|
--- |
|
language: |
|
- en |
|
license: mit |
|
size_categories: |
|
- 1M<n<10M |
|
task_categories: |
|
- visual-question-answering |
|
- image-text-to-text |
|
pretty_name: ABC-Pretraining-Data |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
dataset_info: |
|
features: |
|
- name: caption |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: id |
|
dtype: int64 |
|
- name: image |
|
dtype: string |
|
- name: negatives |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 2289772991 |
|
num_examples: 2252041 |
|
download_size: 1855548818 |
|
dataset_size: 2289772991 |
|
tags: |
|
- visual |
|
--- |
|
|
|
## ABC Pretraining Data |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
This the the pretraining data for ABC. This dataset is derived from Google's [Conceptual Captions](https://ai.google.com/research/ConceptualCaptions/) dataset. |
|
The each item in the dataset contain a URL where the corresponding image can be downloaded and mined negatives for each item. Full dataaset is ~300 GB of images. For a detailed description of how we mined the negatives please check out our ppaer ;). |
|
**Update** I have added the images to this repository, for an example of how to use and download this dataset see our [repository](https://github.com/TIGER-AI-Lab/ABC). |
|
|
|
## Paper and Website |
|
|
|
For more information, please refer to [Website](https://tiger-ai-lab.github.io/ABC/). |
|
|
|
## Citation |
|
|
|
If you find any of our work helpful please connsider citing: |
|
|
|
``` |
|
@misc{schneider2025abcachievingbettercontrol, |
|
title={ABC: Achieving Better Control of Multimodal Embeddings using VLMs}, |
|
author={Benjamin Schneider and Florian Kerschbaum and Wenhu Chen}, |
|
year={2025}, |
|
eprint={2503.00329}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2503.00329}, |
|
} |
|
``` |