date
stringlengths
19
19
HUFL
float64
0
108
HULL
float64
-29.32
36.4
MUFL
float64
10.4
93.2
MULL
float64
-6.65
29.8
LUFL
float64
-14.62
17.2
LULL
float64
-31.46
3.73
OT
float64
-2.65
58.9
2016-07-01 00:00:00
41.130001
12.481
36.535999
9.355
4.424
1.311
38.661999
2016-07-01 00:15:00
39.622002
11.309
35.543999
8.551
3.209
1.258
38.223
2016-07-01 00:30:00
38.868
10.555
34.365002
7.586
4.435
1.258
37.344002
2016-07-01 00:45:00
35.518002
9.214
32.569
8.712
4.435
1.215
37.124001
2016-07-01 01:00:00
37.528
10.136
33.936001
7.532
4.435
1.215
37.124001
2016-07-01 01:15:00
37.612
10.303
33.212002
7.532
3.913
1.301
36.903999
2016-07-01 01:30:00
36.271999
9.466
32.917
7.211
3.913
0
36.903999
2016-07-01 01:45:00
32.752998
7.874
30.719
6.273
2.1
0
36.465
2016-07-01 02:00:00
37.946999
11.309
35.330002
9.007
2.1
0
36.465
2016-07-01 02:15:00
38.449001
11.309
35.303001
9.114
3.38
0
36.465
2016-07-01 02:30:00
37.862999
11.392
35.25
9.087
3.38
0
35.806
2016-07-01 02:45:00
38.701
11.644
35.491001
9.221
3.38
1.247
34.926998
2016-07-01 03:00:00
38.952
11.895
35.543999
9.436
3.38
1.215
33.608501
2016-07-01 03:15:00
36.606998
11.141
33.292999
8.712
3.38
1.215
32.949001
2016-07-01 03:30:00
38.198002
11.476
35.035
9.302
3.38
0
32.509998
2016-07-01 03:45:00
37.444
11.309
35.652
9.704
2.036
0
32.290001
2016-07-01 04:00:00
38.113998
11.476
35.41
9.623
2.036
0
31.8505
2016-07-01 04:15:00
34.68
9.717
31.416
7.774
3.252
0
31.631001
2016-07-01 04:30:00
36.858002
10.639
33.722
8.524
3.252
0
31.410999
2016-07-01 04:45:00
36.355
10.136
34.285
8.685
2.036
0
30.972
2016-07-01 05:00:00
36.773998
10.974
34.928001
9.248
2.036
0
30.532
2016-07-01 05:15:00
32.921001
8.712
32.514999
8.176
2.036
0
30.532
2016-07-01 05:30:00
38.449001
11.141
36.456001
9.489
2.036
0
30.752001
2016-07-01 05:45:00
39.035999
11.644
37.098999
9.918
2.036
0
30.3125
2016-07-01 06:00:00
39.035999
11.811
37.153
10.079
2.036
0
30.093
2016-07-01 06:15:00
36.942001
11.057
33.909
9.06
3.476
0
29.872999
2016-07-01 06:30:00
40.626999
12.481
37.233002
10.133
3.55
0
29.872999
2016-07-01 06:45:00
38.282001
11.56
36
9.677
2.068
0
29.872999
2016-07-01 07:00:00
39.370998
11.309
36.535999
9.409
2.068
0
29.872999
2016-07-01 07:15:00
35.182999
9.466
32.355
7.64
3.284
0
29.872999
2016-07-01 07:30:00
35.098999
8.963
31.738001
7.077
3.284
0
29.872999
2016-07-01 07:45:00
34.094002
8.042
30.773001
6.058
3.284
0
29.872999
2016-07-01 08:00:00
33.925999
8.461
31.899
6.487
2.015
0
29.653
2016-07-01 08:15:00
34.764
9.298
33.48
7.774
0
0
29.4335
2016-07-01 08:30:00
38.868
10.974
37.233002
9.168
1.269
0
29.4335
2016-07-01 08:45:00
38.952
11.141
37.206001
9.436
1.269
0
29.4335
2016-07-01 09:00:00
38.449001
13.905
37.286999
12.143
1.269
0
29.213499
2016-07-01 09:15:00
38.868
13.235
37.528
11.446
1.269
0
28.115499
2016-07-01 09:30:00
36.689999
12.314
35.625
10.722
1.269
0
27.675501
2016-07-01 09:45:00
35.518002
9.298
34.07
7.827
1.269
0
27.675501
2016-07-01 10:00:00
35.936001
9.55
34.257999
8.042
1.269
0
27.455999
2016-07-01 10:15:00
35.936001
9.885
34.445
8.203
1.269
0
27.455999
2016-07-01 10:30:00
35.769001
8.963
33.855999
7.506
1.269
0
27.455999
2016-07-01 10:45:00
36.104
9.298
34.151001
7.827
1.269
0
27.455999
2016-07-01 11:00:00
35.769001
9.466
33.936001
7.908
1.269
0
27.455999
2016-07-01 11:15:00
39.119999
11.811
37.634998
10.025
1.269
0
27.455999
2016-07-01 11:30:00
40.459999
12.984
38.949001
11.124
1.269
0
27.2365
2016-07-01 11:45:00
41.130001
13.403
39.726002
11.446
1.269
0
27.2365
2016-07-01 12:00:00
40.209
12.984
38.761002
11.098
1.343
0
27.2365
2016-07-01 12:15:00
