self.voxel_size if voxel_size is not None: f.create_dataset('/voxel_size', data=voxel_size) if with_offset and self.voxel_offset is not None: f.create_dataset('/voxel_offset', data=self.voxel_offset) if with_unique and self.is_segmentation: unique = np.unique(self.array) if unique[0]: unique = unique[1:] f.create_dataset('/unique_nonzeros', data = unique) return file_name def __array__(self): return self.array def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): out = kwargs.get('out', ()) for x in inputs + out: if not isinstance(x, self._HANDLED_TYPES + (Chunk,)): return NotImplemented inputs = tuple(x.array if isinstance(x, Chunk) else x for x in inputs) if out: kwargs['out'] = tuple( x.array if isinstance(x, Chunk) else x for x in out) result = getattr(ufunc, method)(*inputs, **kwargs) if type(result) is tuple: return tuple(type(self)(x, voxel_offset=self.voxel_offset, voxel_size=self.voxel_size) for x in result) elif method == 'at': return None elif isinstance(result, Number): return result elif isinstance(result, np.ndarray): return type(self)(result, voxel_offset=self.voxel_offset, voxel_size=self.voxel_size) else: return result def __getitem__(self, index): return self.array[index] def __setitem__(self, key, value): self.array[key] = value def __repr__(self): return f'array: {self.array}\n voxel offset: {self.voxel_offset} \n voxel size: {self.voxel_size}' def __eq__(self, value): if isinstance(value, type(self)): return np.array_equal(self.array, value.array) and np.array_equal( self.voxel_offset, value.voxel_offset) elif isinstance(value, Number): return np.all(self.array==value) elif isinstance(value, np.ndarray): return np.all(self.array == value) else: raise NotImplementedError def set_properties(self, properties: dict): if 'voxel_offset' in properties: self.voxel_offset = properties['voxel_offset'] if 'voxel_size' in properties: self.voxel_size = properties['voxel_size'] @property def properties(self) -> dict: props = dict() if self.voxel_offset is not None or self.voxel_offset != (0, 0, 0): props['voxel_offset'] = self.voxel_offset if self.voxel_size is not None or self.voxel_size != (1, 1, 1): props['voxel_size'] = self.voxel_size return props @property def slices(self) -> tuple: return tuple( slice(o, o + s) for o, s in zip(self.ndoffset, self.shape)) @property def is_image(self) -> bool: return self.array.ndim == 3 and self.array.dtype == np.uint8 @property def is_segmentation(self) -> bool: return self.array.ndim == 3 and (np.issubdtype( self.array.dtype, np.integer) or np.issubdtype( self.dtype, np.bool8)) and self.array.dtype != np.uint8 @property def is_affinity_map(self) -> bool: return self.array.ndim == 4 and self.shape[0] == 3 and self.array.dtype == np.float32 @property def is_probability_map(self) -> bool: return self.array.ndim == 4 and self.array.dtype == np.float32 @property
Apache License 2.0
twisted/axiom
axiom/tags.py
Catalog.tagNames
python
def tagNames(self): return self.store.query(_TagName, _TagName.catalog == self).getColumn("name")
Return an iterator of unicode strings - the unique tag names which have been applied objects in this catalog.
https://github.com/twisted/axiom/blob/28191ede99287e9a87c1ff561b831f7d80aaa2fe/axiom/tags.py#L83-L88
from epsilon.extime import Time from axiom.item import Item from axiom.attributes import text, reference, integer, AND, timestamp class Tag(Item): typeName = 'tag' schemaVersion = 1 name = text(doc=""" The short string which is being applied as a tag to an Item. """) created = timestamp(doc=""" When this tag was applied to the Item to which it applies. """) object = reference(doc=""" The Item to which this tag applies. """) catalog = reference(doc=""" The L{Catalog} item in which this tag was created. """) tagger = reference(doc=""" An optional reference to the Item which is responsible for this tag's existence. """) class _TagName(Item): typeName = 'tagname' name = text(doc=""" The short string which uniquely represents this tag. """, indexed=True) catalog = reference(doc=""" The L{Catalog} item in which this tag exists. """) class Catalog(Item): typeName = 'tag_catalog' schemaVersion = 2 tagCount = integer(default=0) def tag(self, obj, tagName, tagger=None): if self.store.findFirst(Tag, AND(Tag.object == obj, Tag.name == tagName, Tag.catalog == self)): return self.store.findOrCreate(_TagName, name=tagName, catalog=self) self.tagCount += 1 Tag(store=self.store, object=obj, name=tagName, catalog=self, created=Time(), tagger=tagger)
MIT License
fredhutch/proxmox-tools
prox/cmdprox.py
ssh_exec
python
def ssh_exec(user, pwd, commands, host): if not isinstance(commands, list): print('commands parameter in ssh_exec needs to be a list') return False ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy( paramiko.AutoAddPolicy()) ssh.connect(host, username=user, password=pwd) for command in commands: stdin, stdout, stderr = ssh.exec_command(command) for line in stdout.readlines(): print(line.strip())
execute list of commands via ssh
https://github.com/fredhutch/proxmox-tools/blob/cfd4d7333969d3ad8af80f15be56d0d5052fee4e/prox/cmdprox.py#L949-L961
import sys, os, subprocess, re, platform, getpass, argparse, logging, hostlist import time, warnings, functools, random, json, requests, paramiko, socket try: import easygui except: pass with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) try: from .pyproxmox import * except: from pyproxmox import * logging.basicConfig(level=logging.WARNING) __app__ = 'Proxmox command line deployment tool' PROXHOST = os.getenv('PPROXHOST', 'proxa1.fhcrc.org') REALM = os.getenv('PREALM', 'FHCRC.ORG') LXCIMAGE = os.getenv('PLXCIMAGE', 'proxnfs:vztmpl/ubuntu-16.04-standard_16.04-1_amd64.tar.gz') STORLOC = os.getenv('PSTORLOC', 'proxZFS') STORNET = os.getenv('PSTORNET', 'proxnfs') USERDB = os.getenv('PUSERDB', 'https://toolbox.fhcrc.org/json/sc_users.json') EXCLUDEHOSTS = ['proxa5'] CHEFVERSION = '12.19.36' homedir = os.path.expanduser("~") def parse_arguments(): parser = argparse.ArgumentParser(prog='prox ', description='a tool for deploying resources from proxmox ' + '(LXC containers or VMs)') parser.add_argument( '--debug', '-g', dest='debug', action='store_true', default=False, help="verbose output for all commands") subparsers = parser.add_subparsers(dest="subcommand", help='sub-command help') parser_ssh = subparsers.add_parser('assist', aliases=['gui'], help='navigate application via GUI (experimental)') parser_ssh = subparsers.add_parser('ssh', aliases=['connect'], help='connect to first host via ssh') parser_ssh.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox ssh host1 host2 host3') parser_list = subparsers.add_parser('list', aliases=['ls', 'show'], help='list hosts(s) with status, size and contact (optional)') parser_list.add_argument( '--all', '-a', dest='all', action='store_true', default=False, help="show all hosts (LXC and KVM)") parser_list.add_argument( '--contacts', '-c', dest='contacts', action='store_true', default=False, help="show the technical contact / owner of the machine") parser_list.add_argument( '--snapshots', '-s', dest='listsnap', action='store_true', default=False, help="list machine snapshots that can be rolled back") parser_list.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox modify host1 host2 host3') parser_start = subparsers.add_parser('start', aliases=['run'], help='start the host(s)') parser_start.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox start host1 host2 host3') parser_stop = subparsers.add_parser('stop', aliases=['shutdown'], help='stop the host(s)') parser_stop.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox stop host1 host2 host3') parser_destroy = subparsers.add_parser('destroy', aliases=['delete', 'rm'], help='delete the hosts(s) from disk') parser_destroy.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox destroy host1 host2 host3') parser_modify = subparsers.add_parser('modify', aliases=['mod'], help='modify the config of one or more hosts') parser_modify.add_argument('--mem', '-m', dest='mem', action='store', default='0', help='Memory allocation for the machine, e.g. 4G or 512') parser_modify.add_argument('--disk', '-d', dest='disk', action='store', default='0', help='disk storage allocated to the machine.') parser_modify.add_argument('--cores', '-c', dest='cores', action='store', default='0', help='Number of cores to be allocated for the machine.') parser_modify.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox modify host1 host2 host3') parser_snap = subparsers.add_parser('snap', aliases=['snapshot'], help='take a snapshot of the host') parser_snap.add_argument('--description', '-d', dest='snapdesc', action='store', default='', help='description of the snapshot') parser_snap.add_argument('snapname', action='store', help='name of the snapshot') parser_snap.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox snap host1 host2 host3') parser_rollback = subparsers.add_parser('rollback', aliases=['rb'], help='roll back a snapshot') parser_rollback.add_argument('snapname', action='store', help='name of the snapshot') parser_rollback.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox snap host1 host2 host3') parser_new = subparsers.add_parser('new', aliases=['create'], help='create one or more new hosts') parser_new.add_argument('--runlist', '-r', dest='runlist', action='store', default='', help='a local shell script file or a command to execute after install') parser_new.add_argument('--node', '-N', dest='node', action='store', default='', help='Hostname of Proxmox node that will be used for install') parser_new.add_argument('--mem', '-m', dest='mem', action='store', default='512', help='Memory allocation for the machine, e.g. 4G or 512 Default: 512') parser_new.add_argument('--disk', '-d', dest='disk', action='store', default='4', help='disk storage allocated to the machine. Default: 4') parser_new.add_argument('--cores', '-c', dest='cores', action='store', default='2', help='Number of cores to be allocated for the machine. Default: 2') parser_new.add_argument('--ubuntu', '-u', dest='ubuntu', action='store', default='', help='Ubuntu version: 14.04, 16.04, 17.10 or 18.04') parser_new.add_argument( '--store-net', '-s', dest='stornet', action='store_true', default=False, help="use networked storage with backup (nfs, ceph) instead of local storage") parser_new.add_argument( '--docker', '-o', dest='docker', action='store_true', default=False, help="install latest docker-ce on new machine") parser_new.add_argument( '--bootstrap', '-b', dest='bootstrap', action='store_true', default=False, help="auto-configure the system using Chef.") parser_new.add_argument( '--no-bootstrap', '-n', dest='nobootstrap', action='store_true', default=False, help="do not auto-configure the system using Chef.") parser_new.add_argument('hosts', action='store', default=[], nargs='*', help='hostname(s) of VM/containers (separated by space), ' + ' example: prox new host1 host2 host3') return parser.parse_args() def main(): uselxc = True usegui = False user = getpass.getuser() if not args.subcommand: print('usage: prox <command> [options] host1 host2 host3') print(' Please run "prox --help"') return False if args.subcommand == 'assist': if 'DISPLAY' in os.environ.keys() or sys.platform == 'win32': usegui = True if args.debug: print('Debugging ....') print(args, l) if args.subcommand in ['straaange', 'oppptions']: prn("This feature is not yet implemented.", usegui) return False check_ssh_agent() check_ssh_auth(user) pwd = os.getenv('proxpw', '') if pwd == '': pwd = os.getenv('PROXPW', '') if pwd == '': pwd = getpwd("Password for '%s':" % user, usegui) if pwd == '': return False loginname = user + '@' + REALM if user == 'root': loginname = user + '@pam' if args.subcommand in ['ssh', 'connect']: ret = subprocess.run("ssh -i %s/.ssh/id_rsa_prox %s" % (homedir, args.hosts[0]), shell=True) return True a = prox_auth(PROXHOST, loginname, pwd, True) if a.ticket is None: prn('Could not get an authentication ticket. Wrong password?', usegui) return False p = pyproxmox(a) pool = p.getPools()['data'][0]['poolid'] nodelist = p.getNodes()['data'] nodes = [] hosttempl = {} templlist = [] ourmachines = {} oursnaps = {} if args.subcommand in ['list', 'ls', 'show']: if args.contacts or args.listsnap: prn("please wait ...") for n in nodelist: node = n['node'] if node in EXCLUDEHOSTS: continue nodes.append(node) try: conts = p.getContainers(node)['data'] except: continue for c in conts: descr = '' if args.subcommand in ['list', 'ls', 'show']: if args.contacts: descr = parse_contact(p,node,c['vmid']) if args.listsnap: shots = p.getContainerSnapshots(node,c['vmid'])['data'] oursnaps[int(c['vmid'])] = shots ourmachines[int(c['vmid'])] = [c['vmid'], c[ 'name'], c['type'], c['status'], node, int(c['maxmem'])/ 1024/1024/1024, c['cpus'], int(c['maxdisk'])/1024/1024/1024, descr] if args.subcommand in ['list', 'ls', 'show']: if args.all == True: vms = p.getNodeVirtualIndex(node)['data'] for v in vms: if args.contacts: descr = parse_contact_vm(p,node,v['vmid']) if v['template'] == 1: hosttempl[v['name']] = [node, v['vmid']] templlist.append(v['name']) else: ourmachines[int(v['vmid'])] = [v['vmid'], v[ 'name'], 'kvm', v['status'], node, '', '', 0, descr] vmids = [] if args.hosts != []: vmids = getvmids(ourmachines, args.hosts) print('') if args.subcommand in ['list', 'ls', 'show'] or ( args.subcommand in [ 'start', 'stop', 'destroy', 'modify', 'mod'] and not vmids): prn(' {0: <5} {1: <20} {2: <5} {3: <9} {4: <8} {5: <5} {6: <3} {7: <5} {8: <10}'.format( 'vmid', 'name', 'type', 'status', 'node' , 'mem', 'cpu', 'disk', '')) prn(' {0: <5} {1: <20} {2: <5} {3: <9} {4: <8} {5: <5} {6: <3} {7: <5} {8: <10}'.format( '----', '--------------------', '----', '--------', '-------', '-----', '---', '-----', '')) recip = [] for k, v in sorted(ourmachines.items()): prn(' {0: <5} {1: <20.20} {2: <5} {3: <9} {4: <8} {5: <5} {6: <3} {7: <5.0f} {8: <10}'.format(*v)) recip.append(v[-1]) if args.subcommand in ['list', 'ls', 'show']: if args.listsnap and k in oursnaps.keys(): for snap in oursnaps[k]: sparent = '' sdescription = '' if 'parent' in snap.keys(): sparent = snap['parent'] if 'description' in snap.keys(): sdescription = snap['description'] sdescription = sdescription.replace('\n', ' ') if snap['name'] != 'current': prn(' snapshot: {:<15} parent: {:<15} descr: {:<25} {:<10}'.format( snap['name'] , sparent, sdescription, '')) if args.subcommand in ['list', 'ls', 'show']: if args.contacts: recip = filter(None,uniq(recip)) prn("\nContact list: " + '; '.join(recip)) if args.subcommand in ['assist', 'gui']: if not usegui: print('running "prox assist" command which will guide you ' 'through a number of choices, however no GUI is available') return False chce = [] msg = ("Running 'prox assist'! Please select from the list " "below or 'Cancel' and run 'prox --help' for other options. " "Example: 'prox new mybox1 mybox2 mybox3' will create " "3 Linux machines.") chce = easygui.choicebox(msg, __app__,['New linux machine', 'New docker host', 'New virtual machine', 'List machines', 'Start machine', 'Stop machine', 'Modify machine', 'Destroy machine']) if not chce: return False if chce.startswith('New '): args.subcommand = 'new' if chce != "New linux machine": uselxc = False else: msg = ("Please select the size of your machine. " "Memory sizes are in MB, unless you add G " "(e.g. 1G). Disk sizes are always in GB\n." "Please start small, you can always resize." ) title = "Configuring Machine Size" fieldNames = ["Memory", "# Cores", "Disk Size"] fieldValues = ['512M', '2', '4G'] fieldValues = easygui.multenterbox(msg, title, fieldNames, fieldValues) if fieldValues: args.mem, args.cores, args.disk = fieldValues else: return False elif chce.startswith('List '): args.subcommand = 'list' elif chce.startswith('Start '): args.subcommand = 'start' elif chce.startswith('Stop '): args.subcommand = 'stop' elif