You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

2D Image/Depth/Normal Rendering of ShapeNet

The image/depth/normal renders are in the ShapeSplat_2d_renders folder, and the camera parameters are saved in per-object transforms.json in the ShapeSplat_render_cams folder. For 2D rendering, we save per-view frame information in the transforms.json for each object, in the format of:

{
    "camera_angle_x": 0.6911112070083618,
    "frames": [
        {
            "file_path": "image/000",
            "rotation": 0.08726646259971647,
            "transform_matrix": [
                [
                    1.0, 0.0, 0.0, 0.0
                ],
                [
                    0.0, 0.5662031769752502, -0.8242656588554382, -1.0555751323699951
                ],
                [
                    0.0, 0.8242655992507935, 0.5662031769752502, 0.7250939011573792
                ],
                [
                    0.0, 0.0, 0.0, 1.0
                ]
            ]
        },
        { // ... more frames for this object

Camera Intrinsics

The camera intrinsics are calculated from the camera_angle_x field in the transforms JSON file:

def get_intrinsics(camera_angle_x: float, width: int = 400, height: int = 400):
    fx = width / (2 * np.tan(camera_angle_x / 2))
    fy = fx  # Square pixels assumed
    cx = width / 2.0   # Principal point at center
    cy = height / 2.0
    
    K = [[fx,  0, cx],
         [ 0, fy, cy], 
         [ 0,  0,  1]]

Output:

  • Image dimensions: 400×400
  • Camera FOV: 39.60°
  • Intrinsics matrix:
    [[555.56    0   200  ]
     [  0   555.56 200  ]
     [  0     0     1   ]]
    

Image Reading

RGB Images:

  • Format: PNG files (000.png, 001.png, ...)
  • Image in RGBA format (with alpha channel)
  • Alpha channel cam be used for background masking

Depth Reading

Depth Maps:

  • Format: 4-channel RGBA PNG files from Blender ([frame_id]0001.png, e.g., 0000001.png, 0010001.png, ...)
  • Note: Only the first channel (R) contains depth data
  • Blender saves depth as inverted values: [0,8] meters → [1,0] normalized
  • Script remaps back to linear depth: depth_linear = depth_min + (1.0 - depth_img) * (depth_max - depth_min)
  • Background pixels have depth values close to 1.0 (far plane)

Depth Reading:

# Extract first channel from 4-channel depth
depth_img = depth_img_raw[:, :, 0]

# Convert uint8 depth to float normalized to [0, 1]
depth_img = depth_img.astype(np.float32) / 255.0

# Note: Blender remaps [0, 8] to [1, 0]
# Remap depth values from [1, 0] back to [depth_min, depth_max]
depth_min, depth_max = 0, 8
depth_linear = depth_min + (1.0 - depth_img) * (depth_max - depth_min)

valid_mask = (depth_linear > 0.001) & (depth_linear < depth_max - 0.001)
background_mask = depth_img > 0.999

valid_mask = valid_mask & ~background_mask

Coordinate Alignment to 3DGS and OBJ Mesh

Due to coordinate inconsistency at the beginning, the poses of the 2D renderings saved in frame['transform_matrix'] is not aligned to the world coordinate of the 3DGS object and the OBJ mesh.

The following process are needed to convert the 'transform_matrix' key in order to align with the OBJ object mesh.

def convert_cam_coords(transform_matrix):
    P = np.array([
        [1, 0, 0, 0],
        [0, 0, 1, 0],
        [0, -1, 0, 0],
        [0, 0, 0, 1]
    ])

    C = np.array([
        [1,  0,  0, 0],
        [0, -1,  0, 0],
        [0,  0, -1, 0],
        [0,  0,  0, 1]
    ])

    new_transform_matrix = P @ transform_matrix @ C
    return new_transform_matrix

transform_matrix = np.array(frame['transform_matrix'])
transform_matrix = convert_cam_coords(transform_matrix)

After this process, the 2D rendering results will be aligned to the world coordinate as in the original shapenet object, i.e., point_cloud.obj file. For example, the fused depth maps with the processed poses with its point_cloud.obj together:

Image

Additionally, there is misalignment between the released 3DGS object and the corresponding point_cloud.obj file.

To align the 2D rendering results with the released 3DGS, please use the following conversion instead:

# align to the 3dgs object coordinates
def convert_cam_coords(transform_matrix):
    C = np.array([
        [1,  0,  0, 0],
        [0, -1,  0, 0],
        [0,  0, -1, 0],
        [0,  0,  0, 1]
    ])

    new_transform_matrix = transform_matrix @ C
    return new_transform_matrix
Downloads last month
54