You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

TeXtract_dataset (WebDataset Format)

This repository contains approximately 3.2 million pairs of mathematical expression images and their corresponding LaTeX source code, packaged in WebDataset format for large-scale training.

The dataset is based on and derived from the original hoang-quoc-trung/fusion-image-to-latex-datasets, transformed for more efficient access.


πŸ“‚ Dataset Structure

Each WebDataset shard (.tar) contains multiple samples. Each sample groups files sharing a common identifier (__key__):

  • __key__ (string): Unique sample ID (e.g., sample_000000123).
  • Image file (.png, .jpg, etc.): Binary data of the mathematical expression.
  • .tex: UTF-8 text file with the corresponding LaTeX code.
  • __url__ (string): URL or path to the source shard (automatically added).
shard-000000.tar
β”œβ”€β”€ sample_000000000.png
β”œβ”€β”€ sample_000000000.tex
β”œβ”€β”€ sample_000000001.png
β”œβ”€β”€ sample_000000001.tex
└── ...

Note: When browsing in Hugging Face Data Studio:

  • Image metadata (dimensions) may be shown instead of the actual content.
  • .tex files may appear Base64-encoded. This is only a preview; the underlying data is UTF-8.

πŸš€ How to Use

1. Using the datasets library (recommended)

from datasets import load_dataset
from PIL import Image
import io

DATASET_ID = "ToniDO/TeXtract_dataset"

try:
    ds = load_dataset(DATASET_ID, split="train", trust_remote_code=True)
except ValueError:
    ds = load_dataset(DATASET_ID, trust_remote_code=True)

for i, sample in enumerate(ds):
    print(f"Sample {i}: {sample['__key__']}")

    # Load image
    for ext in ['.png', '.jpg', '.jpeg']:
        if ext in sample:
            img_data = sample[ext]
            img = (
                img_data
                if isinstance(img_data, Image.Image)
                else Image.open(io.BytesIO(img_data if isinstance(img_data, bytes) else img_data['bytes']))
            )
            print(f"Image ({ext}), size: {img.size}")
            break

    # Decode LaTeX
    tex_bytes = sample.get('.tex')
    if isinstance(tex_bytes, (bytes, bytearray)):
        latex = tex_bytes.decode('utf-8')
        print(latex[:100])

    if i >= 2:
        break

2. Using the webdataset library

import webdataset as wds
from PIL import Image
import io

urls = "path/to/shards/math_dataset-{000000..000349}.tar"

dataset = (
    wds.WebDataset(urls)
       .decode(
           wds.handle_extension("pil", "png"),
           wds.handle_extension("pil", "jpg"),
           handler=wds.ignore_and_continue
       )
)

for i, sample in enumerate(dataset):
    print(f"Sample {i}: {sample['__key__']}")

    # Image
    img = None
    for ext in ["png", "jpg", "jpeg"]:
        if ext in sample and isinstance(sample[ext], Image.Image):
            img = sample[ext]
            break
    if img:
        print(f"Size: {img.size}")

    # LaTeX
    tex = sample.get('.tex')
    if isinstance(tex, (bytes, bytearray)):
        print(tex.decode('utf-8')[:100])

    if i >= 2:
        break

Training tips:

  • Decode LaTeX from UTF-8.
  • Preprocess images (resize, normalize, augment).
  • Tokenize LaTeX code according to your vocabulary.
  • Shuffle shards and samples for effective training.

File Types

  .bmp
  .dvi
  .jpg
  .png

πŸ“– Citation

If you use this dataset, please cite the original work:

@misc{hoang2024fusion,
  author       = {Hoang, Quoc Trung},
  title        = {Fusion Image-to-LaTeX Datasets},
  year         = {2024},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/hoang-quoc-trung/fusion-image-to-latex-datasets}
}

And to reference this WebDataset version:

@misc{ToniDO_TeXtract_webdataset_2025,
  author       = {ToniDO},
  title        = {{TeXtract_dataset (WebDataset Format)}},
  year         = {2025},
  publisher    = {Hugging Face},
  version      = {1.0.0},
  url          = {https://huggingface.co/datasets/ToniDO/TeXtract_dataset}
}

πŸ“ Authors

  • ToniDO

πŸ“œ License

This project is licensed under the MIT License. See the LICENSE file for details.

Downloads last month
76