chce.startswith('Modify '): args.subcommand = 'modify' elif chce.startswith('Destroy '): args.subcommand = 'destroy' else: args.subcommand = 'assist' if args.subcommand in ['new', 'create', 'modify', 'mod', 'assist', 'gui']: lxccores = re.sub("[^0-9^.]", "", args.cores) lxcdisk = int(re.sub("[^0-9^.]", "", args.disk)) lxcmem = int(re.sub("[^0-9^.]", "", args.mem)) if "G" in args.mem.upper() or lxcmem <= 64: lxcmem = lxcmem*1024 if args.subcommand in ['start', 'run']: if not vmids: vmids.append(input('\nenter vmid to start:')) if vmids[-1] == '': prn('vmid is required', usegui) return False start_machines(p, ourmachines, vmids, usegui=False) pingwait(ourmachines[vmids[0]][1],1) if args.subcommand in ['stop', 'shutdown']: if not vmids: vmids.append(input('\nnot found, enter vmid to stop:')) if vmids[-1] == '': prn("no vmid entered", usegui) return False for vmid in vmids: machine = ourmachines[vmid] if machine[3] == 'stopped': prn('Machine "%s" is already stopped!' % machine[1], usegui) continue if machine[2] == 'kvm': ret = p.stopVirtualMachine(machine[4], vmid)['data'] if ret: print(ret) else: prn("host with id %s not yet stopped!" % vmid, usegui) for i in range(15): time.sleep(1) ret = p.getVirtualStatus(machine[4], vmid)['data'] prn( 'Machine {0: <4}: {1}, cpu: {2:.0%} '.format( vmid, ret['status'], ret['cpu'])) if ret['status'] == 'stopped': break else: ret = p.stopLXCContainer(machine[4], vmid)['data'] print(ret) if args.subcommand in ['modify', 'mod']: if not vmids: vmids.append(int(input('\nnot found, enter vmid to modify:'))) if vmids[-1] == '': prn("no vmid entered", usegui) return False for vmid in vmids: machine = ourmachines[vmid] if machine[2] == 'kvm': prn("currently cannot modify virtual machines.", usegui) else: ccfg = p.getContainerConfig(machine[4], vmid)['data'] rootstr=ccfg['rootfs'] post_data = {} post_data2 = {} if ccfg['cpulimit'] != lxccores and lxccores != '0': post_data['cpulimit'] = lxccores if ccfg['memory'] != lxcmem and lxcmem > 0: post_data['memory'] = lxcmem if machine[3] == 'stopped': if lxcdisk > 0: post_data['rootfs'] = re.sub(r",size=[0-9]+G", ",size=%sG" % lxcdisk, rootstr) else: post_data2 = {} if lxcdisk > 0: post_data2['disk'] = 'rootfs' post_data2['size'] = '%sG' % lxcdisk ret = p.resizeLXCContainer(machine[4], vmid, post_data2)['data'] if iserr(ret,400): prn ('Error 40X, could not resize disk. ' 'You may need to shutdown the machine to resize a disk', usegui) elif iserr(ret,500): prn ('Error 50X, could not resize disk', usegui) else: pass if post_data != {}: ret = p.setLXCContainerOptions(machine[4], vmid, post_data)['data'] if iserr(ret,400): prn ('Error 40X, could not set machine options', usegui) elif iserr(ret,500): prn ('Error 50X, could not set machine options', usegui) if post_data != {} or post_data2 != {}: ret = p.getContainerConfig(machine[4], vmid)['data'] print ('Machine reconfigured. New settings ' 'cores: %s, mem: %s MB, rootfs: %s ' % (ret['cpulimit'], ret['memory'], ret['rootfs']) ) else: prn('No changes made', usegui) if args.subcommand in ['destroy', 'delete']: if not vmids: vmids.append(input('\nnot found, enter vmid to destroy:')) if vmids[-1] == '': return False for vmid in vmids: if not int(vmid) in ourmachines: prn('machine with id %s does not exist' % vmid) return False machine = ourmachines[vmid] if machine[3] != 'stopped': print( 'Machine "%s" needs to be stopped before it can be destroyed!' % machine[1]) continue if machine[2] == 'kvm': ret = p.deleteVirtualMachine(machine[4], vmid)['data'] print(ret) else: ret = p.deleteLXCContainer(machine[4], vmid)['data'] print(ret) hip = '127.0.0.1' try: hip = socket.gethostbyname(machine[1]) except: pass ret = subprocess.run("ssh-keygen -R %s,%s > /dev/null 2>&1" % (machine[1], hip), shell=True) if args.subcommand in ['snap', 'snapshot']: if not vmids: vmids.append(input('\nnot found, enter vmid to snapshot:')) if vmids[-1] == '': return False for vmid in vmids: if not int(vmid) in ourmachines: prn('machine with id %s does not exist' % vmid) return False machine = ourmachines[vmid] if machine[2] == 'kvm': print('KVM machines are currently not supported') continue else: post_data = { 'description': args.snapdesc, 'snapname': args.snapname} ret = p.snapshotLXCContainer(machine[4],vmid,post_data)['data'] print(ret) if args.subcommand in ['rollback', 'rb']: if not vmids: vmids.append(input('\nnot found, enter vmid to snapshot:')) if vmids[-1] == '': return False for vmid in vmids: if not int(vmid) in ourmachines: prn('machine with id %s does not exist' % vmid) return False machine = ourmachines[vmid] if machine[2] == 'kvm': print('KVM machines are currently not supported') continue else: post_data = { 'snapname': args.snapname} ret = p.rollbackSnapshotLXCContainer(machine[4],vmid,args.snapname)['data'] print(ret) if args.subcommand in ['new', 'create', 'make']: myhosts = hostdedupe(ourmachines, args.hosts) if len(myhosts) == 0: msg=("enter the hostname(s) you want to deploy (separated by " "space, no domain name): ") myhosts = def_input(msg, usegui) myhosts = myhosts.split(' ') if not myhosts or myhosts == '': prn('hostname(s) are required', usegui) return False desc = 'testing' if len(args.hosts) == 0: msg=("What is the description/purpose of the system(s)? (e.g. " "testing, development, other") desc = def_input(msg, 'testing', usegui) storage = STORLOC if len(args.hosts) == 0: if yn_choice( "Do you want to use local storage on host (for better performance) ?") == 'n': storage = STORNET if args.stornet: storage = STORNET newhostids = [] if uselxc: newcontid = 0 for h in myhosts: if hostexists(h): if not yn_choice('Host "%s" already exists in DNS. ' 'This hostname will not be used. Do you still ' 'want to continue?' % h, default='n'): return False if args.node == '': mynode = random.choice(nodes) else: mynode = args.node print('installing container on node "%s" !!! ' % mynode) oldcontid = newcontid for i in range(10): newcontid = p.getClusterVmNextId()['data'] if oldcontid != newcontid: break time.sleep(1) prn( 'creating host %s with ID %s in pool %s' % (h, newcontid, pool)) try: mydummy = LXCIMAGE except: LXCIMAGE = 'proxnfs:vztmpl/ubuntu-16.04-standard_16.04-1_amd64.tar.gz' if args.ubuntu == '14.04': LXCIMAGE = 'proxnfs:vztmpl/ubuntu-14.04-standard_14.04-1_amd64.tar.gz' if args.ubuntu == '16.04': LXCIMAGE = 'proxnfs:vztmpl/ubuntu-16.04-standard_16.04-1_amd64.tar.gz' elif args.ubuntu == '17.10': LXCIMAGE = 'proxnfs:vztmpl/ubuntu-17.10-standard_17.10-1_amd64.tar.gz' elif args.ubuntu == '18.04': LXCIMAGE = 'proxnfs:vztmpl/ubuntu-18.04-standard_18.04-1_amd64.tar.gz' post_data = { 'ostemplate': LXCIMAGE, 'cpulimit': lxccores, 'memory': lxcmem, 'rootfs': lxcdisk, 'vmid': newcontid, 'description': build_notes(user, pool, desc), 'hostname': h, 'password': pwd, 'storage': storage, 'pool': pool, 'net0': 'name=eth0,bridge=vmbr0,ip=dhcp'} ret = p.createLXCContainer(mynode, post_data)['data'] print(' ...%s' % ret) newhostids.append(int(newcontid)) ourmachines[int(newcontid)] = [newcontid, h, 'lxc', 'stopped', mynode] start_machines(p, ourmachines, newhostids, usegui=False) pingwait(myhosts[-1],1) idrsapub = '' if os.path.exists('%s/.ssh/id_rsa_prox.pub' % homedir): idrsapub = '%s/.ssh/id_rsa_prox.pub' % homedir for h in myhosts: if idrsapub != '': ssh_exec('root', pwd, ['mkdir -p .ssh',], h) sftp_put('root', pwd, idrsapub, '.ssh/id_rsa_prox.pub', h) ssh_exec('root', pwd, ['cat .ssh/id_rsa_prox.pub >> .ssh/authorized_keys',], h) ssh_exec('root', pwd, ['echo "session required pam_mkhomedir.so skel=/etc/skel/ umask=0022" >> /etc/pam.d/common-account',], h) ssh_exec('root', pwd, ['echo "%s ALL=(ALL:ALL) NOPASSWD:ALL" > /etc/sudoers.d/zz_%s' % (user, user), 'chmod 440 /etc/sudoers.d/%s' % user], h) hip = '127.0.0.1' try: hip = socket.gethostbyname(h) except: pass ret = subprocess.run("ssh-keygen -R %s,%s > /dev/null 2>&1" % (h, hip), shell=True) ret = subprocess.run("ssh-keyscan -t rsa %s >> %s/.ssh/known_hosts 2>/dev/null" % (h, homedir), shell=True) if args.docker: print('\ninstalling docker....') install_docker(pwd, h) print ('\nfixing docker and restarting services...') fixcmds = ['sed -i "s/^ExecStartPre=\/sbin\/modprobe overlay/ExecStartPre=-\/sbin\/modprobe overlay/" /lib/systemd/system/containerd.service'] fixcmds.append('systemctl daemon-reload') fixcmds.append('systemctl restart containerd docker') ssh_exec('root', pwd, fixcmds, h) loginuser='root@' dobootstrap = False if args.bootstrap: dobootstrap = True elif args.nobootstrap: dobootstrap = False else: if yn_choice("\nDo you want to install the SciComp base config (e.g. user login) ?"): dobootstrap = True if dobootstrap: loginuser='' if os.path.exists('%s/.chef' % homedir): ret = easy_par(run_chef_knife, myhosts) else: func = functools.partial(run_chef_client, pwd) ret = easy_par(func, myhosts) if idrsapub != '': for h in myhosts: ssh_exec(user, pwd, ['mkdir -p .ssh',], h) sftp_put(user, pwd, idrsapub, '.ssh/id_rsa_prox.pub', h) ssh_exec(user, pwd, ['cat .ssh/id_rsa_prox.pub >> .ssh/authorized_keys',], h) else: run_chef_knife('hostname') if args.runlist != '': func = functools.partial(runlist_exec, pwd) ret = easy_par(func, myhosts) prn("**** login: ssh %s%s" % (loginuser,myhosts[0])) ret = subprocess.run("ssh %s%s" % (loginuser, myhosts[0]), shell=True) else: myimage = args.image if myimage == '': if not usegui: msg="Please enter a template name" myimage = def_input(msg, ','.join(templlist)) else: msg=("Please enter a template name or just hit enter " "to select from a list:") myimage = easygui.choicebox(msg, __app__, ','.join(templlist)) if myimage == ','.join(templlist) and usegui: myimage = easygui.choicebox( 'You must select a image or template name', __app__, templlist) if not myimage or myimage == ','.join(templlist) or myimage == '': prn('image is required') return False notes = build_notes(user, pool) for h in myhosts: newvmid = p.getClusterVmNextId()['data'] prn( 'creating host %s with VM ID %s in pool %s' % (h, newvmid, pool)) post_data = { 'newid': newvmid, 'name': h, 'description': notes, 'pool': pool } ret = p.cloneVirtualMachine( hosttempl[myimage][0], hosttempl[myimage][1], post_data)['data'] print(' ...' + ret) newhostids.append(newvmid) if yn_choice("Do you want to start the machine(s) now?"): for n in newhostids: print('Starting host %s ..' % n) ret = p.startVirtualMachine( hosttempl[myimage][0], n)['data'] print(' ...' + ret) pingwait(myhosts[0],7) else: prn('Please start the host with "prox start <hostname>"', usegui) print('') def parse_contact(p,node,vmid): found = '' cfg = p.getContainerConfig(node,vmid)['data'] if 'description' in cfg.keys() : m = re.search('technical_contact: (.+?)@', cfg['description']) if m: found = m.group(1) return found def parse_contact_vm(p,node,vmid): found = '' cfg = p.getVirtualConfig(node,vmid)['data'] if 'description' in cfg.keys() : m = re.search('technical_contact: (.+?)@', cfg['description']) if m: found = m.group(1) return found def start_machines(p, ourmachines, vmids, usegui=False): for vmid in vmids: machine = ourmachines[vmid] ret = None sleeptime = 1 if machine[3] == 'running': prn('Machine "%s" is already running!' % machine[1], usegui) continue print('Starting host %s ..' % vmid) if machine[2] == 'kvm': ret = p.startVirtualMachine(machine[4], vmid)['data'] print('...%s' % ret) for i in range(25): time.sleep(sleeptime) ret = p.getVirtualStatus(machine[4], vmid)['data'] print('Machine {0: <4}: {1}, cpu: {2:.0%} '.format( vmid, ret['status'], ret['cpu'])) if ret['cpu'] > 0.2: break else: ret = None for i in range(15): ret = p.startLXCContainer(machine[4], vmid)['data'] if isinstance(ret, str): print(' ...%s' % ret) break time.sleep(sleeptime) sleeptime+=1 print('starting host %s, re-try %s' % (vmid, i)) if not isinstance(ret, str): print("Failed starting host id %s !" % vmid) continue sleeptime = 1 for i in range(15): time.sleep(sleeptime) sleeptime+=1 ret = p.getContainerStatus(machine[4], vmid)['data'] if not isinstance(ret, int): prn( 'Machine {0: <4}: {1}, cpu: {2:.0%} '.format( vmid, ret['status'], ret['cpu'])) if ret['status'] == 'running': break else: print(' ...Error %s' % ret) if isinstance(ret, int): prn("Failed starting host id %s !" % vmid) continue def run_chef_knife(host): knife = "knife bootstrap --no-host-key-verify " "--ssh-user root --ssh-identity-file %s/.ssh/id_rsa_prox " "--environment scicomp_prod " "--bootstrap-version %s " '--server-url "https://chef.fhcrc.org/organizations/cit" ' "--run-list 'role[cit-base]','role[scicomp_base]' " "--node-name %s " "%s" % (homedir,CHEFVERSION,host,host) if host == 'hostname': print('you can also execute this knife command manually:') print('************************************') print(knife) print('************************************') else: if os.path.exists('%s/.chef' % homedir): print('*** executing knife command:') print(knife) ret = subprocess.run(knife, shell=True) else: print ('chef/knife config dir %s/.chef does not exist.' % homedir) def run_chef_client(pwd, host): chefclient = "chef-client --environment scicomp_prod " "--validation_key /root/.chef/cit-validator.pem " "--runlist role[cit-base],role[scicomp_base] " print ('\nbootstrapping chef-client configs on %s ... please wait a few minutes ... !!!\n' % host) cmdlist = ['dpkg -i /opt/chef/tmp/chef_amd64.deb', chefclient] ssh_exec('root', pwd, cmdlist, host) def check_ssh_auth(user): if os.path.exists('%s/.ssh/id_rsa_prox' % homedir): return True else: ret = subprocess.run("ssh-keygen -q -t rsa -f %s/.ssh/id_rsa_prox -C prox-%s -N ''" % (homedir, user), shell=True) def check_ssh_agent(): SSH_AUTH_SOCK = os.getenv('SSH_AUTH_SOCK', '') if SSH_AUTH_SOCK == '': print("\nYou don't have ssh-agent running, please execute this command:") if os.path.exists('%s/.ssh/id_rsa' % homedir): print("eval $(ssh-agent -s); ssh-add\n") else: print("eval $(ssh-agent -s)\n") else: if os.path.exists('%s/.ssh/id_rsa_prox' % homedir): ret = subprocess.run("ssh-add %s/.ssh/id_rsa_prox > /dev/null 2>&1" % homedir, shell=True) def runlist_exec(pwd, myhost): prn('***** Executing run list %s on host %s........' % (args.runlist, myhost)) rlist = os.path.expanduser(args.runlist.strip()) if os.path.exists(rlist): with open(rlist) as f: commands = f.read().splitlines() prn('*** Running commands %s' % commands) ssh_exec('root', pwd, commands, myhost) else: ssh_exec('root', pwd, [args.runlist.strip(),], myhost) def install_docker(pwd, myhost): cmd = [] cmd.append('apt-get update') cmd.append('apt-get install -y apt-transport-https ca-certificates curl software-properties-common') cmd.append('apt-get install -y gpg-agent') cmd.append('curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -') cmd.append('add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"') cmd.append('apt-get update') cmd.append('apt-get install -y docker-ce') ssh_exec('root', pwd, cmd, myhost)
Apache License 2.0
derfies/panda3d-editor
src/pandaEditor/ui/mainFrame.py
MainFrame.OnFileSave
python
def OnFileSave(self, evt, saveAs=False): if self.base.doc.file_path is None or saveAs: filePath = self._GetSavePath() if filePath: self.base.doc.file_path = filePath else: return self.base.doc.save()
Save the document.
https://github.com/derfies/panda3d-editor/blob/a50939bd4bfa5c22d27a9ddee090717e8d95f404/src/pandaEditor/ui/mainFrame.py#L248-L262
