image
imagewidth (px) 158
6k
|
---|
How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective
About SIBench
At present, there already exist numerous open-source benchmarks for visual-spatial reasoning; however, each benchmark typically covers only a subset of tasks. We collected, categorized, and filtered them to construct SIBench.
π‘ Key Features
Hierarchical Evaluation
We categorize Visual Spatial Reasoning tasks into three types based on a reasoning levels: Foundational Perception, Spatial Understanding, and Planning. Furthermore, each category contains a rich set of evaluation tasks to comprehensively assess the visuospatial reasoning capabilities of existing VLMs.
Comprehensive evaluation
The evaluation data in SIBench cover diverse input formats, including single images, multi-view images, and videos, as well as various question formats, such as true/false judgment, multiple-choice, and numerical question answering. The data are derived from 23 relevant tasks across nearly 20 open-source benchmarks.
High Quality
SIBench prioritizes datasets with human annotations, filters out excessively long videos to avoid unreasonable task settings, and adds timestamps to videos requiring temporal information, thereby ensuring high data quality.
π¨βπ» Code
We offer a comprehensive evaluation methodology. For more details, please refer to our evaluation code and project page.
π Dataset
SIBench contains a total of 8.8K data points. The data formats include single images, multiple images, and videos, while the question types include true/false, multiple-choice, and numerical questions.
Additionally, we provide a streamlined version for evaluation called SIBench-mini. The data for this version is randomly selected from SIBench. SIBench-mini maintains the same comprehensive task settings as the full version, but with a more uniform data distribution.
π― Evaluation Results
We've provided a leaderboard, and we welcome you to add your evaluation results. Please feel free to contact us directly at: [email protected].
π Citation
If you find SIBench useful in your research, please consider to cite the following related papers:
@article{sibench2025,
title = {How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective},
author = {Songsongyu, Yuxin Chen, Hao Ju, Lianjie Jia, Shaofei Huang, Rundi Cui, Yuhan Wu, Binghao Ran, Zaibin Zhang, Zhedong Zheng, Zhipeng Zhang, Yifan Wang, Lin Song, Lijun Wang, Yanwei Li, Ying Shan, Huchuan Lu},
journal = {arXiv preprint},
year = {2025} }
- Downloads last month
- 1,110