39.874001
13.152
38.52
11.258
1.343
0
27.2365
2016-07-01 12:30:00
40.292
13.152
38.787998
11.285
1.29
0
26.797001
2016-07-01 12:45:00
39.622002
13.068
38.412998
11.312
1.29
0
26.577
2016-07-01 13:00:00
37.025002
11.895
35.731998
10.427
1.386
0
26.577
2016-07-01 13:15:00
38.868
12.9
37.849998
11.151
1.258
0
26.797001
2016-07-01 13:30:00
39.874001
13.152
38.573002
11.366
1.279
0
26.797001
2016-07-01 13:45:00
40.125
13.319
38.868
11.714
1.503
0
26.797001
2016-07-01 14:00:00
39.957001
13.319
38.573002
11.419
1.29
0
26.797001
2016-07-01 14:15:00
37.778999
12.649
36.669998
10.964
1.215
0
26.797001
2016-07-01 14:30:00
39.286999
12.9
37.876999
11.071
1.279
0
26.797001
2016-07-01 14:45:00
39.874001
13.235
38.599998
11.419
1.546
0
26.797001
2016-07-01 15:00:00
40.292
13.487
39.056
11.875
1.269
0
26.797001
2016-07-01 15:15:00
39.537998
13.57
38.305
11.768
1.237
0
26.797001
2016-07-01 15:30:00
39.957001
13.403
38.708
11.473
1.375
0
26.797001
2016-07-01 15:45:00
36.689999
11.979
35.330002
10.401
1.493
0
26.797001
2016-07-01 16:00:00
40.879002
13.57
39.458
11.848
1.493
0
26.797001
2016-07-01 16:15:00
42.303001
14.157
40.342999
12.17
1.493
0
26.577499
2016-07-01 16:30:00
38.030998
11.644
35.893002
9.704
1.493
0
26.577499
2016-07-01 16:45:00
38.366001
11.476
35.839001
9.409
2.708
0
26.577499
2016-07-01 17:00:00
42.134998
13.403
39.243999
11.285
2.708
0
26.577499
2016-07-01 17:15:00
42.973
14.073
39.699001
11.607
2.708
0
26.577499
2016-07-01 17:30:00
43.558998
14.408
39.993999
11.902
2.708
0
26.577499
2016-07-01 17:45:00
43.894001
14.576
40.154999
11.955
2.708
0
26.577499
2016-07-01 18:00:00
42.722
13.989
39.377998
11.607
2.708
0
26.577499
2016-07-01 18:15:00
41.549
13.403
39.591999
11.473
2.708
0
26.577499
2016-07-01 18:30:00
41.632999
12.816
38.708
10.695
2.708
0
26.3575
2016-07-01 18:45:00
41.381001
12.9
38.493
10.776
2.708
0
26.137501
2016-07-01 19:00:00
37.361
10.471
34.472
8.605
2.708
0
26.137501
2016-07-01 19:15:00
37.444
10.136
34.338001
8.176
2.708
0
26.137501
2016-07-01 19:30:00
37.444
9.885
34.257999
7.827
2.708
0
26.137501
2016-07-01 19:45:00
37.862999
10.639
34.418999
8.497
2.708
0
26.137501
2016-07-01 20:00:00
41.130001
12.649
37.769001
10.401
2.708
0
26.137501
2016-07-01 20:15:00
38.449001
11.392
36.643002
9.65
2.708
0
26.137501
2016-07-01 20:30:00
39.286999
11.644
36.643002
9.623
2.708
0
26.137501
2016-07-01 20:45:00
39.622002
11.309
36.483002
9.409
2.708
0
26.137501
2016-07-01 21:00:00
36.522999
10.471
33.507
8.497
2.708
0
25.6985
2016-07-01 21:15:00
38.617001
11.309
35.543999
9.141
2.708
0
25.6985
2016-07-01 21:30:00
39.455002
11.895
36.563
9.704
2.708
0
25.6985
2016-07-01 21:45:00
35.601002
10.052
32.435001
8.095
2.708
0
25.917999
2016-07-01 22:00:00
36.104
10.387
34.124001
9.007
2.708
0
25.917999
2016-07-01 22:15:00
36.438999
10.555
33.990002
8.846
2.708
0
25.917999
2016-07-01 22:30:00
33.256001
9.466
30.907
7.881
2.708
0
25.917999
2016-07-01 22:45:00
33.172001
9.298
30.398001
7.613
2.708
0
25.917999
2016-07-01 23:00:00
36.438999
10.639
33.48
8.926
2.708
0
25.917999
2016-07-01 23:15:00
35.853001
10.555
33.077999
8.685
2.708
0
25.917999
2016-07-01 23:30:00
33.172001
9.633
30.237
7.8
2.708
0
25.917999
2016-07-01 23:45:00
32.167
9.298
30.371
7.881
2.601
0
25.917999
2016-07-02 00:00:00
35.601002
11.476
33.695
9.891
1.535
0
25.917999
2016-07-02 00:15:00
35.685001
11.057
33.667999
9.489
1.535
0
25.917999
2016-07-02 00:30:00
32.669998
9.885
30.693001
8.417
1.535
0
25.917999
2016-07-02 00:45:00
31.413
9.382
30.773001
8.39
0
0
26.138
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