import os import sys import wx import wx.aui import wx.propgrid as wxpg from pubsub import pub import panda3d.core as pm import p3d from direct.showbase.PythonUtil import getBase as get_base from wxExtra import utils as wxUtils, ActionItem from wxExtra.logpanel import LogPanel from wxExtra import AuiManagerConfig, CustomAuiToolBar, CustomMenu from pandaEditor import commands as cmds from pandaEditor.constants import MODEL_EXTENSIONS from pandaEditor.ui.viewport import Viewport from pandaEditor.ui.resourcesPanel import ResourcesPanel from pandaEditor.ui.sceneGraphPanel import SceneGraphPanel from pandaEditor.ui.propertiesPanel import PropertiesPanel from pandaEditor.ui.preferenceseditor import PreferencesEditor from pandaEditor.ui.createdialog import CreateDialog FRAME_TITLE = 'Panda Editor 0.1' TBAR_ICON_SIZE = (24, 24) WILDCARD_SCENE = '.xml|*.xml' WILDCARD_P3D = '.p3d|*.p3d' ID_FILE_NEW = wx.NewId() ID_FILE_OPEN = wx.NewId() ID_FILE_SAVE = wx.NewId() ID_FILE_SAVE_AS = wx.NewId() ID_FILE_IMPORT = wx.NewId() ID_FILE_PROJ = wx.NewId() ID_PROJ_NEW = wx.NewId() ID_PROJ_SET = wx.NewId() ID_PROJ_BUILD = wx.NewId() ID_EDIT_UNDO = wx.NewId() ID_EDIT_REDO = wx.NewId() ID_EDIT_GROUP = wx.NewId() ID_EDIT_UNGROUP = wx.NewId() ID_EDIT_PARENT = wx.NewId() ID_EDIT_UNPARENT = wx.NewId() ID_EDIT_DUPLICATE = wx.NewId() ID_EDIT_WRITE_BAM_FILE = wx.NewId() ID_EDIT_EXPORT_OBJ = wx.NewId() ID_MODIFY_PHYSICS = wx.NewId() ID_XFORM_SEL = wx.NewId() ID_XFORM_POS = wx.NewId() ID_XFORM_ROT = wx.NewId() ID_XFORM_SCL = wx.NewId() ID_XFORM_WORLD = wx.NewId() ID_VIEW_GRID = wx.NewId() ID_VIEW_TOP = wx.NewId() ID_VIEW_BOTTOM = wx.NewId() ID_VIEW_FRONT = wx.NewId() ID_VIEW_BACK = wx.NewId() ID_VIEW_RIGHT = wx.NewId() ID_VIEW_LEFT = wx.NewId() ID_CREATE_PREFAB = wx.NewId() ID_LAYOUT_GAME = wx.NewId() ID_LAYOUT_EDITOR = wx.NewId() ID_LAYOUT_BOTH = wx.NewId() ID_WIND_PANEL = wx.NewId() ID_WIND_FILE_TOOLBAR = wx.NewId() ID_WIND_EDIT_TOOLBAR = wx.NewId() ID_WIND_MODIFY_TOOLBAR = wx.NewId() ID_WIND_XFORM_TOOLBAR = wx.NewId() ID_WIND_LAYOUT_TOOLBAR = wx.NewId() ID_WIND_VIEWPORT = wx.NewId() ID_WIND_SCENE_GRAPH = wx.NewId() ID_WIND_LIGHT_LINKER = wx.NewId() ID_WIND_PROPERTIES = wx.NewId() ID_WIND_RESOURCES = wx.NewId() ID_WIND_LOG = wx.NewId() ID_WIND_PREFERENCES = wx.NewId() ID_PLAY = wx.NewId() ID_PAUSE = wx.NewId() class MainFrame(wx.Frame): def __init__(self, base, *args, **kwargs): super().__init__(*args, **kwargs) self.base = base self.preMaxPos = None self.preMaxSize = None self.Bind(wx.EVT_CLOSE, self.OnClose) self.Bind(wx.EVT_KEY_UP, p3d.wxPanda.OnKeyUp) self.Bind(wx.EVT_KEY_DOWN, p3d.wxPanda.OnKeyDown) self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(wx.EVT_MOVE, self.OnMove) pub.subscribe(self.OnUpdate, 'Update') self.cfg = wx.Config('pandaEditor') self.BuildFileActions() self.BuildEditActions() self.BuildModifyActions() self.BuildXformActions() self.BuildLayoutActions() self.pnlViewport = Viewport(self.base, self) self.pnlSceneGraph = SceneGraphPanel(self) self.pnlProps = PropertiesPanel(self) self.pnlRsrcs = ResourcesPanel(self) self.pnlLog = LogPanel(self) self.BuildAuiManager() self.mb = wx.MenuBar() self.BuildViewMenu() self.BuildCreateMenu() self.BuildWindowMenu() self.BuildMenuBar() self.RebuildPanelMenu() self.OnUpdateWindowMenu(None) def _GetSavePath(self): defaultDir = '' defaultFile = '' if self.base.doc.file_path is not None: defaultDir, defaultFile = os.path.split(self.base.doc.file_path) elif self.base.project.path is not None: defaultDir = self.base.project.GetScenesDirectory() filePath = wxUtils.file_save_dialog('Save Scene As', WILDCARD_SCENE, defaultDir=defaultDir, defaultFile=defaultFile) if filePath and os.path.exists(filePath): msg = ''.join(['The file "', filePath, '" already exists.\nDo you want to replace it?']) if wxUtils.YesNoDialog(msg, 'Replace File?', wx.ICON_WARNING) == wx.ID_NO: return False return filePath def _CheckForSave(self): if self.base.doc.dirty: msg = ''.join(['The document "', self.base.doc.title, '" was modified after last save.\nSave changes before continuing?']) result = wxUtils.YesNoCancelDialog(msg, 'Save Changes?', wx.ICON_WARNING) if result == wx.ID_YES: self.OnFileSave(None) elif result == wx.ID_CANCEL: return False return True def OnClose(self, evt): if not self._CheckForSave(): evt.Veto() return self.auiCfg.Save() if self.preMaxPos is not None: self.auiCfg.SavePosition(*self.preMaxPos) if self.preMaxSize is not None: self.auiCfg.SaveSize(*self.preMaxSize) if self.base.project.path is not None: self.cfg.Write('projDirPath', self.base.project.path) self.Show(False) try: base except NameError: sys.exit() base.userExit() def OnFileNew(self, evt): if not self._CheckForSave(): return self.base.CreateScene() self.base.doc.on_refresh() def OnFileOpen(self, evt, filePath=None): if not self._CheckForSave(): return if filePath is None: scnsDirPath = self.base.project.GetScenesDirectory() if scnsDirPath is None: scnsDirPath = os.getcwd() filePath = wxUtils.file_open_dialog('Open Scene', WILDCARD_SCENE, defaultDir=scnsDirPath) if filePath: self.base.CreateScene(filePath) self.base.doc.load()
MIT License
obi-wan3/ob13-cogs
mentionhelp/mentionhelp.py
MentionHelp._mention_help
python
async def _mention_help(self, ctx: commands.Context):
Send a message when a user mentions the bot (with no other text).
https://github.com/obi-wan3/ob13-cogs/blob/716527f8581e0345802ea2626d43324f87edf941/mentionhelp/mentionhelp.py#L79-L80
import re import discord from redbot.core import commands, Config class MentionHelp(commands.Cog): def __init__(self, bot): self.bot = bot self.config = Config.get_conf(self, 14000605, force_registration=True) default_guild = { "toggle": True } default_global = { "toggle": True, "message": None, "embed": False } self.config.register_guild(**default_guild) self.config.register_global(**default_global) @commands.Cog.listener("on_message_without_command") async def _message_listener(self, message: discord.Message): if ( message.author.bot or not await self.config.toggle() ): return if message.guild and ( await self.bot.cog_disabled_in_guild(self, message.guild) or not await self.config.guild(message.guild).toggle() ): return mention = re.compile(rf"<@!?{self.bot.user.id}>") destination = message.channel if message.guild else message.author if message.guild and not destination.permissions_for(message.guild.me).send_messages: return to_send = await self.config.message() if mention.fullmatch(message.content.strip()) and self.bot.user.id in [u.id for u in message.mentions] and to_send: if (await self.config.embed()) and ((not message.guild) or destination.permissions_for(message.guild.me).embed_links): return await destination.send(embed=discord.Embed(description=to_send, color=await self.bot.get_embed_color(destination))) return await destination.send(to_send) @commands.group(name="mentionhelp")
MIT License
medtagger/medtagger
backend/medtagger/repositories/label_tags.py
enable
python
def enable(label_tag_key: str) -> None: enabling_query = LabelTag.query.filter(LabelTag.key == label_tag_key) updated = enabling_query.update({'disabled': False}, synchronize_session='fetch') if not updated: raise InternalErrorException(f'Label Tag "{label_tag_key}" was not enabled due to unknown database error.')
Enable existing Label Tag.
https://github.com/medtagger/medtagger/blob/8b7575e55764a95d2040f3b9bcd23b6ff846ecaa/backend/medtagger/repositories/label_tags.py#L75-L80
from typing import List from medtagger.database import db_transaction_session from medtagger.database.models import LabelTag from medtagger.definitions import LabelTool from medtagger.exceptions import InternalErrorException from medtagger.types import TaskID def get_all_tags(include_disabled: bool = False) -> List[LabelTag]: query = LabelTag.query if not include_disabled: query = query.filter(~LabelTag.disabled) return query.order_by(LabelTag.key).all() def get_label_tag_by_key(label_tag_key: str) -> LabelTag: return LabelTag.query.filter(LabelTag.key == label_tag_key).one() def add_new_tag(key: str, name: str, tools: List[LabelTool], task_id: TaskID) -> LabelTag: label_tag = LabelTag(key, name, tools) label_tag.task_id = task_id with db_transaction_session() as session: session.add(label_tag) return label_tag def delete_tag_by_key(key: str) -> None: with db_transaction_session() as session: session.query(LabelTag).filter(LabelTag.key == key).delete() def update(key: str, name: str = None, tools: List[LabelTool] = None, task_id: TaskID = None) -> LabelTag: label_tag = get_label_tag_by_key(key) if name: label_tag.name = name if tools: label_tag.tools = tools if task_id: label_tag.task_id = task_id with db_transaction_session() as session: session.add(label_tag) return label_tag def disable(label_tag_key: str) -> None: disabling_query = LabelTag.query.filter(LabelTag.key == label_tag_key) updated = disabling_query.update({'disabled': True}, synchronize_session='fetch') if not updated: raise InternalErrorException(f'Label Tag "{label_tag_key}" was not disabled due to unknown database error.')
Apache License 2.0
linmx0130/ya_mxdet
train_faster_rcnn.py
train_dataset
python
def train_dataset(): train_dataset = VOCDataset(annotation_dir=cfg.annotation_dir, img_dir=cfg.img_dir, dataset_index=cfg.dataset_index, transform=train_transformation, resize_func=img_resize) return train_dataset
prepare a custom dataset return: train_dataset
https://github.com/linmx0130/ya_mxdet/blob/eaa6de7faf819f3720d8dac64c57a42dec38eed7/train_faster_rcnn.py#L37-L47
from faster_rcnn.config import cfg from VOCDataset import VOCDataset from faster_rcnn.faster_rcnn import FasterRCNN import mxnet as mx from faster_rcnn.utils import random_flip, imagenetNormalize, img_resize, random_square_crop, select_class_generator, bbox_inverse_transform, softmax_celoss_with_ignore from faster_rcnn.rpn_gt_opr import rpn_gt_opr from faster_rcnn.rpn_proposal import proposal_train import os import argparse import logging import time def logging_system(): global args logger = logging.getLogger("training") logger.setLevel(logging.INFO) fh = logging.FileHandler(os.path.join(args.save_path, args.logger), 'w') formatter = logging.Formatter( '[%(asctime)s - %(name)s - %(filename)s:%(lineno)d - %(levelname)s] %(message)s' ) fh.setFormatter(formatter) logger.addHandler(fh) ch = logging.StreamHandler() logger.addHandler(ch) return logger def train_transformation(data, label): data, label = random_flip(data, label) data = imagenetNormalize(data) return data, label
MIT License
usc-isi-i2/rltk
rltk/record.py
remove_raw_object
python
def remove_raw_object(cls): cls._remove_raw_object = True return cls
Decorator for Record class. If a Record class is decorated, raw_object will be removed once all mark properties are cached.
https://github.com/usc-isi-i2/rltk/blob/aee10ed5dd561583e60db3373ed82fe1208da1e9/rltk/record.py#L75-L81
import re from typing import Callable re_record_id = re.compile(r'^[^*]{1,255}$') re_valid_property_name = re.compile(r'^[A-Za-z_]{1}[\w]*$') class Record(object): _remove_raw_object = False def __init__(self, raw_object): self.raw_object = raw_object @property def id(self): raise NotImplementedError def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.id == other.id class cached_property(property): def __init__(self, func): self.func = func def __get__(self, obj, cls): if obj is None: return self cached_name = self.func.__name__ if cached_name not in obj.__dict__: obj.__dict__[cached_name] = self.func(obj) value = obj.__dict__.get(cached_name) return value def __reduce__(self): return cached_property.__new__, (cached_property,), {'func': self.func}
MIT License
google-research/long-range-arena
lra_benchmarks/models/reformer/reformer.py
ReformerDualEncoder.apply
python
def apply(self, inputs1, inputs2, vocab_size=None, inputs1_positions=None, inputs2_positions=None, inputs1_segmentation=None, inputs2_segmentation=None, use_bfloat16=False, emb_dim=512, num_heads=8, num_layers=6, qkv_dim=512, mlp_dim=2048, max_len=2048, train=False, dropout_rate=0.1, attention_dropout_rate=0.1, classifier=True, classifier_pool='CLS', num_classes=2, interaction=None): encoder = ReformerEncoder.shared( inputs_positions=inputs1_positions, inputs_segmentation=inputs1_segmentation, vocab_size=vocab_size, use_bfloat16=use_bfloat16, emb_dim=emb_dim, num_heads=num_heads, num_layers=num_layers, qkv_dim=qkv_dim, mlp_dim=mlp_dim, max_len=max_len, train=train, dropout_rate=dropout_rate, attention_dropout_rate=attention_dropout_rate, name='encoder') inputs1_encoded = encoder(inputs1) inputs2_encoded = encoder(inputs2) encoded = common_layers.classifier_head_dual( inputs1_encoded, inputs2_encoded, num_classes, mlp_dim, pooling_mode=classifier_pool, interaction=interaction) return encoded
Applies Transformer model on text similarity. A deliberate choice to distinguish this from NLI because we may want to do different things to the model later. Dual Encoding mode enforces that we do not do cross attention between pairs. Args: inputs1: input data. inputs2: target data. vocab_size: size of the input vocabulary. inputs1_positions: input subsequence positions for packed examples. inputs2_positions: target subsequence positions for packed examples. inputs1_segmentation: input segmentation info for packed examples. inputs2_segmentation: target segmentation info for packed examples. use_bfloat16: bool: whether use bfloat16. emb_dim: dimension of embedding. num_heads: number of heads. num_layers: number of layers. qkv_dim: dimension of the query/key/value. mlp_dim: dimension of the mlp on top of attention block. max_len: maximum length. train: whether it is training. dropout_rate: dropout rate. attention_dropout_rate: dropout rate for attention weights. classifier: boolean, to use classifier. classifier_pool: str, supports "MEAN", "MAX" pooling. num_classes: int, number of classification classes. interaction: str Returns: output of a transformer decoder.
https://github.com/google-research/long-range-arena/blob/09c2916c3f33a07347dcc70c8839957d3c9d4062/lra_benchmarks/models/reformer/reformer.py#L204-L284
from flax import nn import jax.numpy as jnp from lra_benchmarks.models.layers import common_layers from lra_benchmarks.models.reformer import reformer_attention class ReformerBlock(nn.Module): def apply(self, inputs, qkv_dim, mlp_dim, num_heads, dtype=jnp.float32, causal_mask=False, inputs_segmentation=None, padding_mask=None, dropout_rate=0.1, attention_dropout_rate=0.1, deterministic=False, cache=None): assert inputs.ndim == 3 x = nn.LayerNorm(inputs) x = reformer_attention.ReformerSelfAttention( x, num_heads=num_heads, qkv_features=qkv_dim, causal_mask=causal_mask, padding_mask=padding_mask, kernel_init=nn.initializers.xavier_uniform(), bias_init=nn.initializers.normal(stddev=1e-6), bias=False, broadcast_dropout=False, dropout_rate=attention_dropout_rate, deterministic=deterministic, cache=cache) x = nn.dropout(x, rate=dropout_rate, deterministic=deterministic) x = x + inputs y = nn.LayerNorm(x) y = common_layers.MlpBlock( y, mlp_dim=mlp_dim, dropout_rate=dropout_rate, deterministic=deterministic) return x + y class ReformerEncoder(nn.Module): def apply(self, inputs, vocab_size, inputs_positions=None, inputs_segmentation=None, shared_embedding=None, use_bfloat16=False, emb_dim=512, num_heads=8, dtype=jnp.float32, num_layers=6, qkv_dim=512, mlp_dim=2048, max_len=512, train=True, dropout_rate=0.1, attention_dropout_rate=0.1, learn_pos_emb=False, classifier=False, classifier_pool='CLS', num_classes=10): assert inputs.ndim == 2 src_padding_mask = (inputs > 0)[..., None] if shared_embedding is None: input_embed = nn.Embed.partial( num_embeddings=vocab_size, features=emb_dim, embedding_init=nn.initializers.normal(stddev=1.0)) else: input_embed = shared_embedding x = inputs.astype('int32') x = input_embed(x) if classifier and classifier_pool == 'CLS': cls = self.param('cls', (1, 1, emb_dim), nn.initializers.zeros) cls = jnp.tile(cls, [x.shape[0], 1, 1]) x = jnp.concatenate([cls, x], axis=1) max_len += 1 src_padding_mask = jnp.concatenate( [src_padding_mask[:, :1], src_padding_mask], axis=1) pe_init = nn.initializers.normal(stddev=0.02) if learn_pos_emb else None x = common_layers.AddPositionEmbs( x, inputs_positions=inputs_positions, posemb_init=pe_init, max_len=max_len, name='posembed_input') x = nn.dropout(x, rate=dropout_rate, deterministic=not train) if use_bfloat16: x = x.astype(jnp.bfloat16) dtype = jnp.bfloat16 else: dtype = jnp.float32 for lyr in range(num_layers): x = ReformerBlock( x, qkv_dim=qkv_dim, mlp_dim=mlp_dim, num_heads=num_heads, dtype=dtype, padding_mask=src_padding_mask, inputs_segmentation=inputs_segmentation, dropout_rate=dropout_rate, attention_dropout_rate=attention_dropout_rate, deterministic=not train, name=f'encoderblock_{lyr}') encoded = nn.LayerNorm(x, dtype=dtype, name='encoder_norm') if classifier: encoded = common_layers.classifier_head( encoded, num_classes, mlp_dim, pooling_mode=classifier_pool) return encoded class ReformerDualEncoder(nn.Module):
