UltraRonin's picture
Update README.md
7a6fe74 verified
---
dataset_info:
features:
- name: text
dtype: string
- name: meta
struct:
- name: pile_set_name
dtype: string
- name: input_ids
sequence: int32
- name: index
dtype: int64
splits:
- name: train
num_bytes: 9180928
num_examples: 32
download_size: 3922400
dataset_size: 9180928
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs
<p align="center">
πŸ“– <a href="https://arxiv.org/abs/2503.02502" target="_blank">Paper</a> β€’ πŸ€— <a href="https://huggingface.co/collections/UltraRonin/ladm-68466cbccb652c8d828ca17e" target="_blank">HF Repo</a>
</p>
## πŸ” Table of Contents
- [🌐 Overview](#overview)
- [πŸ“š Preparation](#preparation)
- [⏳ Data Selection](#data_selection)
- [πŸ“ˆ Training](#training)
- [πŸ“ Citation](#citation)
<a name="overview"></a>
## 🌐 Overview
Long-context modeling has drawn more and more attention in the area of Large Language Models (LLMs). Continual training with long-context data becomes the de-facto method to equip LLMs with the ability to process long inputs. However, it still remains an open challenge to measure the quality of long-context training data. To address this issue, we propose a **L**ong-context data selection framework with **A**ttention-based **D**ependency **M**easurement (**LADM**), which can efficiently identify high-quality long-context data from a large-scale, multi-domain pre-training corpus. LADM leverages the retrieval capabilities of the attention mechanism to capture contextual dependencies, ensuring a comprehensive quality measurement of long-context data. Experimental results show that our LADM framework significantly boosts the performance of LLMs on multiple long-context tasks with only 1B tokens for continual training.
<a name="preparation"></a>
## πŸ“š Preparation
### Data Preparation
Please prepare long-context pre-training dataset truncated to 32k tokens in the following format, see [here](https://huggingface.co/datasets/UltraRonin/pile-LlamaTokenizerFast-32k-truncated-toy) for examples.
```
DatasetDict({
train: Dataset({
features: ['text', 'meta', 'input_ids', 'index'],
num_rows: 32
})
})
```
### Model Preparation
You can use our [Long Attention Calculator](https://huggingface.co/UltraRonin/Long-Attn-Calculator) or other LLMs with long-context modeling capability.
<a name="data_selection"></a>
## ⏳ Data Selection
If you run the following script with our [toy dataset](https://huggingface.co/datasets/UltraRonin/pile-LlamaTokenizerFast-32k-truncated-toy), you will get similar CDS scores in file [./toy_scores.json](https://github.com/ZNLP/LADM/blob/main/toy_scores.json).
```bash
bash launch_toy.sh
```
For full usage:
```bash
bash launch.sh
```
<a name="training"></a>
## πŸ“ˆ Training
Our training mainly follows [Huggingface Trainer](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling) code base. Please refer to that repo for more details.
<a name="citation"></a>
## πŸ“ Citation
If you find this repo useful for your research, please consider citing the paper:
```
@article{chen2025ladm,
title={LADM: Long-context Training Data Selection with Attention-based Dependency Measurement for LLMs},
author={Chen, Jianghao and Wu, Junhong and Xu, Yangyifan and Zhang, Jiajun},
journal={arXiv preprint arXiv:2503.02502},
year={2025}
}
```