The ETTm2 dataset is a time series dataset that is part of the ETTh1 and ETTm1 datasets, which are used for time series forecasting tasks. The dataset is derived from the operation of an electricity transformer, specifically focusing on the monitoring of various operational parameters. The dataset is designed to be used for research in time series forecasting, anomaly detection, and other related tasks.

Key Characteristics of the ETTm2 Dataset:

Source: The dataset is collected from the operation of an electricity transformer, which is a critical component in the power distribution network.

Time Period: The dataset covers a specific time period, which is typically a few years, depending on the version of the dataset. The data is recorded at regular intervals, usually every 15 minutes.

Features: The dataset includes several features that represent different operational parameters of the transformer. These features can include:

HUFL (High Usage Frequency Load): Represents the high usage frequency load on the transformer.

HULL (High Usage Low Load): Represents the high usage low load on the transformer.

MUFL (Medium Usage Frequency Load): Represents the medium usage frequency load on the transformer.

MULL (Medium Usage Low Load): Represents the medium usage low load on the transformer.

LUFL (Low Usage Frequency Load): Represents the low usage frequency load on the transformer.

LULL (Low Usage Low Load): Represents the low usage low load on the transformer.

OT (Oil Temperature): Represents the temperature of the transformer oil, which is a critical parameter for monitoring the health of the transformer.

Target Variable: The primary target variable in the ETTm2 dataset is the oil temperature (OT). The goal is to predict the oil temperature based on the historical values of the other features.

Format: The dataset is typically provided in a CSV (Comma-Separated Values) format, where each row represents a time step, and each column represents a feature or the target variable.

Usage: The ETTm2 dataset is commonly used for time series forecasting tasks, where the objective is to predict future values of the oil temperature based on the historical data. It can also be used for anomaly detection, where the goal is to identify unusual patterns or outliers in the data.

Example Use Cases:

Time Series Forecasting: Predicting future oil temperatures based on historical data.

Anomaly Detection: Identifying unusual patterns or outliers in the operational parameters of the transformer.

Feature Engineering: Creating new features or lagged variables to improve the performance of time series models.

Summary:

The ETTm2 dataset is a valuable resource for researchers and practitioners in the field of time series analysis and forecasting. It provides a rich set of features that represent the operational parameters of an electricity transformer, with the primary focus on predicting the oil temperature. The dataset is well-suited for various time series tasks, including forecasting, anomaly detection, and feature engineering.

Downloads last month
37
Edit dataset card

Spaces using TroglodyteDerivations/ETTm2 2