Apache License 2.0
beartype/beartype
beartype/_decor/_code/_pep/pepcode.py
_unmemoize_pep_code
python
def _unmemoize_pep_code( data: BeartypeData, func_wrapper_code: str, pith_repr: str, hint_forwardrefs_class_basename: tuple, ) -> str: assert data.__class__ is BeartypeData, f'{repr(data)} not @beartype data.' assert isinstance(func_wrapper_code, str), ( f'{repr(func_wrapper_code)} not string.') assert isinstance(pith_repr, str), f'{repr(pith_repr)} not string.' assert isinstance(hint_forwardrefs_class_basename, Iterable), ( f'{repr(hint_forwardrefs_class_basename)} not iterable.') func_wrapper_code = replace_str_substrs( text=func_wrapper_code, old=PEP_CODE_PITH_ROOT_PARAM_NAME_PLACEHOLDER, new=pith_repr, ) if hint_forwardrefs_class_basename: data.func_wrapper_locals[ARG_NAME_TYPISTRY] = bear_typistry for hint_forwardref_class_basename in hint_forwardrefs_class_basename: func_wrapper_code = replace_str_substrs( text=func_wrapper_code, old=( f'{PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_PREFIX}' f'{hint_forwardref_class_basename}' f'{PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_SUFFIX}' ), new=register_typistry_forwardref( get_hint_pep484585_forwardref_classname_relative_to_object( hint=hint_forwardref_class_basename, obj=data.func) ), ) return func_wrapper_code
Convert the passed memoized code snippet type-checking any parameter or return of the decorated callable into a memoized code snippet type-checking a specific parameter or return of that callable. Specifically, this function (in order): #. Globally replaces all references to the :data:`PEP_CODE_PITH_ROOT_PARAM_NAME_PLACEHOLDER` placeholder substring cached into this code with the passed ``pith_repr`` parameter. #. Unmemoizes this code by globally replacing all relative forward reference placeholder substrings cached into this code with Python expressions evaluating to the classes referred to by those substrings relative to that callable when accessed via the private ``__beartypistry`` parameter. Parameters ---------- data : BeartypeData Decorated callable to be type-checked. func_wrapper_code : str Memoized callable-agnostic code snippet type-checking any parameter or return of the decorated callable. pith_repr : str Machine-readable representation of the name of this parameter or return. hint_forwardrefs_class_basename : tuple Tuple of the unqualified classnames referred to by all relative forward reference type hints visitable from the current root type hint. Returns ---------- str This memoized code unmemoized by globally resolving all relative forward reference placeholder substrings cached into this code relative to the currently decorated callable.
https://github.com/beartype/beartype/blob/9da0bbebe408d281d5bfb6cc203dc6969e241aa4/beartype/_decor/_code/_pep/pepcode.py#L237-L331
from beartype.roar import BeartypeDecorHintPepException from beartype._decor._cache.cachetype import ( bear_typistry, register_typistry_forwardref, ) from beartype._decor._code.codesnip import ARG_NAME_TYPISTRY from beartype._decor._code._pep._pephint import pep_code_check_hint from beartype._decor._code._pep._pepsnip import ( PARAM_KIND_TO_PEP_CODE_LOCALIZE, PEP_CODE_CHECK_RETURN_PREFIX, PEP_CODE_CHECK_RETURN_SUFFIX, PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_PREFIX, PEP_CODE_HINT_FORWARDREF_UNQUALIFIED_PLACEHOLDER_SUFFIX, PEP_CODE_PITH_ROOT_PARAM_NAME_PLACEHOLDER, ) from beartype._decor._data import BeartypeData from beartype._util.cache.utilcacheerror import reraise_exception_cached from beartype._util.hint.pep.proposal.pep484585.utilpep484585ref import ( get_hint_pep484585_forwardref_classname_relative_to_object) from beartype._util.kind.utilkinddict import update_mapping from beartype._util.text.utiltextlabel import ( prefix_callable_decorated_param, prefix_callable_decorated_return, ) from beartype._util.text.utiltextmunge import replace_str_substrs from collections.abc import Iterable from inspect import Parameter __all__ = ['STAR_IMPORTS_CONSIDERED_HARMFUL'] _RETURN_REPR = repr('return') def pep_code_check_param( data: BeartypeData, hint: object, param: Parameter, param_index: int, ) -> str: assert data.__class__ is BeartypeData, f'{repr(data)} not @beartype data.' assert isinstance(param, Parameter), ( f'{repr(param)} not parameter metadata.') assert isinstance(param_index, int), ( f'{repr(param_index)} not integer.') PARAM_LOCALIZE_TEMPLATE = PARAM_KIND_TO_PEP_CODE_LOCALIZE.get( param.kind, None) if PARAM_LOCALIZE_TEMPLATE is None: exception_prefix = prefix_callable_decorated_param( func=data.func, param_name=param.name) raise BeartypeDecorHintPepException( f'{exception_prefix}kind {repr(param.kind)} ' f'currently unsupported by @beartype.' ) try: ( code_param_check_pith, func_wrapper_locals, hint_forwardrefs_class_basename, ) = pep_code_check_hint(hint) update_mapping(data.func_wrapper_locals, func_wrapper_locals) code_param_check = _unmemoize_pep_code( data=data, func_wrapper_code=code_param_check_pith, pith_repr=repr(param.name), hint_forwardrefs_class_basename=hint_forwardrefs_class_basename, ) except Exception as exception: reraise_exception_cached( exception=exception, target_str=prefix_callable_decorated_param( func=data.func, param_name=param.name), ) code_param_localize = PARAM_LOCALIZE_TEMPLATE.format( arg_name=param.name, arg_index=param_index) return f'{code_param_localize}{code_param_check}' def pep_code_check_return(data: BeartypeData, hint: object) -> str: assert data.__class__ is BeartypeData, f'{repr(data)} not @beartype data.' hint_forwardrefs_class_basename = () try: ( code_return_check_pith, func_wrapper_locals, hint_forwardrefs_class_basename, ) = pep_code_check_hint(hint) update_mapping(data.func_wrapper_locals, func_wrapper_locals) code_return_check_prefix = PEP_CODE_CHECK_RETURN_PREFIX.format( func_call_prefix=data.func_wrapper_code_call_prefix) code_return_check_memoized = ( f'{code_return_check_prefix}' f'{code_return_check_pith}' f'{PEP_CODE_CHECK_RETURN_SUFFIX}' ) code_return_check = _unmemoize_pep_code( data=data, func_wrapper_code=code_return_check_memoized, pith_repr=_RETURN_REPR, hint_forwardrefs_class_basename=hint_forwardrefs_class_basename, ) except Exception as exception: reraise_exception_cached( exception=exception, target_str=prefix_callable_decorated_return(data.func), ) return code_return_check
MIT License
visualcomputinginstitute/3d-semantic-segmentation
tools/lazy_decorator.py
lazy_property
python
def lazy_property(function): attribute = '_cache_' + function.__name__ @property @functools.wraps(function) def decorator(self): if not hasattr(self, attribute): setattr(self, attribute, function(self)) return getattr(self, attribute) return decorator
caches the output of the property and just returns the value for next calls :param function: property to be cached :return: cached output of property
https://github.com/visualcomputinginstitute/3d-semantic-segmentation/blob/1dfc010b370a346902ad29460c9ad969c1892a97/tools/lazy_decorator.py#L10-L25
import functools
MIT License
nuagenetworks/vspk-python
vspk/v5_0/nuvirtualip.py
NUVirtualIP.associated_floating_ip_id
python
def associated_floating_ip_id(self): return self._associated_floating_ip_id
Get associated_floating_ip_id value. Notes: Id of Floating IP address associated to this virtual ip This attribute is named `associatedFloatingIPID` in VSD API.
https://github.com/nuagenetworks/vspk-python/blob/375cce10ae144ad6017104e57fcd3630898cc2a6/vspk/v5_0/nuvirtualip.py#L253-L263
from .fetchers import NUMetadatasFetcher from .fetchers import NUGlobalMetadatasFetcher from .fetchers import NUEventLogsFetcher from bambou import NURESTObject class NUVirtualIP(NURESTObject): __rest_name__ = "virtualip" __resource_name__ = "virtualips" CONST_IP_TYPE_IPV6 = "IPV6" CONST_IP_TYPE_IPV4 = "IPV4" CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" def __init__(self, **kwargs): super(NUVirtualIP, self).__init__() self._mac = None self._ip_type = None self._last_updated_by = None self._virtual_ip = None self._entity_scope = None self._associated_floating_ip_id = None self._subnet_id = None self._external_id = None self.expose_attribute(local_name="mac", remote_name="MAC", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="ip_type", remote_name="IPType", attribute_type=str, is_required=False, is_unique=False, choices=[u'IPV4', u'IPV6']) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="virtual_ip", remote_name="virtualIP", attribute_type=str, is_required=True, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="associated_floating_ip_id", remote_name="associatedFloatingIPID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="subnet_id", remote_name="subnetID", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.event_logs = NUEventLogsFetcher.fetcher_with_object(parent_object=self, relationship="child") self._compute_args(**kwargs) @property def mac(self): return self._mac @mac.setter def mac(self, value): self._mac = value @property def ip_type(self): return self._ip_type @ip_type.setter def ip_type(self, value): self._ip_type = value @property def last_updated_by(self): return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): self._last_updated_by = value @property def virtual_ip(self): return self._virtual_ip @virtual_ip.setter def virtual_ip(self, value): self._virtual_ip = value @property def entity_scope(self): return self._entity_scope @entity_scope.setter def entity_scope(self, value): self._entity_scope = value @property
BSD 3-Clause New or Revised License
v7labs/darwin-py
darwin/dataset/remote_dataset.py
RemoteDataset.push
python
def push( self, files_to_upload: Optional[List[Union[PathLike, LocalFile]]], *, blocking: bool = True, multi_threaded: bool = True, fps: int = 0, as_frames: bool = False, files_to_exclude: Optional[List[PathLike]] = None, path: Optional[str] = None, preserve_folders: bool = False, progress_callback: Optional[ProgressCallback] = None, file_upload_callback: Optional[FileUploadCallback] = None, ): if files_to_exclude is None: files_to_exclude = [] if files_to_upload is None: raise ValueError("No files or directory specified.") uploading_files = [item for item in files_to_upload if isinstance(item, LocalFile)] search_files = [item for item in files_to_upload if not isinstance(item, LocalFile)] generic_parameters_specified = path is not None or fps != 0 or as_frames is not False if uploading_files and generic_parameters_specified: raise ValueError("Cannot specify a path when uploading a LocalFile object.") for found_file in find_files(search_files, files_to_exclude=files_to_exclude): local_path = path if preserve_folders: source_files = [source_file for source_file in search_files if is_relative_to(found_file, source_file)] if source_files: local_path = str(found_file.relative_to(source_files[0]).parent) uploading_files.append(LocalFile(found_file, fps=fps, as_frames=as_frames, path=local_path)) if not uploading_files: raise ValueError("No files to upload, check your path, exclusion filters and resume flag") handler = UploadHandler(self, uploading_files) if blocking: handler.upload( multi_threaded=multi_threaded, progress_callback=progress_callback, file_upload_callback=file_upload_callback, ) else: handler.prepare_upload() return handler
Uploads a local dataset (images ONLY) in the datasets directory. Parameters ---------- files_to_upload : Optional[List[Union[PathLike, LocalFile]]] List of files to upload. Those can be folders. blocking : bool If False, the dataset is not uploaded and a generator function is returned instead. multi_threaded : bool Uses multiprocessing to upload the dataset in parallel. If blocking is False this has no effect. files_to_exclude : Optional[PathLike]] Optional list of files to exclude from the file scan. Those can be folders. fps : int When the uploading file is a video, specify its framerate. as_frames: bool When the uploading file is a video, specify whether it's going to be uploaded as a list of frames. path: Optional[str] Optional path to store the files in. preserve_folders : bool Specify whether or not to preserve folder paths when uploading progress_callback: Optional[ProgressCallback] Optional callback, called every time the progress of an uploading files is reported. file_upload_callback: Optional[FileUploadCallback] Optional callback, called every time a file chunk is uploaded. Returns ------- handler : UploadHandler Class for handling uploads, progress and error messages
https://github.com/v7labs/darwin-py/blob/694253ec520ec32d791eb4a2d0b8acc9ad686b33/darwin/dataset/remote_dataset.py#L88-L168
import json import shutil import tempfile import zipfile from datetime import datetime from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, Iterator, List, Optional, Union from urllib import parse from darwin.dataset.download_manager import download_all_images_from_annotations from darwin.dataset.identifier import DatasetIdentifier from darwin.dataset.release import Release from darwin.dataset.split_manager import split_dataset from darwin.dataset.upload_manager import ( FileUploadCallback, LocalFile, ProgressCallback, UploadHandler, ) from darwin.dataset.utils import ( exhaust_generator, get_annotations, get_classes, is_relative_to, is_unix_like_os, make_class_lists, sanitize_filename, ) from darwin.datatypes import AnnotationClass from darwin.exceptions import NotFound, UnsupportedExportFormat from darwin.exporter.formats.darwin import build_image_annotation from darwin.item import DatasetItem, parse_dataset_item from darwin.item_sorter import ItemSorter from darwin.types import PathLike from darwin.utils import find_files, parse_darwin_json, split_video_annotation, urljoin from darwin.validators import name_taken, validation_error from rich.console import Console if TYPE_CHECKING: from darwin.client import Client class RemoteDataset: def __init__( self, *, client: "Client", team: str, name: str, slug: str, dataset_id: int, image_count: int = 0, progress: float = 0, ): self.team = team self.name = name self.slug = slug or name self.dataset_id = dataset_id self.image_count = image_count self.progress = progress self.client = client self.annotation_types = None self.console: Console = Console()
MIT License
prajdabre/yanmtt
transformers/src/transformers/models/t5/modeling_tf_t5.py
TFT5Attention.compute_bias
python
def compute_bias(self, query_length, key_length): context_position = tf.range(query_length)[:, None] memory_position = tf.range(key_length)[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, ) values = self.relative_attention_bias(relative_position_bucket) values = tf.expand_dims( tf.transpose(values, [2, 0, 1]), axis=0 ) return values
Compute binned relative position bias
https://github.com/prajdabre/yanmtt/blob/4d329c3bcb81ca432d5947bb4673897086ee7f32/transformers/src/transformers/models/t5/modeling_tf_t5.py#L226-L240
