Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    AttributeError
Message:      'str' object has no attribute 'items'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module
                  {
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp>
                  config_name: DatasetInfo.from_dict(dataset_info_dict)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict
                  return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
              AttributeError: 'str' object has no attribute 'items'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

OntoLearner

Industry Domain Ontologies

Overview

The "industry" domain encompasses ontologies that systematically represent and model the complex structures, processes, and interactions within industrial settings, including manufacturing systems, smart buildings, and equipment. This domain is pivotal in advancing knowledge representation by enabling the integration, interoperability, and automation of industrial processes, thereby facilitating improved efficiency, innovation, and decision-making. Through precise semantic frameworks, it supports the digital transformation and intelligent management of industrial operations.

Ontology ID Full Name Classes Properties Individuals
AUTO Automotive Ontology (AUTO) 1372 336 58
DBO Digital Buildings Ontology (DBO) 3032 7 35
PTO Product Types Ontology (PTO) 1002 0 3002
IOF Industrial Ontology Foundry (IOF) 212 51 0
TUBES TUBES System Ontology (TUBES) 52 101 0
DOAP The Description of a Project vocabulary (DOAP) 14 0 0
PKO Provenance Knowledge Ontology (PKO) 38 93 8

Dataset Files

Each ontology directory contains the following files:

  1. <ontology_id>.<format> - The original ontology file
  2. term_typings.json - Dataset of term to type mappings
  3. taxonomies.json - Dataset of taxonomic relations
  4. non_taxonomic_relations.json - Dataset of non-taxonomic relations
  5. <ontology_id>.rst - Documentation describing the ontology

Usage

These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:

from ontolearner import LearnerPipeline, AutoLearnerLLM, Wine, train_test_split

# Load ontology (automatically downloads from Hugging Face)
ontology = Wine()
ontology.load()

# Extract the dataset
data = ontology.extract()

# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)

# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
    task="term-typing",  # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
    retriever_id="sentence-transformers/all-MiniLM-L6-v2",
    llm_id="mistralai/Mistral-7B-Instruct-v0.1",
    hf_token="your_huggingface_token"  # Only needed for gated models
)

# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
    train_data=train_data,
    test_data=test_data,
    top_k=3,
    test_limit=10
)

For more detailed examples, see the OntoLearner documentation.

Citation

If you use these ontologies in your research, please cite:

@software{babaei_giglou_2025,
  author       = {Babaei Giglou, Hamed and D'Souza, Jennifer and Aioanei, Andrei and Mihindukulasooriya, Nandana and Auer, Sören},
  title        = {OntoLearner: A Modular Python Library for Ontology Learning with LLMs},
  month        = may,
  year         = 2025,
  publisher    = {Zenodo},
  version      = {v1.0.1},
  doi          = {10.5281/zenodo.15399783},
  url          = {https://doi.org/10.5281/zenodo.15399783},
}
Downloads last month
121

Collection including SciKnowOrg/ontolearner-industry