Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
episode_index: int64
tasks: list<item: string>
length: int64
vs
episode_index: int64
stats: struct<observation.arm2_servo_node_status_data: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.arm2_servo_node_collision_velocity_scale_data: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.state: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, action: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.rosout_level: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.rosout_line: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, timestamp: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, frame_index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, episode_index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, task_index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 559, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              episode_index: int64
              tasks: list<item: string>
              length: int64
              vs
              episode_index: int64
              stats: struct<observation.arm2_servo_node_status_data: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.arm2_servo_node_collision_velocity_scale_data: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.state: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, action: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.rosout_level: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, observation.rosout_line: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, timestamp: struct<min: list<item: double>, max: list<item: double>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, frame_index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, episode_index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>, task_index: struct<min: list<item: int64>, max: list<item: int64>, mean: list<item: double>, std: list<item: double>, count: list<item: int64>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Universal Robot Arm Dataset (LeRobot Format)

This dataset contains robot manipulation data extracted from a ROS2 bag file, processed into LeRobot format for robot learning applications.

Dataset Contents

The dataset includes various sensor and control data from a robot arm:

  • Joint States: Position, velocity, and effort of robot joints
  • TF Transforms: Robot's kinematic state
  • Robot Description: URDF and SRDF data
  • Logging Information: Rosout messages
  • Servo Node Status: Status information from the robot's servo nodes
  • Controller Trajectory: Joint trajectory commands and states

Data Format

This dataset is in LeRobot format with:

  • : Contains episode data in parquet format
  • : Contains metadata and info files
  • Compatible with LeRobot visualization and training tools

Usage

You can load this dataset using LeRobot:

Visualization

This dataset is compatible with the LeRobot visualizer for data exploration and analysis.

License

[Specify your dataset license here, e.g., MIT, Apache 2.0, etc.]

Downloads last month
11