import copy import itertools import math import warnings from typing import Tuple import tensorflow as tf from ...activations_tf import get_tf_activation from ...file_utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPast, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFPreTrainedModel, TFSharedEmbeddings, TFWrappedEmbeddings, input_processing, keras_serializable, shape_list, ) from ...utils import logging from .configuration_t5 import T5Config logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "T5Config" _TOKENIZER_FOR_DOC = "T5Tokenizer" TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ "t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b", ] class TFT5LayerNorm(tf.keras.layers.Layer): def __init__(self, epsilon=1e-6, **kwargs): super().__init__(**kwargs) self.variance_epsilon = epsilon def build(self, input_shape): self.weight = self.add_weight("weight", shape=(input_shape[-1],), initializer="ones") super().build(input_shape) def call(self, hidden_states): variance = tf.math.reduce_mean(tf.math.square(hidden_states), axis=-1, keepdims=True) hidden_states = hidden_states * tf.math.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states class TFT5DenseReluDense(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.wi = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi") self.wo = tf.keras.layers.Dense(config.d_model, use_bias=False, name="wo") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) self.act = tf.keras.activations.relu def call(self, hidden_states, training=False): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.wo(hidden_states) return hidden_states class TFT5GatedGeluDense(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.wi_0 = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi_0") self.wi_1 = tf.keras.layers.Dense(config.d_ff, use_bias=False, name="wi_1") self.wo = tf.keras.layers.Dense(config.d_model, use_bias=False, name="wo") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) self.act = get_tf_activation("gelu_new") def call(self, hidden_states, training=False): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.wo(hidden_states) return hidden_states class TFT5LayerFF(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.feed_forward_proj == "relu": self.DenseReluDense = TFT5DenseReluDense(config, name="DenseReluDense") elif config.feed_forward_proj == "gated-gelu": self.DenseReluDense = TFT5GatedGeluDense(config, name="DenseReluDense") else: raise ValueError( f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`" ) self.layer_norm = TFT5LayerNorm(epsilon=config.layer_norm_epsilon, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) def call(self, hidden_states, training=False): normed_hidden_states = self.layer_norm(hidden_states) dense_output = self.DenseReluDense(normed_hidden_states, training=training) hidden_states = hidden_states + self.dropout(dense_output, training=training) return hidden_states class TFT5Attention(tf.keras.layers.Layer): NEW_ID = itertools.count() def __init__(self, config, has_relative_attention_bias=False, **kwargs): super().__init__(**kwargs) self.layer_id = next(TFT5Attention.NEW_ID) self.is_decoder = config.is_decoder self.use_cache = config.use_cache self.has_relative_attention_bias = has_relative_attention_bias self.output_attentions = config.output_attentions self.relative_attention_num_buckets = config.relative_attention_num_buckets self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.inner_dim = self.n_heads * self.key_value_proj_dim self.q = tf.keras.layers.Dense(self.inner_dim, use_bias=False, name="q") self.k = tf.keras.layers.Dense(self.inner_dim, use_bias=False, name="k") self.v = tf.keras.layers.Dense(self.inner_dim, use_bias=False, name="v") self.o = tf.keras.layers.Dense(self.d_model, use_bias=False, name="o") self.dropout = tf.keras.layers.Dropout(config.dropout_rate) if self.has_relative_attention_bias: self.relative_attention_bias = tf.keras.layers.Embedding( self.relative_attention_num_buckets, self.n_heads, name="relative_attention_bias", ) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += tf.dtypes.cast(tf.math.greater(relative_position, 0), tf.int32) * num_buckets relative_position = tf.math.abs(relative_position) else: relative_position = -tf.math.minimum(relative_position, 0) max_exact = num_buckets // 2 is_small = tf.math.less(relative_position, max_exact) relative_position_if_large = max_exact + tf.dtypes.cast( tf.math.log(tf.dtypes.cast(relative_position, tf.float32) / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact), tf.int32, ) relative_position_if_large = tf.math.minimum(relative_position_if_large, num_buckets - 1) relative_buckets += tf.where(is_small, relative_position, relative_position_if_large) return relative_buckets
MIT License
asteroid-team/asteroid
asteroid/dsp/overlap_add.py
LambdaOverlapAdd.ola_forward
python
def ola_forward(self, x): assert x.ndim == 3 batch, channels, n_frames = x.size() unfolded = torch.nn.functional.unfold( x.unsqueeze(-1), kernel_size=(self.window_size, 1), padding=(self.window_size, 0), stride=(self.hop_size, 1), ) out = [] n_chunks = unfolded.shape[-1] for frame_idx in range(n_chunks): frame = self.nnet(unfolded[..., frame_idx]) if frame_idx == 0: assert frame.ndim == 3, "nnet should return (batch, n_src, time)" if self.n_src is not None: assert frame.shape[1] == self.n_src, "nnet should return (batch, n_src, time)" n_src = frame.shape[1] frame = frame.reshape(batch * n_src, -1) if frame_idx != 0 and self.reorder_chunks: frame = _reorder_sources(frame, out[-1], n_src, self.window_size, self.hop_size) if self.use_window: frame = frame * self.window else: frame = frame / (self.window_size / self.hop_size) out.append(frame) out = torch.stack(out).reshape(n_chunks, batch * n_src, self.window_size) out = out.permute(1, 2, 0) out = torch.nn.functional.fold( out, (n_frames, 1), kernel_size=(self.window_size, 1), padding=(self.window_size, 0), stride=(self.hop_size, 1), ) return out.squeeze(-1).reshape(batch, n_src, -1)
Heart of the class: segment signal, apply func, combine with OLA.
https://github.com/asteroid-team/asteroid/blob/64e10e9de840ada77719ff4fa280be42a19aa51c/asteroid/dsp/overlap_add.py#L84-L131
import torch from torch import nn from ..losses.pit_wrapper import PITReorder class LambdaOverlapAdd(torch.nn.Module): def __init__( self, nnet, n_src, window_size, hop_size=None, window="hanning", reorder_chunks=True, enable_grad=False, ): super().__init__() assert window_size % 2 == 0, "Window size must be even" self.nnet = nnet self.window_size = window_size self.hop_size = hop_size if hop_size is not None else window_size // 2 self.n_src = n_src self.in_channels = getattr(nnet, "in_channels", None) if window: from scipy.signal import get_window window = get_window(window, self.window_size).astype("float32") window = torch.from_numpy(window) self.use_window = True else: self.use_window = False self.register_buffer("window", window) self.reorder_chunks = reorder_chunks self.enable_grad = enable_grad
MIT License
conchylicultor/musicgenerator
deepmusic/modulemanager.py
ModuleManager.save
python
def save(self, config_group): config_group[self.name] = ' '.join([self.module_name] + self.module_parameters)
Save the current module parameters Args: config_group (dict): dictionary where to write the configuration
https://github.com/conchylicultor/musicgenerator/blob/adea76dccaba923b7d3807082ec6f5b512d16bb9/deepmusic/modulemanager.py#L111-L117
from collections import OrderedDict class ModuleManager: def __init__(self, name): self.name = name self.modules = OrderedDict() self.module_instance = None self.module_name = '' self.module_parameters = [] def register(self, module): assert not module.get_module_id() in self.modules self.modules[module.get_module_id()] = module def get_modules_ids(self): return self.modules.keys() def get_chosen_name(self): return self.module_name def get_module(self): assert self.module_instance is not None return self.module_instance def build_module(self, args): assert self.module_instance is None module_args = getattr(args, self.name) self.module_name = module_args[0] self.module_parameters = module_args[1:] self.module_instance = self.modules[self.module_name](args, *self.module_parameters) return self.module_instance def add_argparse(self, group_args, comment): assert len(self.modules.keys()) keys = list(self.modules.keys()) group_args.add_argument( '--{}'.format(self.name), type=str, nargs='+', default=[keys[0]], help=comment + ' Choices available: {}'.format(', '.join(keys)) )
Apache License 2.0
markblundeberg/openswap
lib/util.py
bh2u
python
def bh2u(x): return hfu(x).decode('ascii')
str with hex representation of a bytes-like object >>> x = bytes((1, 2, 10)) >>> bh2u(x) '01020A' :param x: bytes :rtype: str
https://github.com/markblundeberg/openswap/blob/7de04aa80dab79bebe4b64483011dad70a48694c/lib/util.py#L356-L367
import binascii import os, sys, re, json from collections import defaultdict from datetime import datetime import decimal from decimal import Decimal import traceback import threading import hmac import stat from .i18n import _ import queue def inv_dict(d): return {v: k for k, v in d.items()} base_units = {'BCH':8, 'mBCH':5, 'cash':2} fee_levels = [_('Within 25 blocks'), _('Within 10 blocks'), _('Within 5 blocks'), _('Within 2 blocks'), _('In the next block')] def normalize_version(v): return [int(x) for x in re.sub(r'(\.0+)*$','', v).split(".")] class NotEnoughFunds(Exception): pass class ExcessiveFee(Exception): pass class InvalidPassword(Exception): def __str__(self): return _("Incorrect password") class FileImportFailed(Exception): def __str__(self): return _("Failed to import file.") class FileImportFailedEncrypted(FileImportFailed): def __str__(self): return (_('Failed to import file.') + ' ' + _('Perhaps it is encrypted...') + '\n' + _('Importing encrypted files is not supported.')) class UserCancelled(Exception): pass class MyEncoder(json.JSONEncoder): def default(self, obj): from .transaction import Transaction if isinstance(obj, Transaction): return obj.as_dict() return super(MyEncoder, self).default(obj) class PrintError(object): def diagnostic_name(self): return self.__class__.__name__ def print_error(self, *msg): print_error("[%s]" % self.diagnostic_name(), *msg) def print_stderr(self, *msg): print_stderr("[%s]" % self.diagnostic_name(), *msg) def print_msg(self, *msg): print_msg("[%s]" % self.diagnostic_name(), *msg) class ThreadJob(PrintError): def run(self): pass class DebugMem(ThreadJob): def __init__(self, classes, interval=30): self.next_time = 0 self.classes = classes self.interval = interval def mem_stats(self): import gc self.print_error("Start memscan") gc.collect() objmap = defaultdict(list) for obj in gc.get_objects(): for class_ in self.classes: if isinstance(obj, class_): objmap[class_].append(obj) for class_, objs in objmap.items(): self.print_error("%s: %d" % (class_.__name__, len(objs))) self.print_error("Finish memscan") def run(self): if time.time() > self.next_time: self.mem_stats() self.next_time = time.time() + self.interval class DaemonThread(threading.Thread, PrintError): def __init__(self): threading.Thread.__init__(self) self.parent_thread = threading.currentThread() self.running = False self.running_lock = threading.Lock() self.job_lock = threading.Lock() self.jobs = [] def add_jobs(self, jobs): with self.job_lock: self.jobs.extend(jobs) def run_jobs(self): with self.job_lock: for job in self.jobs: try: job.run() except Exception as e: traceback.print_exc(file=sys.stderr) def remove_jobs(self, jobs): with self.job_lock: for job in jobs: self.jobs.remove(job) def start(self): with self.running_lock: self.running = True return threading.Thread.start(self) def is_running(self): with self.running_lock: return self.running and self.parent_thread.is_alive() def stop(self): with self.running_lock: self.running = False def on_stop(self): if 'ANDROID_DATA' in os.environ: try: import jnius jnius.detach() self.print_error("jnius detach") except ImportError: pass self.print_error("stopped") is_verbose = True def set_verbosity(b): global is_verbose is_verbose = b class cachedproperty(object): def __init__(self, f): self.f = f def __get__(self, obj, type): obj = obj or type value = self.f(obj) setattr(obj, self.f.__name__, value) return value def print_error(*args): if not is_verbose: return print_stderr(*args) def print_stderr(*args): args = [str(item) for item in args] sys.stderr.write(" ".join(args) + "\n") sys.stderr.flush() def print_msg(*args): args = [str(item) for item in args] sys.stdout.write(" ".join(args) + "\n") sys.stdout.flush() def json_encode(obj): try: s = json.dumps(obj, sort_keys = True, indent = 4, cls=MyEncoder) except TypeError: s = repr(obj) return s def json_decode(x): try: return json.loads(x, parse_float=Decimal) except: return x def constant_time_compare(val1, val2): return hmac.compare_digest(to_bytes(val1, 'utf8'), to_bytes(val2, 'utf8')) def profiler(func): def do_profile(func, args, kw_args): n = func.__name__ t0 = time.time() o = func(*args, **kw_args) t = time.time() - t0 print_error("[profiler]", n, "%.4f"%t) return o return lambda *args, **kw_args: do_profile(func, args, kw_args) def android_ext_dir(): try: import jnius env = jnius.autoclass('android.os.Environment') except ImportError: from android.os import Environment as env return env.getExternalStorageDirectory().getPath() def android_data_dir(): try: import jnius context = jnius.autoclass('org.kivy.android.PythonActivity').mActivity except ImportError: from com.chaquo.python import Python context = Python.getPlatform().getApplication() return context.getFilesDir().getPath() + '/data' def android_headers_dir(): try: import jnius d = android_ext_dir() + '/org.electron.electron' if not os.path.exists(d): os.mkdir(d) return d except ImportError: return android_data_dir() def ensure_sparse_file(filename): if os.name == "nt": try: os.system("fsutil sparse setFlag \""+ filename +"\" 1") except: pass def get_headers_dir(config): return android_headers_dir() if 'ANDROID_DATA' in os.environ else config.path def assert_datadir_available(config_path): path = config_path if os.path.exists(path): return else: raise FileNotFoundError( 'Electron Cash datadir does not exist. Was it deleted while running?' + '\n' + 'Should be at {}'.format(path)) def assert_file_in_datadir_available(path, config_path): if os.path.exists(path): return else: assert_datadir_available(config_path) raise FileNotFoundError( 'Cannot find file but datadir is there.' + '\n' + 'Should be at {}'.format(path)) def assert_bytes(*args): try: for x in args: assert isinstance(x, (bytes, bytearray)) except: print('assert bytes failed', list(map(type, args))) raise def assert_str(*args): for x in args: assert isinstance(x, str) def to_string(x, enc): if isinstance(x, (bytes, bytearray)): return x.decode(enc) if isinstance(x, str): return x else: raise TypeError("Not a string or bytes like object") def to_bytes(something, encoding='utf8'): if isinstance(something, bytes): return something if isinstance(something, str): return something.encode(encoding) elif isinstance(something, bytearray): return bytes(something) else: raise TypeError("Not a string or bytes like object") bfh = bytes.fromhex hfu = binascii.hexlify
MIT License
spilchen/yahoo_fantasy_api
yahoo_fantasy_api/league.py
League.edit_date
python
def edit_date(self): if self.edit_date_cache is None: json = self.yhandler.get_settings_raw(self.league_id) t = objectpath.Tree(json) edit_key = t.execute('$..edit_key[0]') self.edit_date_cache = datetime.datetime.strptime(edit_key, '%Y-%m-%d').date() return self.edit_date_cache
Return the next day that you can edit the lineups. :return: edit date :rtype: :class: datetime.date
https://github.com/spilchen/yahoo_fantasy_api/blob/867444eecffe46541c9c099f4ffc06ab5c178bd2/yahoo_fantasy_api/league.py#L579-L591
import yahoo_fantasy_api as yfa from yahoo_fantasy_api import yhandler import objectpath import datetime import re class League: def __init__(self, sc, league_id): self.sc = sc self.league_id = league_id self.yhandler = yhandler.YHandler(sc) self.current_week_cache = None self.end_week_cache = None self.week_date_range_cache = {} self.free_agent_cache = {} self.waivers_cache = None self.taken_players_cache = None self.stat_categories_cache = None self.settings_cache = None self.edit_date_cache = None self.positions_cache = None self.stats_id_map = None self.player_details_cache = {} def inject_yhandler(self, yhandler): self.yhandler = yhandler def to_team(self, team_key): tm = yfa.Team(self.sc, team_key) tm.inject_yhandler(self.yhandler) return tm def standings(self): json = self.yhandler.get_standings_raw(self.league_id) t = objectpath.Tree(json) num_teams = int(t.execute('$..count[0]')) standings = [] for i in range(num_teams): team = {} for e in t.execute('$..teams.."{}".team[0]'.format(i)): if isinstance(e, list): for td in e: if "team_key" in td or 'name' in td: self._merge_dicts(team, td, []) elif "team_standings" in e: self._merge_dicts(team, e['team_standings'], []) standings.append(team) return standings def teams(self): json = self.yhandler.get_standings_raw(self.league_id) t = objectpath.Tree(json) num_teams = int(t.execute('$..count[0]')) teams = {} for i in range(num_teams): team = {} key = None for e in t.execute('$..teams.."{}".team[0][0]'.format(i)): if "team_key" in e: key = e['team_key'] if isinstance(e, dict): self._merge_dicts(team, e, []) teams[key] = team return teams def matchups(self, week=None): json = self.yhandler.get_scoreboard_raw(self.league_id, week=week) return json def settings(self): if self.settings_cache is None: json = self.yhandler.get_settings_raw(self.league_id) data = {} if "fantasy_content" in json: content = json["fantasy_content"] if "league" in content: self._merge_dicts(data, content["league"][0], []) self._merge_dicts(data, content["league"][1]["settings"][0], ["roster_positions", "stat_categories"]) self.settings_cache = data return self.settings_cache def stat_categories(self): if self.stat_categories_cache is None: t = objectpath.Tree(self.yhandler.get_settings_raw(self.league_id)) json = t.execute('$..stat_categories..stat') simple_stat = [] for s in json: if 'is_only_display_stat' not in s: simple_stat.append({"display_name": s["display_name"], "position_type": s["position_type"]}) self.stat_categories_cache = simple_stat return self.stat_categories_cache def team_key(self): t = objectpath.Tree(self.yhandler.get_teams_raw()) json = t.execute('$..(team_key)') for t in json: if t['team_key'].startswith(self.league_id): return t['team_key'] def current_week(self): if self.current_week_cache is None: t = objectpath.Tree(self.yhandler.get_scoreboard_raw( self.league_id)) self.current_week_cache = int(t.execute('$..current_week[0]')) return self.current_week_cache def end_week(self): if self.end_week_cache is None: t = objectpath.Tree( self.yhandler.get_scoreboard_raw(self.league_id)) self.end_week_cache = int(t.execute('$..end_week[0]')) return self.end_week_cache def week_date_range(self, week): if week <= self.current_week() or week == 1: return self._date_range_of_played_or_current_week(week) elif week == self.current_week() + 1: (cur_st, cur_end) = self._date_range_of_played_or_current_week( week - 1) req_st = cur_end + datetime.timedelta(days=1) req_end = cur_end + datetime.timedelta(days=7) return (req_st, req_end) else: raise RuntimeError("Cannot request date range more than one week " "past the current week. The requested week is " "{}, but current week is {}.".format( week, self.current_week())) def free_agents(self, position): if position not in self.free_agent_cache: self.free_agent_cache[position] = self._fetch_players( 'FA', position=position) return self.free_agent_cache[position] def waivers(self): if not self.waivers_cache: self.waivers_cache = self._fetch_players('W') return self.waivers_cache def taken_players(self): if not self.taken_players_cache: self.taken_players_cache = self._fetch_players('T') return self.taken_players_cache def _fetch_players(self, status, position=None): PLAYERS_PER_PAGE = 25 plyrs = [] plyrIndex = 0 while plyrIndex % PLAYERS_PER_PAGE == 0: j = self.yhandler.get_players_raw(self.league_id, plyrIndex, status, position=position) (num_plyrs_on_pg, fa_on_pg) = self._players_from_page(j) if len(fa_on_pg) == 0: break plyrs += fa_on_pg plyrIndex += num_plyrs_on_pg return plyrs def _players_from_page(self, page): fa = [] if len(page['fantasy_content']['league'][1]['players']) == 0: return (0, fa) t = objectpath.Tree(page) pct_owns = self._pct_owned_from_page(iter(list(t.execute( '$..percent_owned.(coverage_type,value)')))) for i, pct_own in zip(range(0, t.execute('$..players.count[0]')*2, 2), pct_owns): path = '$..players..player[{}].'.format(i) + "(name,player_id,position_type,status,eligible_positions)" obj = list(t.execute(path)) plyr = {} for ele in obj: for k in ele.keys(): plyr[k] = ele[k] plyr['player_id'] = int(plyr['player_id']) plyr['name'] = plyr['name']['full'] plyr['eligible_positions'] = [e['position'] for e in plyr['eligible_positions']] plyr['percent_owned'] = pct_own if "status" not in plyr: plyr["status"] = "" if plyr["status"] != "NA": fa.append(plyr) return (i/2 + 1, fa) def _pct_owned_from_page(self, po_it): po = [] i = 0 try: while True: ele = next(po_it) if "coverage_type" in ele: po.append(0) i += 1 if "value" in ele: po[i-1] = ele['value'] except StopIteration: pass return po def _date_range_of_played_or_current_week(self, week): if week not in self.week_date_range_cache: t = objectpath.Tree(self.yhandler.get_scoreboard_raw( self.league_id, week)) j = t.execute('$..(week_start,week_end)[0]') self.week_date_range_cache[week] = ( datetime.datetime.strptime(j['week_start'], "%Y-%m-%d").date(), datetime.datetime.strptime(j['week_end'], "%Y-%m-%d").date()) return self.week_date_range_cache[week] def player_details(self, player): if isinstance(player, int): player = [player] self._cache_player_details(player) players = [] if isinstance(player, list): for p in player: players.append(self.player_details_cache[p]) elif player in self.player_details_cache: assert(isinstance(self.player_details_cache[player], list)) players = self.player_details_cache[player] return players def percent_owned(self, player_ids): t = objectpath.Tree(self.yhandler.get_percent_owned_raw( self.league_id, player_ids)) player_ids = t.execute("$..player_id") it = t.execute("$..(player_id,full,value)") po = [] try: while True: plyr = {"player_id": int(next(it)["player_id"]), "name": next(it)["full"], "percent_owned": next(it)["value"]} po.append(plyr) except StopIteration: pass return po def ownership(self, player_ids): t = objectpath.Tree(self.yhandler.get_player_ownership_raw(self.league_id, player_ids)) owner_details = t.execute("$..(player_id,ownership_type,owner_team_name)") ownership = {} try: while True: player_id = next(owner_details)['player_id'] ownership_details = next(owner_details) ownership[player_id] = ownership_details except StopIteration: pass return ownership
MIT License
iristyle/chocolateypackages
EthanBrown.SublimeText2.WebPackages/tools/PackageCache/SublimeLinter/sublimelinter/modules/libs/pyflakes/checker.py
Checker._runDeferred
python
def _runDeferred(self, deferred): for handler, scope in deferred: self.scopeStack = scope handler()
Run the callables in C{deferred} using their associated scope stack.
https://github.com/iristyle/chocolateypackages/blob/8c9833710577de6db6e8b1db5d9196e19e19d117/EthanBrown.SublimeText2.WebPackages/tools/PackageCache/SublimeLinter/sublimelinter/modules/libs/pyflakes/checker.py#L229-L235
import __builtin__ import os.path import _ast from pyflakes import messages try: import ast iter_child_nodes = ast.iter_child_nodes except (ImportError, AttributeError): def iter_child_nodes(node, astcls=_ast.AST): for name in node._fields: field = getattr(node, name, None) if isinstance(field, astcls): yield field elif isinstance(field, list): for item in field: yield item class Binding(object): def __init__(self, name, source): self.name = name self.source = source self.used = False def __str__(self): return self.name def __repr__(self): return '<%s object %r from line %r at 0x%x>' % (self.__class__.__name__, self.name, self.source.lineno, id(self)) class UnBinding(Binding): class Importation(Binding): def __init__(self, name, source): self.fullName = name name = name.split('.')[0] super(Importation, self).__init__(name, source) class Argument(Binding): class Assignment(Binding): class FunctionDefinition(Binding): pass class ExportBinding(Binding): def names(self): names = [] if isinstance(self.source, _ast.List): for node in self.source.elts: if isinstance(node, _ast.Str): names.append(node.s) return names class Scope(dict): importStarred = False def __repr__(self): return '<%s at 0x%x %s>' % (self.__class__.__name__, id(self), dict.__repr__(self)) def __init__(self): super(Scope, self).__init__() class ClassScope(Scope): pass class FunctionScope(Scope): def __init__(self): super(FunctionScope, self).__init__() self.globals = {} class ModuleScope(Scope): pass _MAGIC_GLOBALS = ['__file__', '__builtins__'] class Checker(object): nodeDepth = 0 traceTree = False def __init__(self, tree, filename='(none)'): self._deferredFunctions = [] self._deferredAssignments = [] self.dead_scopes = [] self.messages = [] self.filename = filename self.scopeStack = [ModuleScope()] self.futuresAllowed = True self.handleChildren(tree) self._runDeferred(self._deferredFunctions) self._deferredFunctions = None self._runDeferred(self._deferredAssignments) self._deferredAssignments = None del self.scopeStack[1:] self.popScope() self.check_dead_scopes() def deferFunction(self, callable): self._deferredFunctions.append((callable, self.scopeStack[:])) def deferAssignment(self, callable): self._deferredAssignments.append((callable, self.scopeStack[:]))
MIT License
artyompal/tpu_models
models/official/detection/evaluation/coco_utils.py
generate_annotation_file
python
def generate_annotation_file(groundtruth_generator, annotation_file): groundtruths = {} tf.logging.info('Loading groundtruth annotations from dataset to memory...') for groundtruth in groundtruth_generator(): for k, v in six.iteritems(groundtruth): if k not in groundtruths: groundtruths[k] = [v] else: groundtruths[k].append(v) gt_dataset = convert_groundtruths_to_coco_dataset(groundtruths) tf.logging.info('Saving groundtruth annotations to the JSON file...') with tf.gfile.Open(annotation_file, 'w') as f: f.write(json.dumps(gt_dataset)) tf.logging.info('Done saving the JSON file...')
Generates COCO-style annotation JSON file given a groundtruth generator.
https://github.com/artyompal/tpu_models/blob/639306f30e085bb1cdb5b1118a4c96a2dbe14e3e/models/official/detection/evaluation/coco_utils.py#L345-L361
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import json import numpy as np from PIL import Image from pycocotools import coco from pycocotools import mask as mask_utils import six import tensorflow as tf from dataloader import tf_example_decoder from utils import box_utils class COCOWrapper(coco.COCO): def __init__(self, eval_type='box', annotation_file=None, gt_dataset=None): if ((annotation_file and gt_dataset) or ((not annotation_file) and (not gt_dataset))): raise ValueError('One and only one of `annotation_file` and `gt_dataset` ' 'needs to be specified.') if eval_type not in ['box', 'mask']: raise ValueError('The `eval_type` can only be either `box` or `mask`.') coco.COCO.__init__(self, annotation_file=annotation_file) self._eval_type = eval_type if gt_dataset: self.dataset = gt_dataset self.createIndex() def loadRes(self, predictions): res = coco.COCO() res.dataset['images'] = copy.deepcopy(self.dataset['images']) res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) image_ids = [ann['image_id'] for ann in predictions] if set(image_ids) != (set(image_ids) & set(self.getImgIds())): raise ValueError('Results do not correspond to the current dataset!') for ann in predictions: x1, x2, y1, y2 = [ann['bbox'][0], ann['bbox'][0] + ann['bbox'][2], ann['bbox'][1], ann['bbox'][1] + ann['bbox'][3]] if self._eval_type == 'box': ann['area'] = ann['bbox'][2] * ann['bbox'][3] ann['segmentation'] = [ [x1, y1, x1, y2, x2, y2, x2, y1]] elif self._eval_type == 'mask': ann['bbox'] = mask_utils.toBbox(ann['segmentation']) ann['area'] = mask_utils.area(ann['segmentation']) res.dataset['annotations'] = copy.deepcopy(predictions) res.createIndex() return res def convert_predictions_to_coco_annotations(predictions): coco_predictions = [] num_batches = len(predictions['source_id']) batch_size = predictions['source_id'][0].shape[0] max_num_detections = predictions['detection_classes'][0].shape[1] for i in range(num_batches): for j in range(batch_size): for k in range(max_num_detections): ann = {} ann['image_id'] = predictions['source_id'][i][j] ann['category_id'] = predictions['detection_classes'][i][j, k] boxes = predictions['detection_boxes'][i] ann['bbox'] = [ boxes[j, k, 1], boxes[j, k, 0], boxes[j, k, 3] - boxes[j, k, 1], boxes[j, k, 2] - boxes[j, k, 0]] ann['score'] = predictions['detection_scores'][i][j, k] if 'detection_masks' in predictions: encoded_mask = mask_utils.encode( np.asfortranarray( predictions['detection_masks'][i][j, k].astype(np.uint8))) ann['segmentation'] = encoded_mask coco_predictions.append(ann) for i, ann in enumerate(coco_predictions): ann['id'] = i + 1 return coco_predictions def convert_groundtruths_to_coco_dataset(groundtruths, label_map=None): source_ids = np.concatenate(groundtruths['source_id'], axis=0) heights = np.concatenate(groundtruths['height'], axis=0) widths = np.concatenate(groundtruths['width'], axis=0) gt_images = [{'id': int(i), 'height': int(h), 'width': int(w)} for i, h, w in zip(source_ids, heights, widths)] gt_annotations = [] num_batches = len(groundtruths['source_id']) batch_size = groundtruths['source_id'][0].shape[0] for i in range(num_batches): for j in range(batch_size): num_instances = groundtruths['num_detections'][i][j] for k in range(num_instances): ann = {} ann['image_id'] = int(groundtruths['source_id'][i][j]) if 'is_crowds' in groundtruths: ann['iscrowd'] = int(groundtruths['is_crowds'][i][j, k]) else: ann['iscrowd'] = 0 ann['category_id'] = int(groundtruths['classes'][i][j, k]) boxes = groundtruths['boxes'][i] ann['bbox'] = [ float(boxes[j, k, 1]), float(boxes[j, k, 0]), float(boxes[j, k, 3] - boxes[j, k, 1]), float(boxes[j, k, 2] - boxes[j, k, 0])] if 'areas' in groundtruths: ann['area'] = float(groundtruths['areas'][i][j, k]) else: ann['area'] = float( (boxes[j, k, 3] - boxes[j, k, 1]) * (boxes[j, k, 2] - boxes[j, k, 0])) if 'masks' in groundtruths: mask = Image.open(six.StringIO(groundtruths['masks'][i][j, k])) width, height = mask.size np_mask = ( np.array(mask.getdata()).reshape(height, width).astype(np.uint8)) np_mask[np_mask > 0] = 255 encoded_mask = mask_utils.encode(np.asfortranarray(np_mask)) ann['segmentation'] = encoded_mask if 'areas' not in groundtruths: ann['area'] = mask_utils.area(encoded_mask) gt_annotations.append(ann) for i, ann in enumerate(gt_annotations): ann['id'] = i + 1 if label_map: gt_categories = [{'id': i, 'name': label_map[i]} for i in label_map] else: category_ids = [gt['category_id'] for gt in gt_annotations] gt_categories = [{'id': i} for i in set(category_ids)] gt_dataset = { 'images': gt_images, 'categories': gt_categories, 'annotations': copy.deepcopy(gt_annotations), } return gt_dataset class COCOGroundtruthGenerator(object): def __init__(self, file_pattern, num_examples, include_mask): self._file_pattern = file_pattern self._num_examples = num_examples self._include_mask = include_mask self._dataset_fn = tf.data.TFRecordDataset def _parse_single_example(self, example): decoder = tf_example_decoder.TfExampleDecoder( include_mask=self._include_mask) decoded_tensors = decoder.decode(example) image = decoded_tensors['image'] image_size = tf.shape(image)[0:2] boxes = box_utils.denormalize_boxes( decoded_tensors['groundtruth_boxes'], image_size) groundtruths = { 'source_id': tf.string_to_number( decoded_tensors['source_id'], out_type=tf.int64), 'height': decoded_tensors['height'], 'width': decoded_tensors['width'], 'num_detections': tf.shape(decoded_tensors['groundtruth_classes'])[0], 'boxes': boxes, 'classes': decoded_tensors['groundtruth_classes'], 'is_crowds': decoded_tensors['groundtruth_is_crowd'], 'areas': decoded_tensors['groundtruth_area'], } if self._include_mask: groundtruths.update({ 'masks': decoded_tensors['groundtruth_instance_masks_png'], }) return groundtruths def _build_pipeline(self): dataset = tf.data.Dataset.list_files(self._file_pattern, shuffle=False) dataset = dataset.apply( tf.data.experimental.parallel_interleave( lambda filename: self._dataset_fn(filename).prefetch(1), cycle_length=32, sloppy=False)) dataset = dataset.map(self._parse_single_example, num_parallel_calls=64) dataset = dataset.prefetch(tf.contrib.data.AUTOTUNE) dataset = dataset.batch(1, drop_remainder=False) return dataset def __call__(self): with tf.Graph().as_default(): dataset = self._build_pipeline() groundtruth = dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: for _ in range(self._num_examples): groundtruth_result = sess.run(groundtruth) yield groundtruth_result def scan_and_generator_annotation_file(file_pattern, num_samples, include_mask, annotation_file): groundtruth_generator = COCOGroundtruthGenerator( file_pattern, num_samples, include_mask) generate_annotation_file(groundtruth_generator, annotation_file)
Apache License 2.0
e-loue/pyke
pyke/target_pkg.py
target_pkg.reset
python
def reset(self, check_sources = True): if debug: print >> sys.stderr, "target_pkg.reset" self.dirty = False self.check_sources = check_sources self.source_packages = {} self.compiled_targets = set() self.rb_names = set()
This should be called once by engine.__init__ prior to calling add_source_package.
https://github.com/e-loue/pyke/blob/cfe95d8aaa06de123264f9b7f5bea20eb5924ecd/pyke/target_pkg.py#L180-L192
from __future__ import with_statement import os, os.path import time import sys import re import pyke debug = False Name_test = re.compile(r'[a-zA-Z_][a-zA-Z0-9_]*$') class target_pkg(object): def __init__(self, module_name, filename = None, pyke_version = pyke.version, loader = None, sources = None, compiler_version = 0): self.package_name = module_name.rsplit('.', 1)[0] if sources is None: try: target_package_dir = os.path.dirname(import_(self.package_name).__file__) except ImportError: if debug: print >> sys.stderr, "target_pkg: no target package", self.package_name last_dot = self.package_name.rfind('.') if last_dot < 0: assert filename is not None package_parent_dir = os.path.dirname(os.path.dirname(filename)) else: package_parent_dir = os.path.dirname( import_(self.package_name[:last_dot]).__file__) if filename is not None: assert os.path.normpath( os.path.abspath(package_parent_dir)) == os.path.normpath( os.path.dirname(os.path.dirname(filename))), "Internal error: %r != %r" % ( os.path.normpath( os.path.abspath(package_parent_dir)), os.path.normpath( os.path.dirname(os.path.dirname(filename)))) if debug: print >> sys.stderr, "target_pkg package_parent_dir:", package_parent_dir target_package_dir = os.path.join(package_parent_dir, self.package_name[last_dot + 1:]) if debug: print >> sys.stderr, "target_pkg target_package_dir:", target_package_dir if not os.path.lexists(target_package_dir): if debug: print >> sys.stderr, "target_pkg: mkdir", target_package_dir os.mkdir(target_package_dir) init_filepath = os.path.join(target_package_dir, '__init__.py') if debug: print >> sys.stderr, "target_pkg init_filepath:", init_filepath if not os.path.lexists(init_filepath): if debug: print >> sys.stderr, "target_pkg: creating", init_filepath open(init_filepath, 'w').close() filename = os.path.join(target_package_dir, 'compiled_pyke_files.py') if filename.endswith('.py'): self.filename = filename else: self.filename = filename[:-1] self.directory = os.path.dirname(self.filename) if debug: print >> sys.stderr, "target_pkg:", self.package_name, self.filename self.loader = loader if compiler_version == pyke.compiler_version: self.sources = sources if sources is not None else {} elif self.loader is None: self.sources = {} else: raise AssertionError("%s: wrong version of pyke, " "running %s, compiled for %s" % (module_name, pyke.version, pyke_version))
MIT License
zomux/deepy
deepy/trainers/base.py
NeuralTrainer.load_params
python
def load_params(self, path, exclude_free_params=False): self.network.load_params(path, exclude_free_params=exclude_free_params) self.best_params = self.copy_params() if self.network.train_logger.progress() > 0 or self.network.train_logger.epoch() > 0: self.skip(self.network.train_logger.progress(), self.network.train_logger.epoch() - 1)
Load parameters for the training. This method can load free parameters and resume the training progress.
https://github.com/zomux/deepy/blob/090fbad22a08a809b12951cd0d4984f5bd432698/deepy/trainers/base.py#L144-L153
import sys import time import numpy as np import theano from ..conf import TrainerConfig from ..core import env, runtime from ..utils import Timer from ..dataset import Dataset from controllers import TrainingController from abc import ABCMeta, abstractmethod from logging import getLogger logging = getLogger("trainer") class NeuralTrainer(object): __metaclass__ = ABCMeta def __init__(self, network, config=None, validator=None, annealer=None): super(NeuralTrainer, self).__init__() self.config = None if isinstance(config, TrainerConfig): self.config = config elif isinstance(config, dict): self.config = TrainerConfig(config) else: self.config = TrainerConfig() if type(self.config.learning_rate) == float: self.config.learning_rate = np.array(self.config.learning_rate, dtype=env.FLOATX) self.model = self.network = network self.network.prepare_training() self._setup_costs() self.evaluation_func = None self.validation_frequency = self.config.validation_frequency self.min_improvement = self.config.min_improvement self.patience = self.config.patience self._iter_controllers = [] self._epoch_controllers = [] if annealer: annealer.bind(self) self._epoch_controllers.append(annealer) if validator: validator.bind(self) self._iter_controllers.append(validator) self.best_cost = 1e100 self.best_epoch = 0 self.best_params = self.copy_params() self._skip_batches = 0 self._skip_epochs = 0 self._progress = 0 self.last_cost = 0 self.last_run_costs = None self._report_time = True self._epoch = 0 self._current_train_set = None self._current_valid_set = None self._current_test_set = None self._ended = False def _compile_evaluation_func(self): if not self.evaluation_func: logging.info("compile evaluation function") self.evaluation_func = theano.function( self.network.input_variables + self.network.target_variables, self.evaluation_variables, updates=self.network.updates, allow_input_downcast=True, mode=self.config.get("theano_mode", None)) def skip(self, n_batches, n_epochs=0): logging.info("skip %d epochs and %d batches" % (n_epochs, n_batches)) self._skip_batches = n_batches self._skip_epochs = n_epochs def epoch(self): return self._epoch def _setup_costs(self): self.cost = self._add_regularization(self.network.cost) self.test_cost = self._add_regularization(self.network.test_cost) self.training_variables = [self.cost] self.training_names = ['J'] for name, monitor in self.network.training_monitors: self.training_names.append(name) self.training_variables.append(monitor) logging.info("monitor list: %s" % ",".join(self.training_names)) self.evaluation_variables = [self.test_cost] self.evaluation_names = ['J'] for name, monitor in self.network.testing_monitors: self.evaluation_names.append(name) self.evaluation_variables.append(monitor) def _add_regularization(self, cost): if self.config.weight_l1 > 0: logging.info("L1 weight regularization: %f" % self.config.weight_l1) cost += self.config.weight_l1 * sum(abs(w).sum() for w in self.network.parameters) if self.config.hidden_l1 > 0: logging.info("L1 hidden unit regularization: %f" % self.config.hidden_l1) cost += self.config.hidden_l1 * sum(abs(h).mean(axis=0).sum() for h in self.network._hidden_outputs) if self.config.hidden_l2 > 0: logging.info("L2 hidden unit regularization: %f" % self.config.hidden_l2) cost += self.config.hidden_l2 * sum((h * h).mean(axis=0).sum() for h in self.network._hidden_outputs) return cost def set_params(self, targets, free_params=None): for param, target in zip(self.network.parameters, targets): param.set_value(target) if free_params: for param, param_value in zip(self.network.free_parameters, free_params): param.set_value(param_value) def save_params(self, path): self.set_params(*self.best_params) self.network.save_params(path)
MIT License
neuropycon/graphpype
graphpype/labeled_mask.py
compute_ROI_nii_from_ROI_coords_files
python
def compute_ROI_nii_from_ROI_coords_files( ref_img_file, MNI_coords_file, labels_file, neighbourhood=1): ref_image = nib.load(ref_img_file) ref_image_data = ref_image.get_data() ref_image_data_shape = ref_image_data.shape ref_image_data_sform = ref_image.get_sform() ROI_MNI_coords_list = np.array(np.loadtxt( MNI_coords_file), dtype='int').tolist() ROI_labels = [lign.strip() for lign in open(labels_file)] mni_sform_inv = np.linalg.inv(ref_image_data_sform) ROI_coords = np.array([_coord_transform(x, y, z, mni_sform_inv) for x, y, z in ROI_MNI_coords_list], dtype="int64") for i, ROI_coord in enumerate(ROI_coords): ROI_coords_labelled_mask = np.zeros( shape=ref_image_data_shape, dtype='int64') neigh_range = list(range(-neighbourhood, neighbourhood+1)) for relative_coord in iter.product(neigh_range, repeat=3): neigh_x, neigh_y, neigh_z = ROI_coord + relative_coord print(neigh_x, neigh_y, neigh_z) if check_np_dimension(ROI_coords_labelled_mask.shape, np.array([neigh_x, neigh_y, neigh_z], dtype='int64')): ROI_coords_labelled_mask[neigh_x, neigh_y, neigh_z] = 1 print(ROI_coords_labelled_mask) path, fname, ext = split_f(MNI_coords_file) ROI_coords_labelled_mask_file = os.path.join( path, "ROI_{}-neigh_{}_2.nii".format(ROI_labels[i], str(neighbourhood))) nib.save(nib.Nifti1Image( ROI_coords_labelled_mask, ref_image.affine, ref_image.header), ROI_coords_labelled_mask_file) return ROI_coords_labelled_mask_file
Export single file VOI binary nii image
https://github.com/neuropycon/graphpype/blob/409a370e7d293c3fcff0d733bf7af50850dfa9e4/graphpype/labeled_mask.py#L256-L309
import nipype.interfaces.spm as spm from nipype.utils.filemanip import split_filename as split_f from graphpype.utils import check_np_dimension import itertools as iter import numpy as np import nibabel as nib import glob import os from scipy import ndimage as ndimg from scipy.spatial.distance import cdist def _coord_transform(x, y, z, affine): coords = np.c_[np.atleast_1d(x).flat, np.atleast_1d(y).flat, np.atleast_1d(z).flat, np.ones_like(np.atleast_1d(z).flat)].T x, y, z, _ = np.dot(affine, coords) return x.squeeze(), y.squeeze(), z.squeeze() def create_indexed_mask(ref_img_file, MNI_coords_list, ROI_dir, ROI_mask_prefix="def", ROI_shape="cube", ROI_size=10): np_coord = np.array(MNI_coords_list) if len(np_coord.shape) > 1: dist = cdist(np_coord, np_coord, metric='euclidean') assert np.all(dist[np.triu_indices(dist.shape[0], k=1)] > ROI_size), "Error, distance < {}".format(ROI_size) ref_img = nib.load(ref_img_file) ref_img_shape = ref_img.get_data().shape if len(ref_img_shape) == 4: print("using 4D image for computing 3D mask, reducing shape") ref_img_shape = ref_img_shape[:-1] print(ref_img_shape) ref_img_affine = ref_img.affine inv_affine = np.linalg.inv(ref_img_affine) ref_img_hd = ref_img.header pixdims = ref_img_hd['pixdim'][1:4] indexed_mask_data = np.zeros(shape=ref_img_shape) - 1 if ROI_shape not in ["sphere", "cube"]: print("Warning, could not determine shape {}, using cube instead" .format(ROI_shape)) ROI_shape = "cube" if ROI_shape == "cube": print("ROI_shape = cube") vox_dims = list(map(int, float(ROI_size)/pixdims)) print(vox_dims) neigh_range = [] for vox_dim in vox_dims: vox_neigh = vox_dim/2 if vox_dim % 2 == 1: cur_range = np.arange(-vox_neigh, vox_neigh+1) elif vox_dim % 2 == 0: cur_range = np.arange(-vox_neigh+1, vox_neigh+1) neigh_range.append(cur_range) ROI_coords = [] for index_mask, MNI_coords in enumerate(MNI_coords_list): ijk_coord = _coord_transform(MNI_coords[0], MNI_coords[1], MNI_coords[2], inv_affine) neigh_coords = np.array( [list(i) for i in iter.product(*neigh_range)], dtype=int) cur_coords = np.array([list(map(int, ijk_coord + neigh_coord)) for neigh_coord in neigh_coords]) max_i, max_j, max_k = indexed_mask_data.shape keep = (0 <= cur_coords[:, 0]) & (cur_coords[:, 0] < max_i) & (0 <= cur_coords[:, 1]) & (cur_coords[:, 1] < max_j) & (0 <= cur_coords[:, 2]) & (cur_coords[:, 2] < max_k) if np.all(keep is False): continue indexed_mask_data[cur_coords[keep, 0], cur_coords[keep, 1], cur_coords[keep, 2]] = index_mask print(np.sum(indexed_mask_data == index_mask)) ROI_coords.append(ijk_coord) elif ROI_shape == "sphere": print("building spheres of {} mm".format(ROI_size)) radius = ROI_size/2.0 print(radius) vox_dims = list(map(int, float(radius)/pixdims)) print(vox_dims) r2_dim = [] neigh_range = [] for i, vox_dim in enumerate(vox_dims): pixdim = pixdims[i] cur_range = np.arange(-vox_dim, (vox_dim+1)) print(cur_range) cur_r2 = (cur_range*pixdim)**2 print(cur_r2) neigh_range.append(cur_range.tolist()) r2_dim.append(cur_r2) print(neigh_range) neigh_coords = np.array( [list(i) for i in iter.product(*neigh_range)], dtype=int) neigh_dist = np.array([np.sum(i) for i in iter.product(*r2_dim)]) neigh_range = neigh_coords[neigh_dist < radius**2] ROI_coords = [] for index_mask, MNI_coords in enumerate(MNI_coords_list): ijk_coord = np.dot(inv_affine, np.array( MNI_coords + [1], dtype='int'))[:-1] ROI_coords.append(ijk_coord) cur_coords = np.array([list(map(int, ijk_coord + neigh_coord)) for neigh_coord in neigh_range.tolist()]) indexed_mask_data[cur_coords[:, 0], cur_coords[:, 1], cur_coords[:, 2]] = index_mask print(np.sum(indexed_mask_data == index_mask)) try: os.makedirs(ROI_dir) except OSError: print("directory already created") indexed_mask_file = os.path.join( ROI_dir, "indexed_mask-" + ROI_mask_prefix + ".nii") nib.save(nib.Nifti1Image(indexed_mask_data, ref_img_affine), indexed_mask_file) ROI_coords_file = os.path.join( ROI_dir, "ROI_coords-" + ROI_mask_prefix + ".txt") np.savetxt(ROI_coords_file, np.array(ROI_coords, dtype=int), fmt="%d") return indexed_mask_file
BSD 3-Clause New or Revised License
sanic-org/sanic
sanic/server/socket.py
remove_unix_socket
python
def remove_unix_socket(path: Optional[str]) -> None: if not path: return try: if stat.S_ISSOCK(os.stat(path, follow_symlinks=False).st_mode): with socket.socket(socket.AF_UNIX) as testsock: try: testsock.connect(path) except ConnectionRefusedError: os.unlink(path) except FileNotFoundError: pass
Remove dead unix socket during server exit.
https://github.com/sanic-org/sanic/blob/3262878ebd41aa2230ef15d4475bbcf223b2356b/sanic/server/socket.py#L74-L87
from __future__ import annotations import os import secrets import socket import stat from ipaddress import ip_address from typing import Optional def bind_socket(host: str, port: int, *, backlog=100) -> socket.socket: try: ip = ip_address(host) host = str(ip) sock = socket.socket( socket.AF_INET6 if ip.version == 6 else socket.AF_INET ) except ValueError: sock = socket.socket() sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((host, port)) sock.listen(backlog) return sock def bind_unix_socket(path: str, *, mode=0o666, backlog=100) -> socket.socket: path = os.path.abspath(path) folder = os.path.dirname(path) if not os.path.isdir(folder): raise FileNotFoundError(f"Socket folder does not exist: {folder}") try: if not stat.S_ISSOCK(os.stat(path, follow_symlinks=False).st_mode): raise FileExistsError(f"Existing file is not a socket: {path}") except FileNotFoundError: pass tmp_path = f"{path}.{secrets.token_urlsafe()}" sock = socket.socket(socket.AF_UNIX) try: sock.bind(tmp_path) try: os.chmod(tmp_path, mode) sock.listen(backlog) os.rename(tmp_path, path) except: try: os.unlink(tmp_path) finally: raise except: try: sock.close() finally: raise return sock
MIT License
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset Summary

Scotch is a dataset of about 19 million functions collected from open-source repositiories from GitHub with permissive licenses. Each function has its corresponding code context and about 4 million functions have corresponding docstrings.

Languages

The dataset includes functions written in programming languages Python, Java, Javascript, and Go.

Statistics

Split

The functions with docstrings is splitted into train, valid, and test set of 3200626, 400077, 400080 functions respectively.

Features

Each function consists of following features:

  • repository_name: Name of the repository the function belongs to.
  • function_path: Path of the function within the repository.
  • function_identifier: Function name/identifier.
  • language: Programming language the function is written in.
  • function: Function string.
  • docstring: Function docstring.
  • function_url: URL to the function code.
  • context: Code context.
  • license: License info of the repository (includes only repositories with permissive licenses).

Data Collection

The dataset is collected from GitHub repositories of respective languages with 5 or more stars. Such repositories are listed using SEART. Functions are parsed using a lightweight parser build on top of function parser from CodeSearchNet dataset and repositories were collected with help of github-downloader from EleutherAI.

Data Processing

All the code without permissive licenses are removed and deduplication is performed on the remaining set of functions. Afterwards, all the functions with single line of code, whose docstring contains non-English characters are removed. Files with multiple same functions are excluded. This results in about 19M functions. To obtain a dataset of NL-Code pairs, functions with no docstrings or doctrings less than 3 tokens separated by white-space are excluded. Following CodeSearchNet, functions with 'test' keyword in their name are excluded.

License

This dataset is under MIT License. However, the repositories the functions are collected from may have several permissive licenses. Those licenses include MIT License, Apache License 2.0, BSD 3-Clause “New” or “Revised” License, BSD 2-Clause “Simplified” License, and ISC License.

Downloads last month
49